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AN INCLUSION RELATION FOR ABEL, BOREL, 
AND LAMBERT SUMMABILITY 

W. GAWRONSKI, H. SIEBERT AND R. TRAUTNER 

1. In this paper a new type of inclusion theorem concerning Abel, 
Borel and Lambert summability is established. To state our results we 
need some definitions and notations. With a formal series ]Q°=o #*, 
ak £ C, and its partial sums sn we associate the series 

(1.1) A(v):= É a*v-*t 

oo 

(1.2) L{v): = a„ - (» - 1) £ A'(vn)vm, 
7 7 1 = 1 

0 0 e 

(1.3) B(x): = e-X £ -^xn. 
n=0 %• 

Then ^k=o a* is said to be summable to the value 5 

(a) by Abel's method, if (1.1) is convergent for \v\ > 1 and 
lim^i+ A (v) = s, 

(b) by Lambert's method, if (1.2) is convergent for \v\ > 1 and 
limv_>i+L(v) = s, 

(c) by Borel's method, if (1.3) is convergent for all x Ç R and 
\imx^+œ B (x) = s. 

For the domains of summability we write (^4), (L) and (B) respec­
tively. 

Hardy and Littlewood [2] showed the inclusion (L) C (A). Actually 
they inferred this relation from the convergence of ^ ° I ^ W I n - 1 , 
where 

N(x): = ^2n^xv(n)n-\ 

ix(n) being Môbius' function. Hoischen [3] proved that (L) C (A) in 
fact is equivalent to the convergence of X)? \N(n)\n~l, and this is some­
what deeper than the prime number theorem. (In number theory two 
statements are called i 'equivalent" when either of them can be deduced 
from the other without using deeper results from the analytic theory of 
numbers.) Furthermore, Hoischen [4] proved the equivalence of the 
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Riemann hypothesis with certain saturation properties between Lam­
bert's and Abel's method. On the other hand we have (B) $£ (A) and 
(B) <2 (L), since (B) contains series with l i m ^ J a ^ 1 /k > 1, which 
certainly cannot be in (̂ 4) or (L). However, if ^™ ak is summable to 5 
by Borel's method and l i m ^ œ \ak\

l/]c < oo , then A(v) has an analytic 
continuation into Re v > 1 and l im^n- A (v) = s. Therefore it makes 
sense to ask whether (A) C\ (B) C (L) or not. This question is due to 
B. L. R. Shawyer (London, Ontario) and will be answered by the 
following 

THEOREM. (A) P\ (B) c (L). 

The detailed proof is established in the following three sections. First 
we give an outline of the proof. Suppose throughout that 

oo 

(1.4) Zakd(A)n(B) 
0 

(1.5) a0 = d\ = 0 

(1.6) \imx^B(x) = 0. 

Assumptions (1.5) and (1.6) do not mean a loss of generality, since A, B, 
and L are regular methods. Furthermore, we consider the weight function 

w(x): = min(x2, 1), x > 0, 

and the Banach spaces 

Ui\ = {f(x)\f(x) continuous for x > 0, 

11/11 = sups>o \f(x)/w(x)\ < oo J, 

U2: = {g(v)\ g(v) continuous for v £ (1,2], 
||g|| = sup1<V£2\g(v)\ < oo}. 

If (1.4) and (1.5) hold, then B(x) G Ui and if £ ? ak £ (L), then 
L(v) € U2. 

We shall show the existence of an integral kernel KLtB(v, x) such that 

- / . 
(1.7) g(v) = KLlB(v,x)f(x)dx, 1 < » £ 2, 

+> 0 

defines a linear map from U\ into the space of continuous functions on 
(1, 2] and satisfying in addition 

(«0 = f (1.8) L(v) = KLtB(v,x)B(x)dx. 
J o 

The critical part of the proof consists in showing that (1.7) is even a 
bounded map from U\ into U2, that is (see Lemma 4) 

f (1.9) ll-^i.flll = supi<t£2 I I ^ L . B ^ , X)|Î^(X)^X < oo. 
0 
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Finally we show that 

(1.10) \im,+i+KLtB(v,x) = 0 

holds uniformly on any interval [xi, x2], 0 < X\ < x2 < oo, and infer 
from (1.8), (1.9) and (1.10) by standard techniques (following the proof 
of the well-known Silverman-Toeplitz theorem) that (1.4), (1.5) and 
(1.6) imply 

(1.11) Yimv^l+L(v) = 0. 

2. In this section we establish transformation formulae between 
A (v), L(v) and B(x). Throughout this paper we assume that \B(x)\ g M 
(M constant) and l im*^ \ak\

l/k ^ 1 which are necessary conditions for 
2^? &k to be in (B) and (A) respectively. 

LEMMA 1. If x £ R and R > 1, then 

(2.1) B(x) = §lvl=RKB<A(x,v)A(v)dv 

with 

(2.2) KB,A(x,v) = e-x^-vy2iri(v - 1). 

Proof. From (1.1) we get 

A(v) f, £^ 
v - 1 " V ^n+1 

and therefore 

2iriJ \V\=RV — 1 

This implies 

~Q n\ i^i n\2irtJ \v\=Rv — 1 

-l v\=R2TTt(v - 1) K t{ W! 

which completes the proof. 

LEMMA 2. If a0 = 0, then we have for Re v > 1 

(2.3) 4(i/) = f KAtB(vfx)B(x)dx 
J o 

(2.4) i^,^,x) = (v- l)e-*^\ 
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Proof. We first compute 

/

' oo I oo 

KAiB(v,x)KB,A(x, t)dx = (v - 1) I e ^ 5 " " - ^ r r d * 
0 «^ 0 

-Xil~t) 

0 2îri(* - 1) 

2TTÎ (* - l)(v - 0 

valid for Re(fl — 0 > 0. Hence we get for Re v > R > 1 from Lemma 1 

I KAtB(p, x)B(x)dx = I i^AlB(^,x)4> KBtA(x,t)A(t)dtdx 
Jo J o «̂  i z|=# 

*irtJ ]t]=B (t — 1){V — t) 

In the last step we used a0 = 0. Since R > 1 was arbitrary, the proof is 
complete. 

LEMMA 3. Under (1.5) we have for 1 < v g 2 

(2.5) L(i;) = I °°KLiB{v)x)B{x)dx 
J o 

oo 

(2.6) X i l B(», * ) = - ( » - 1) £ c - ' ^ - ^ d - x(z>m - l))iT. 
ra=l 

Proof. Differentiating (2.3) we obtain 

/
' °° A 

--KAtB(v,x)B(x)dx 
o cw 

= I " V ^ ^ l - *(» - l))£(*)d* 
«^ 0 

and further from (1.2) we get 

oo 

L(v) = — (o — 1) J2 ^'(wm)»m 

m = l 

GO I GO 

= - (» - 1) Z ^ ^ " « ( l _ x(v
m - l))v

mB(x)dx 
m = l ^ 0 

leading to Lemma 3 by interchanging sum and integral, which can be 
justified as follows. We have for x > 0, 1 < v g 2, 

1 °° 
—L— \KLB{v,x)\ S E ^ - " " " ( l + x(vm - 1 ) K 

CO 

= 2 e-^'™-»(i + (/* - l)(x + 1) 
ra=l 

+ (»" - lfx). 
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Using yve~v ^ Ke~y/2, y > 0, (v = 0, 1, 2) and (vm - 1) ^ (i; - 1) we 
obtain for x > 0, 1 < v ^ 2 

^ 1 ^ ( ^ ) 1 ^ ( i + ^ + i j z a;(!;m_l)/2 

^ 2 K
 x rz-^(-i)/2 

and hence 

1 < y ^ 2,x > 0, (2.7) Itf^fcs x)| ^ ±K{^^)\-X{V-1)I2 

since e- ' ( l - e~1)-1 ^ *~'(1 + J)*"1 for / > 0. 
In view of (1.5) there exists a constant M' such that \B(x)\ ^ 

7kT(x/(l + x))2, x > 0, which implies that 

/ o " [KLlB(v. X)B(X)\dX £ 4 i f J i r / o " ( ^ ) , ( ï ^ ; ) t ^ - » ^ 

is finite. Now Fubini's theorem justifies the interchange in question. 

3. This section is devoted to the essential part of the proof of our 
theorem. We show that 

(1.7) g(v) = ) KLtB{v,x)f(x)dx 
J 0 

defines a bounded map from the Banach space U\ into Ui. Therefore we 
have to prove 

LEMMA 4. The norm of KLtB is finite, that is 

(1.9) \\KLtB\\ = sup I \KL,B(v,x)\w(x)dx < o o . 
l<^2 J 0 

Proof. From (2.7) we get 

(3.1) ) \KL B(v, x)\w(x)dx ^ 4K ) \^^\e-xiv-1)l2x2dx 
•̂  o J o \ x / 

which is bounded for «; £ (1, 2]. To estimate the remaining part of the 
integral we write a primitive function I{v, x) of KLtB(v, x) as a Laplace-
Stieltjes integral. We have 

oo I oo 

- x I e~xtdF(v, t) 
J o 

(3.2) 7(z>, a;) = -x(v - 1) Z c-* ( ,"-V 

= - x 2 1 éT^/ty, t)dt, 
J o 

where 

(3.3) F(v,t): = (» - i) £ »* 
l^fc< log(H-l)/log o 
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is a step function having jumps of height (v — l)vk at t = vk — 1, K N. 
Obviously we have 

(3.4) F(v, / ) = 0 for 0 = * < v - 1, 

while 

(3.5) |F(v, 0 - *| = («; - 1)(1 + /) for t = i; - 1. 

To prove (3.5) suppose that ^m — 1 = t < vm+1 — 1 for some m Ç N. 
In this interval T7^, 0 = F(y, vm — 1) = v(vm — 1) holds and hence 

F(v, 0 - t = 0(0™ - 1) - (um - 1) = (v - l)(vm - 1) 
S (v - l)t 

and 
F(v, t) - t = y(*;m - 1) - (vw+1 - 1) = 1 - v. 

Thus we get 

\F(v, t) - t\ = max(fr - l)f(v - 1)0 = (v - 1)(1 + 0 

which proves (3.5). From (3.2) and (3.4) we obtain 

/

oo I c o 

éT*'F(*;, 0 ^ + ^2 I e~xttF(v, t)dt 
0 «^ 0 

= -x2 I <T*<(2G>, 0 ~ tF(v, t))dt 

where G(v, 0 satisfies 

*\ 
- G(v, t) = /<>, 0 and G>, «; - 1) = 0. 

From (3.5) we infer (t = v — 1) 

\tF(v,t) - t2\ = (v - l)(/2 + /) and 

|2G(M) -f\ = (*> - 1)('2 + 20 
giving 

(3.7) |2 G(v, 0 - tF(v, 01 = 2(v - l)(t2 + 20, t = i; - 1. 

Thus, by (3.6), we have 

I | i^L ,B(z;,x) |^(x)^ = I x2 I e"^2(t; - 1)(/2 + 2t)dt dx 
J l «̂  l «J » - i 

/

OO Ç CO f* CO f* CD 

t2 I e~xtx2dxdt + 4(i; - 1) I / I e~xtx2 dx dt 
v-l J 1 » - l ^ 1 

< 2(i> - 1) | /2 I °° e~xtxddxdt + S(v - 1) I " H 
J v-l J I J v-l t 

< (12(t» - 1) + 8(» - 1)) I™ 3 = 20 

which gives (1.9). 
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4. In this section we finish the proof of our theorem by showing (1.11). 
This will be done by proving (1.10) which may be regarded as an analogue 
of Toeplitz's column limit condition. But having (3.6) and (3.7) the 
following lemma is established immediately. (We are indebted to David 
Borwein, who made this observation for shortening its proof.) 

LEMMA 5. If 0 < xi < x2 < oo, then 

(1.10) \im^1+KL<B(v,x) = 0 

holds uniformly on [xlf x2]. 

Suppose that ^ ^ afc is in (A) C\ (B). Further we assume without loss 
of generality that 

(1.5) a0 = a\ = 0 

and 

(1.6) \xmx^B{x) = 0 

hold. Then we have to show that l im^i + L(v) = 0. 
Suppose that e > 0 and that X\ < x2 are positive numbers which will 

be chosen suitably depending on e. We write 

/

' XI ÇX2 

KL,B(V, x)B{x)dx + I KL)B(v,x)B(x)dx 
0 J xi 

+ I KL>B(v,x)B(x)dx 
J xi 

= I + II + III, say. 

By (1.5), we have \B(x)\ ^ x2M' (Mf fixed, x > 0) which implies that 
(use (2.7)) 

/

' s i 
x2\KLtB(v,x)\dx < 6 

r 0 3 

if Xi = Xi(e) is sufficiently small. Further we conclude from Lemma 4 and 
(1.6) that 

\III\ S sup \B(x)\ I °° \KL)B(v,x)\dx < | , 
X^X2 J 1 & 

if x2 = x2(e) is sufficiently large. Finally, by Lemma 5, we get 

I I I | è sup \B(x)\ I |A: z „ B (» ,*) |d*< | ) 
Z l ^ Z ^ O ^ Zl «J 

if |u — 1| is sufficiently small. 
Now the proof of the theorem is complete. 
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5. As we have seen the basic step in the preceding proof consists in 
the norm estimate for the integral kernel KLtB. An alternative proof of 
the finiteness of ||2£Z,,B|| can be given by considering the shifted sequence 
{âk}oœ, where ak: = ak-i, ^ N, a0: = 0, instead of {ak}oœ and by using 
an index shifting property of Borel's method [1]. 

Finally we should remark that our methods are sufficient to show the 
inclusion relation 

(A*) H (5) Ç (I*) 

where A* and Z* are generalized Abel's and Lambert's methods respec­
tively which are defined as follows: 

A series ] j ^ ^ is said to be summable to the value 5 
(a) by the method A*, if (1.1) defines a holomorphic function on 

{v € C| \v\ > p} U (1, oo ), p > 0, and l im^ i + A (v) = s, 
(b) by the method Z*, if (1.2) defines a holomorphic function on 

{v € C| \v\ > p} U (1, oo ), p > 0, and \imv^i+L(v) = s. 
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