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Abstract
We design a novel experiment to study how subjects update their beliefs about the 
beliefs of others. Three players receive sequential signals about an unknown state 
of the world. Player 1 reports her beliefs about the state; Player 2 simultaneously 
reports her beliefs about the beliefs of Player 1; Player 3 simultaneously reports her 
beliefs about the beliefs of Player 2. We say that beliefs exhibit higher-order learn-
ing if the beliefs of Player k about the beliefs of Player k − 1 become more accu-
rate as more signals are observed. We find that some of the predicted dynamics of 
higher-order beliefs are reflected in the data; in particular, higher-order beliefs are 
updated more slowly with private than public information. However, higher-order 
learning fails even after a large number of signals is observed. We argue that this 
result is driven by base-rate neglect, heterogeneity in updating processes, and sub-
jects’ failure to correctly take learning rules of others into account.

Keywords  Higher-order expectations · Learning · Theory of mind

JEL Classification  C90 · D83 · D89

1  Introduction

Beliefs about the beliefs of others arise naturally in strategic settings and feature 
prominently in coordination problems (Keynes, 1937; Morris & Shin, 2002), global 
games (Carlsson & Van Damme, 1993), and financial markets (Morris & Shin, 
1998). While a number of papers have investigated higher-order beliefs both the-
oretically and experimentally, the question of how accurate they are and and how 
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they are updated in response to new information has received little empirical atten-
tion. This question has crucial implications for equilibrium concepts under incom-
plete information like Bayesian Nash equilibrium (Harsanyi, 1967; Mertens & 
Zamir, 1985) and cursed equilibrium (Eyster & Rabin, 2005), which assume that 
players know the updating rules used by others, as well as dynamic coordination 
problems. Cripps et al., (2008), for instance, show that coordination may be impos-
sible in absence of common learning, which they define as the event when the true 
state becomes approximate common knowledge. In this paper, we use an experiment 
to provide a first step toward exploring how accurate higher-order beliefs are, how 
their accuracy changes as more information about the fundamentals is received, and 
whether common learning is possible.

The experiment proceeds as follows. In the beginning of the session, subjects are 
randomly matched into groups of three. Before any decision is made, an unknown 
state of the world is drawn at random and held fixed for 30 periods. It is common 
knowledge that the state is fixed for 30 periods, the same for every player in the 
group, and equally likely to take on one of two values. In each period, each group 
member observes a new signal about the state of the world, as in standard belief 
updating tasks (e.g. Holt & Smith, 2009). In the public treatment, all players in the 
same team observe the same signal in each period of the game. In the private treat-
ment, Player 1, Player 2, and Player 3 observe conditionally independent signals 
from the same distribution, and each player can only observe her own signal.

After receiving her signal, Player 1 is incentivized to choose an action as close 
as possible to the realized state, Player 2 is incentivized to choose an action as close 
as possible to Player 1’s action, and Player 3 is incentivized to choose an action as 
close as possible to Player 2’s action. Subjects receive no feedback about the behav-
ior of their matched partners for the duration of the experiment. After 30 periods, 
the state is revealed. The experiment is designed so that the action of Player 1 cor-
responds to her elicited first-order belief about the state, the action of Player 2 cor-
responds to her second-order belief about the belief of Player 1, and the action of 
Player 3 corresponds to her third-order belief about the belief of Player 2.

We use these treatments to address the basic question of whether players engage 
in higher-order reasoning, test predictions about the accuracy of higher-order beliefs, 
and study how their accuracy changes as more information is received.

Our first prediction is that higher-order beliefs are closer to the prior when infor-
mation is private, regardless of the number of received signals. This is because when 
information is private, Player k for k > 1 must account for the fact that her informa-
tion may be different from that of Player k − 1  by forming a belief closer to the prior, 
relative to what it would be if information was public. Because the only difference 
in the tasks of the higher-order players across the public and private treatments is 
information about signals received by other players, results in line with this predic-
tion allow us to conclude that Players k for k > 1 engage in higher-order reasoning.

Second, higher-order beliefs are predicted to be more accurate on average with 
public than private signals. In the Bayesian benchmark, beliefs of Player k and 
Player k − 1 are identical in the public treatment, but not in the private treatment, 
where the fact that other players observe potentially different sequences of signals 
must be accounted for. Even if subjects are non-Bayesian, higher-order beliefs are 
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more difficult to update in the private treatment because the potential difference in 
histories must be taken into account.

In addition to testing predictions about how higher-order beliefs are updated, we 
study higher-order learning, i.e., the evolution of the accuracy of higher-order beliefs 
as more signals are received. As we elaborate below, failure to correctly predict the 
beliefs of others might be attenuated in the long term. In the Bayesian benchmark, 
this is true in the private treatment, where higher-order beliefs are inaccurate in early 
periods but become more accurate as both higher- and lower-order beliefs converge 
to the truth. Even if subjects are non-Bayesian and follow heterogeneous updating 
processes, higher-order learning might be observed, depending on how much het-
erogeneity is present in the data and how good subjects are at forecasting the beliefs 
of others. We use the experiment to address this question empirically.

We find that the first prediction is in line with the data, while the second is not. 
I.e., subjects account for the public vs. private nature of information, but higher-
order beliefs are not more accurate when the information is public than when it is 
private. Moreover, the accuracy of higher-order beliefs does not improve over time 
in either treatment, even as a large number of signals is received; i.e., higher-order 
learning fails.

We argue that the observed failure of higher-order learning in both treatments 
is rooted in failures of Bayesian thinking (e.g., base rate neglect), heterogeneity in 
information processing, and subjects’ failure to take this heterogeneity into account. 
Base-rate neglect has theoretically been shown to bound beliefs away from the cor-
rect state of the world (Benjamin et al., 2019). As first-order beliefs fail to converge 
despite accumulating evidence, heterogeneity in updating rules implies that different 
subjects will have very different long-run beliefs. This, in turn, implies that higher- 
and lower-order beliefs fail to converge.

To study what assumptions subjects make about the updating rules of others, we 
run additional within-subjects treatments where each subject reports a belief both in 
the role of Player 1 and Player 2. We find that the vast majority of subjects show a 
median difference of zero between their first- and second-order beliefs. We also use 
a counterfactual exercise to show that even if subjects reported the optimal beliefs 
given the updating rules used by other subjects in the experiment, higher- and lower-
order beliefs would fail to converge. In other words, even a player with knowledge 
about the distribution of subjects’ updating types in the experiment would fail to 
show higher-order learning.

Finally, we address the question of whether the observed failure of higher-order 
learning can be mitigated by additional information. To this end, we use the coun-
terfactual exercise to simulate higher-order beliefs in an experiment where 300 
as opposed to 30 signals are observed. We find that higher-order beliefs initially 
diverge and eventually plateau. Thus, we find little benefit of receiving more signals 
in the counterfactual exercise. To test this prediction, we collect data from an addi-
tional online experiment in which subjects receive 10 signals in every period, for a 
total of 300 signals in period 30. We find that higher-order beliefs in this treatment 
are not significantly different between the first 15 and the last 15 periods. These 
results are in line with the predictions of the counterfactual exercise. Overall, the 
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results suggest that higher-order learning is difficult to achieve, which in turn raises 
questions about the feasibility of common learning.

1.1 � Related literature

This paper complements several strands of literature. Cripps et  al., (2008) define 
common learning as the event where the true state becomes approximate common 
knowledge and provide conditions on the signal distributions of each player which 
guarantee that common learning is feasible. While other theoretical papers have fol-
lowed the research agenda of Cripps et  al., (2008) (e.g. Wiseman, 2012; Acemo-
glu et al., 2016), little is known about whether common learning occurs in practice. 
Because elicitation of an infinite hierarchy of beliefs poses an obstacle to any labora-
tory study, we restrict our attention to higher-order learning (i.e., increasing accu-
racy of higher-order beliefs). Higher-order learning is a necessary if not sufficient 
condition for common learning, so that a failure of higher-order learning in the labo-
ratory would cast doubt on the feasibility of common learning, as well.

A number of papers have investigated how subjects update their beliefs in 
response to new information (e.g., Grether 1980, 1992; Holt & Smith, 2009) and 
found violations of Bayes’ rule as well as substantial heterogeneity in updating rules. 
More recent contributions also find that decision makers process information about 
personal characteristics such as IQ asymmetrically, overweighting good news and 
underweighting bad news (e.g., Eil & Rao, 2011; Mobius et al., 2014; Coutts, 2018). 
In contrast to prior individual learning experiments, we investigate the updating of 
higher-order beliefs, expanding the existing literature to strategic settings.

We also contribute to the growing experimental literature on higher-order reason-
ing. Nagel (1995) introduces level-k thinking in the context of guessing games and 
finds that few subjects exceed two levels of reasoning.1 Huck & Weizsäcker (2002) 
elicit subjects’ beliefs about the lottery choices of other subjects. Although subjects 
are able to correctly predict the choice frequencies of other subjects on average, they 
find a significant and systematic bias toward a uniform prior. Kübler & Weizsäcker 
(2004) study how subjects process information generated through their predecessors’ 
choices in a social learning framework. Using an error-rate model which allows to 
estimate how subjects reason about other subjects’ behavior, they find that subjects 
underestimate the rationality of their immediate predecessors (similar to what found 
by Weizsäcker, 2003) and that the average subject’s reasoning does not exceed two 
steps.2

1  Early contributions to the level-k literature also include Stahl and Wilson (1994, 1995).
2  Using a novel experimental design, Kneeland (2015) recovers the implied level of higher-order ration-
ality from subjects’ choices and finds higher levels of rationality than prior studies. Our stage game 
is similar in spirit to Kneeland’s in that it links a subject’s payoff function to that of her predecessor 
in a directed graph. Unlike Kneeland’s, the payoff of the first player in our experiment depends on an 
unknown state of the world as opposed to another player’s action. While Kneeland’s experiment was 
designed to recover subjects’ individual level of rationality by varying their positions in the graph, we 
introduce uncertainty about a state of the world and provide subjects with sequential information about 
the state to track the evolution of their higher-order beliefs. To the best of our knowledge, our paper is the 
first to investigate higher-order learning.
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The difference in how subjects treat private and public information has been 
investigated in the experimental global games literature. Several papers find little 
differences in behavior across the two types of information in one-shot coordina-
tion games (Heinemann et al., 2004; Van Huyck et al., 2018), contrary to theoretical 
predictions. Cornand & Heinemann (2014) provide subjects with both public and 
private information about the underlying state of the world in a game with strate-
gic complementarities. They argue that systematic mistakes in how subjects form 
higher-order beliefs can partly explain their observed deviations from equilibrium 
behavior. Our paper expands on this point by investigating how subjects update their 
higher-order beliefs in response to new information. We argue that beliefs about the 
beliefs of others may be persistently incorrect. Providing more information about 
the environment, e.g., the fundamentals of the economy in a global game setting 
(Angeletos et al., 2007), may prove inconsequential for the accuracy of higher-order 
beliefs, resulting in persistent mistakes in choice.

2 � Experimental design

Our experimental design borrows sequential belief elicitation over a binary state 
space from the belief updating literature. The setup is intentionally simple. At the 
beginning of each session, the subjects are matched in teams of three. Within a team, 
each subject is randomly assigned to one of three roles: Player 1, Player 2, or Player 
3, with exactly one subject in each role.3 The roles and teams stay fixed for the dura-
tion of the session. A session consists of three incentivized rounds, with each round 
unfolding as described below.4

Subjects are told that there are two urns, Orange and Purple, each containing 3 
balls. The Orange urn contains 2 orange balls and 1 purple ball, while the Purple 
urn contains 1 orange ball and 2 purple balls. Before a round begins, the computer 
selects one of the two urns with equal probability for each three-player team. None 
of the subjects are told which urn is selected for their team.5 A round consists of 30 
periods.6

3  In the initial treatments, each subject takes one action, as opposed to three actions, to avoid possi-
ble contamination between lower- and higher-order expectations. Nevertheless, in additional treatments, 
we elicit both first- and second-order expectations from the same subjects to shed light on the subjects’ 
theory of mind.
4  We used three rounds in the experiment to allow subjects to become better acquainted with the task. 
Due to an experimenter error, the first session of the experiment was programmed for five instead of 
three rounds. For that session, we only analyze the first three rounds to be consistent with all the remain-
ing sessions.
5  Thus, a new urn is independently drawn at the beginning of the next round.
6  While 30 repetitions is a large number for an individual updating task, our experiment focuses on the 
elicitation of higher-order expectations. We chose to have many periods to allow subjects to better refine 
their beliefs about the state and, most importantly, their beliefs about the beliefs of others. While sequen-
tiality leaves the results open to behavioral biases documented in experiments on individual beliefs, it is 
also crucial for an investigation of common learning.
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In the public treatment, the computer draws a ball with replacement from the 
selected urn in every period, and shows the ball to all subjects in the same team. I.e., 
the players receive public signals about the color of the urn. In the private treat-
ment, the computer draws a ball from the selected urn in every period separately for 
each subject. The subject is shown the color of her drawn ball but not the color of 
the ball drawn for her matched partners. I.e., the signals received by the subjects are 
private and conditionally independent.

In every period, Player 1 reports her belief about the color of the urn (i.e., the 
state of the world), Player 2 reports her belief about the belief of Player 1, and Player 
3 reports her belief about the belief of Player 2. Each subject makes one guess. The 
experiment is framed neutrally in that it avoids any reference to guesses or beliefs, 
instead explaining the task as a betting problem.

To avoid the influence of risk aversion on subjects’ elicited beliefs, we employ 
the Binarized Scoring rule of Hossain & Okui (2013), which is incentive compatible 
irrespective of attitudes toward risk and relatively simple to implement.7 The rule is 
applied to elicit Player k’s beliefs about the underlying random variable of interest 
individually in every period of a round. The rule works as follows: 

1.	 Player k takes an action ak ∈ [0, 1];8

2.	 A random variable of interest, Z, is realized;
3.	 The player’s loss is computed according to a loss function L(ak, z) , where z is the 

realization of Z;
4.	 The computer draws a number c uniformly at random from the interval [0, 1];
5.	 If L(ak, z) ≤ c , Player k receives a monetary reward of R1 , otherwise the player 

receives R0 < R1.

We employ a quadratic loss function L(a, z) = (a − z)2 . For Player 1, Z is either 1, if 
the selected urn is Orange, or 0 otherwise. For Player k ∈ {2, 3} , Z corresponds to 
the action chosen by Player k − 1.

Each subject is paid on the basis of one randomly chosen period of a randomly 
chosen round. Paying for only one randomly chosen period breaks any intertemporal 
hedging across periods (and rounds), turning each period of a round into a static 
task.9 Thus, regardless of attitudes to risk, the optimal response of Player 1 is to 
report the probability that he/she assigns to the color of the urn being Orange. For 
Player 2 and Player 3, the optimal response corresponds to the expectation of the 
action chosen by the preceding player, that is, ak = E[ak−1|Ik] , where Ik is Player k’s 

9  Azrieli et al., (2018) show theoretically that selecting one task at random is the only incentive compat-
ible way to pay subjects under a monotonicity assumption on subjects’ preferences.

7  Danz et al.,  (2020) find a pull-to-the-center effect on beliefs elicited with the binarized scoring rule, 
which we were unaware of when we ran the experiment. While this effect could in principle affect our 
results, it would impact lower- and higher-order beliefs equally, improving the accuracy of higher-order 
beliefs and reducing the failure of higher-order learning in the data. We leave it to future research to test 
whether belief accuracy can be improved with the use of other scoring rules.
8  The action set in the experiment was a discretized version of [0,1] with 
Ak = {0, 0.01, 0.02, ..., 0.98, 0.99, 1}.

Downloaded from https://www.cambridge.org/core. 24 Aug 2025 at 15:19:22, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1240	 P. Evdokimov, U. Garfagnini 

1 3

information set, k = 2, 3.10 Thus, Player 2’s action corresponds to her expectations 
about Player 1’s beliefs about the state of the world (that is, her second-order expec-
tations), whereas Player 3’s action corresponds to her expectations about Player 2’s 
expectations about Player 1’s beliefs about the state of the world (that is, her third-
order expectations).

Note that two subjects in the role of Player k for k > 1 might have different beliefs 
about the beliefs of Player k that nevertheless have the same mean. In the analysis 
that follows, we measure belief accuracy using the elicited means. According to this 
measure, two players might have the same accuracy of higher-order beliefs accord-
ing to our measure despite the fact that one of them has very precise beliefs (e.g., 
concentrated on 0.5) while the other has beliefs that are more diffuse (e.g., a uniform 
distribution over 0 and 1). We leave the extension of our paper to elicited distribu-
tions of beliefs to future research.

While Player 2’s task involves only Player 1, Player 3’s task involves both Player 
1 and Player 2.11 Subjects in the role of Player 1 are told that they will be matched 
with a subject in the role of Player 2 and a subject in the role of Player 3 but that 
the decisions made by those players will be inconsequential for her/his own perfor-
mance. Moreover, Player 1 is not told what tasks Player 2 and Player 3 are given. 
Player 2 is explained Player 1’s task but not Player 3’s task. Player 3 is the only 
player with full information about the structure of all tasks.12

Subjects receive no feedback about their own performance or the performance 
of their matched partners for the entire duration of the experiment. At the end of 
each round, the correct composition of the urn is revealed to all subjects in the same 
team and no other information is disclosed.13 Lack of feedback is common in exper-
iments measuring subjects’ beliefs about other subjects’ beliefs (see e.g., Stahl & 
Wilson, 1995; Costa-Gomes et al., 2001; Costa-Gomes & Crawford, 2006; Costa-
Gomes & Weizsäcker, 2008), and we refrain from providing subjects with feedback 
for two main reasons. First, our experiment tries to identify a subject’s mental model 
of other subjects and the possible effect of introspective learning rather than her 
response to reinforcement learning. Second, it would not be possible to implement 
the private treatment with period-to-period feedback. Observing a partner’s action 

10  A different approach could have been to elicit the distribution of Player 2 and Player 3’s beliefs rather 
than the mean of those distributions. We did not follow this approach to keep each subject’s task as sim-
ple as possible. Manski & Neri (2013) elicit both the mean and the distribution of subjects’ second-order 
beliefs in a Hide-and-Seek game and find a general consistency between the two, that is, the mean of the 
distribution of second-order beliefs is consistent with its point estimate.
11  Note, however, that Player 3’s payoff only depends on the action of Player 2 and not Player 1.
12  Notice that this makes social preferences theoretically irrelevant.
13  At the end of a round of the private treatment, a subject is also shown the cumulative number of balls 
drawn for each of her matched partners, but still no information about her partners’ guesses. This is cho-
sen to further emphasize to a subject the privacy of signals and that her matched partners can observe 
different histories than her own. While doing this provides additional information to a subject about 
likely histories, we believe this issue to be minor as we only give a subject a snapshot of the cumula-
tive number of balls of each color seen by her partners at the end of the round rather than the sequence 
of balls drawn from the urn in each period, which we believe it would be more likely to inform decision 
making in subsequent rounds.
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would reveal information about that partner’s private signals, thus affecting a sub-
ject’s choice of action in subsequent periods.

2.1 � Predictions

Consider the Bayesian benchmark where players are rational, believe that others are 
Bayesian and rational, and believe that others believe that others are Bayesian and 
rational. In the public treatment, this benchmark predicts that the beliefs of Players 
1–3 coincide after any possible history of observed signals. In the private treatment, 
uncertainty about the information of others in the private treatment creates a wedge 
between the average beliefs of Player k and the average beliefs of Player k − 1 for 
all k ≥ 2 , conditional on the true state of the world (see Fig. 1 and Appendix B for 
the proof). The logic is as follows. If Player k knew which history Player k − 1 has 
observed, her action would correspond to Player k − 1 ’s action. Private signals imply 
that Player k − 1 might have observed a different history. Player k must therefore use 
her own observed history to compute the distribution of signal histories observed 
by Player k − 1 . Thus, uncertainty slows down the evolution of Player k’s beliefs 
about Player k − 1 ’s beliefs in expectation, as Player k has to give positive weight 
to beliefs that Player k − 1 is likely to hold with only small probability. Over time, 
the probability of such histories becomes vanishingly small and Player k’s beliefs 
converge to 1, which is also the limit of Player k − 1 ’s beliefs. This implies the fol-
lowing prediction:

Prediction 1  Higher-order beliefs are closer to the prior with private information.

Note that if a shift from public to private information generates a change in 
higher-order beliefs, we can conclude that the subjects are engaging in higher-order 
reasoning.14

Define belief accuracy of a subject in role k > 1 in a given period as one minus 
the absolute distance between the subject’s reported belief and the reported belief of 
the subject’s matched partner.15 Because matched partners observe identical signal 
histories in the public but not the private treatment, the following prediction follows:

Prediction 2  On average, higher-order beliefs are more accurate in the public treat-
ment, regardless of the number of signals observed.

We define higher-order learning as increasing accuracy of higher-order beliefs. 
The beliefs of Bayesian players are predicted to be perfectly accurate in the public 
treatment regardless of how many signals are received. On the other hand, based on 
the results of previous studies, we should expect laboratory subjects to deviate from 

14  While the treatments were not designed to identify levels of rationality, as in Kneeland (2015), we can 
use them to test the simpler hypothesis of whether subjects engage in higher-order reasoning at all.
15  Formally, belief accuracy is equal to 1 − |ak − ak−1| , for k = 2, 3.
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Bayesianism.16 In the presence of heterogeneity of updating processes, accuracy of 
higher-order beliefs depends on the extent to which deviations from Bayesian updat-
ing are forecasted and shared.

To illustrate this point, Fig. 2 shows the predicted evolution of the average dis-
tance between first- and second-order beliefs in the public treatment under varying 
assumptions. In all cases, the population consists of a mix of Bayesians and non-
Bayesian �-types.17 For a �-type, the posterior belief in every period is the Bayesian 
belief, given the subject’s prior belief and current signal, with weight � and the prior 
with weight 1 − �.18

We assume that Bayesian players believe that others are Bayesian and that others 
believe that others are Bayesian; �-types believe that others are �-types, and that oth-
ers believe that others are �-types.

The dotted line, for which the average belief accuracy is closest to one, represents 
the predictions of a model in which the parameters � are drawn from a uniform dis-
tributions over � = 1 , � = 0.9 , and � = 0.8 for both first- and second-order beliefs. 
Because all players are close to being fully Bayesian, both first- and second-order 
beliefs quickly converge to the truth, the distance between them converges to zero, 
and belief accuracy converges to its maximal value.

The solid line represents the predictions of a model in which the parameters � are 
drawn from a uniform distributions over � = 1 , � = 0.55 , and � = 0.1 . In this case, 
the population of players consists of Bayesian learners, slow learners, and an inter-
mediate type, and higher-order learning is considerably slower.

Higher-order learning can be facilitated by forming a correct mental model of 
others’ updating behavior. Thus, the dashed line represents the predicted accuracy 
of optimal second-order beliefs, if actual beliefs are drawn from a uniform distribu-
tion over � = 1 , � = 0.55 , and � = 0.1 , and the optimal higher-order beliefs are the 
expected lower-order beliefs given the distribution of types. Note that the dashed 
line is above the solid line, capturing the intuition that higher-order beliefs are more 
accurate if the deviations from Bayesian updating are correctly forecasted.

The assumptions underlying the predictions in Fig. 2 are ad hoc and made only 
for illustrative purposes; ultimately, the question of how much heterogeneity is 
present in the data and how well deviations from Bayesianism are forecasted is an 
empirical one. Answering this question is one of the goals of our experiment.

18  This model is borrowed from Epstein et al., (2008), who axiomatized a non-Bayesian updating rule 
which includes Bayes’ rule as a special case. Formally, fix a signal history hn = {s

1
, s

2
, ..., sn} , and let 

�n−1 denote a player’s prior belief about the state of the world in period n, before having observed the 
current signal sn . Following Epstein et al., (2008), we assume that a �-type forms the following posterior 
belief in period n

that is, a subject’s posterior belief is a weighted average of her one-step Bayesian posterior belief and her 
prior belief. PBayes

1
(�n−1, sn) is the Bayesian posterior which results from updating the prior �n−1 given the 

current signal sn.

(1)P
1
(hn) = �P

Bayes

1
(�n−1, sn) + (1 − �)�n−1

16  Holt & Smith (2009), for instance, show that belief updating processes are subject to significant het-
erogeneity.
17  All of our simulations are based on a sample of 10,000 randomly drawn and matched players.
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2.2 � Implementation

The experiment was conducted at Instituto Tecnológico Autónomo de México in 
Mexico City between October and December 2017 using the software z-Tree (Fis-
chbacher, 2007). Data  were collected from 120 subjects in 7 sessions for the public 
treatment and from 129 subjects in 8 sessions for the private treatment. A session 
lasted 75 minutes on average. All subjects were undergraduate students recruited 
from the general student population. Each subject could only participate once.

Each session started with subjects signing the consent forms, reading the instruc-
tions, and completing an incentivized quiz.19 Every subject was guaranteed a 100 
Mexican pesos show-up fee ( ≈US$5.26 at the time of the experiment) in addition to 
the earnings from the quiz (2 Mexican pesos for each correct answer). These earn-
ings were called the subject’s “guaranteed earnings.” Each subject was also given 
an initial endowment of 80 pesos which the subject had a chance to either double or 
lose completely according to the following procedure based on the binarized scoring 
rule.20 The computer randomly selected one period of play for each subject. Given 
a subject’s loss for the period from her decision, the computer independently drew 
a number c that was uniformly distributed between 0 and 1, and the subject’s “addi-
tional earnings” were determined as follows:

(2)Additional earnings =

{
2 ∗ Initial endowment, if (a − z)2 ≤ c,

0, otherwise.

Fig. 1   The predicted evolution 
of expected first-, second-, and 
third-order beliefs. The beliefs 
are normalized by the correct 
state so that the variable being 
plotted is B when the state is 
orange and 1 − B when the state 
is purple, where B is the belief 
of a Bayesian decision maker .5
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19  The instructions can be found in the online appendix. While the sample instructions are in English, 
the actual instructions were administered in Spanish. The answers to all of the quiz questions were incen-
tivized.
20  At the time of the experiment, the minimum wage in Mexico was about 70 pesos per day, which is 
arguably a poor reference point for students at a private research university such as ITAM. For a better 
one, consider that the cost of a 15km Uber ride was around 80 pesos.
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The payment rule was clearly explained to the subjects in the instructions, and sev-
eral examples were provided.21

Our presentation of the experimental results is structured as follows. Section 3 
contains our main results on the effect of private vs. public information on higher-
order beliefs, belief accuracy, and the failure of higher-order learning. Section 4 pre-
sents the results of additional treatments in which first- and higher-order beliefs are 
elicited in a within-subject design. These treatments replicate several of the main 
findings from Sect.  3 and shed light on subjects’ theory of mind. Finally, Sect.  5 
investigates possible reasons for the observed failure in higher-order learning, high-
lighting the impacts of base-rate neglect and heterogeneity in updating rules. We 
also report the results of an additional treatment in which subjects observe up to 300 
signals, as opposed to 30 in the other treatments.

3 � Main results

Result 1  Higher-order beliefs are closer to the prior with private information, sug-
gesting that players engage in higher-order reasoning.

Figure 3 shows the average reported beliefs of subjects in all player roles and treat-
ments. The beliefs are normalized by the correct state so that the  variable  being 
plotted is B when the state is orange and 1 − B when the state is purple, where B is 
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λ1=1, λ2=0.9, λ3=0.8
λ1=1, λ2=0.55, λ3=0.1
λ1=1, λ2=0.55, λ3=0.1, optimal beliefs

Fig. 2   The simulated evolution of expected accuracy of higher-order beliefs in the public treatment. Each 
line represents the average accuracy in a simulated population of players. The population in each case 
consists of an equal mix of three types of players, with �

i
 indexing the updating rule used by type i as 

described in the text

21  The software also provided an initial screen that a subject could use to experiment with the calculation 
of the loss based on the distance between a hypothetical guess (entered by the subject) and possible target 
numbers.
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the subject’s reported belief. For each period, the  normalized beliefs are averaged 
across all subjects in the given treatment and player role, as well as all observed 
signal histories.

Consistent with the predictions, we find that higher-order expectations are closer 
to prior beliefs with private than public signals. This suggests that subjects under-
stand that information of others differs from their own.22 Thus, when the normalized 
expectations of Players 2 and 3 are regressed against a dummy variable for the treat-
ment with private signals, the private dummy in this regression is negative and sig-
nificant ( P < 0.01 ; first column of Table 1). It remains significant if we control for 
period number and the interaction between period number and the private treatment 
( P < 0.05 ; second column of Table 1).

While the belief of a Bayesian Player 3 in the private treatment is closer to 0.5 
than that of Player 2, we do not find evidence of such behavior in the data: in a 
regression of the normalized expectations of Players 1, 2 and 3 in the private treat-
ment against a Player 2 dummy and a Player 3 dummy, the two dummy variables are 
not significantly different ( P = 0.883 ; third column of Table 1).23 Thus, the effect of 
private information on higher-order beliefs appears to be limited. One possibility is 
that because Player 3 faces a more difficult information processing task than Player 2 
in the private treatment, her behavior is further away from best responding than that 
of Player 2. This, however, is not the case: as we show below, Player 2 and Player 3 
both show substantial and similar deviations from best-responding to their partners.

In line with the Bayesian benchmark, Players 1, 2 and 3 report similar beliefs on 
average in every period of the public treatment. This can be seen in the regression 
results reported in the fifth column of Table 1, normalized beliefs in the public treat-
ment are regressed against a Player 2 dummy and a Player 3 dummy; neither dummy 
variable is significant, with p-values of P = 0.479 and P = 0.354 , respectively. The 
two dummy variables are also not significantly different ( P = 0.8115).24 This result 
is consistent with a number of possibilities. One is that the three types of players in 
the public treatment follow similar updating rules and are correctly-guessing their 
target players’ beliefs on average. Another is that higher-order beliefs are inaccurate 
(because some subjects are over- and some under-guessing) but appear accurate on 
average.25

22  In a different framework, Cornand & Heinemann (2014) find that higher- and lower-order beliefs treat 
signals about the state of the world differently, which suggests understanding of the difference between 
one’s own and others’ private information.
23  The fourth column controls for period number and the relevant interactions. The coefficients on the 
two dummies are not significantly different in that specification ( P = 0.3964 ), and neither are the coef-
ficients on the two interaction terms ( P = 0.3691).
24  The regression in the sixth column of Table  1 includes a period variable and interactions with the 
player dummies; only the period variable is significant in that specification (P < 0.001).
25  Consider, for instance, the possibility that every player reports Bayesian beliefs plus or minus some 
� term, where � follows a known distribution with mean zero. The distance between Player k and Player 
k − 1 ’s beliefs will be positive on average despite the fact that average beliefs are equal.
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Result 2  Higher-order beliefs are not more accurate in the public than the private 
treatment.

We measure belief accuracy as 1 − |ait − a
−i,t| , i.e., one minus the absolute dis-

tance between a subject’s beliefs and those of her matched partner. Figure 4 plots the 
evolution of belief accuracy over time in all relevant experimental conditions. Con-
trary to Prediction 2, beliefs are not more accurate with public than private informa-
tion. This result is confirmed in a regression of 1 − |ait − a

−i,t| against a private treat-
ment dummy, whether it is run for Players 2 and 3 together ( P = 0.365 ; first column 
of Table 2), Player 2 separately ( P = 0.550 ; second column), or Player 3 separately 
( P = 0.490 ; third column).

Result 3  (Failure of higher-order learning) Higher-order beliefs diverge from lower-
order beliefs in the experiment. The period of divergence is very long; even 30 peri-
ods is not enough for convergence.

Recall that we define higher-order learning as increasing accuracy of higher-order 
beliefs over time. Contrary to higher-order learning, we find no significant period 
trend in the public treatment ( P = 0.363 ; fourth column of Table 2) and a negative 
period trend, suggesting decreasing belief accuracy over time, in the private treat-
ment ( P < 0.01).

To summarize, higher-order beliefs are as inaccurate with public information 
as they are when information is private and therefore more difficult to process. 
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Fig. 3   The evolution of subjects’ first-, second-, and third-order beliefs. The beliefs are normalized by 
the correct state so that the  variable being plotted is B when the state is orange and 1 − B when the state 
is purple, where B is the reported belief. The normalized beliefs are averaged across all subjects and sig-
nal histories for each treatment and player role. As predicted, higher-order beliefs are closer to the prior 
when information is private (Result 1)
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Moreover, higher-order beliefs do not become more accurate over time in either the 
private treatment or the public treatment, where they are predicted to always be fully 
accurate by the Bayesian benchmark.

4 � Within‑subjects data and theory of mind

To explore in more detail what beliefs subjects form about the information process-
ing of others, we collected data from two additional treatments, within-public and 
within-private, which were conducted online. These treatments are similar to the 
public and private treatments described above in all respects but the following. First, 
subjects are matched into teams of two instead of three players. Second, subjects 
go through one single round of 30 periods, as opposed to three rounds.26 Third, and 
most importantly, we elicit both first- and second-order beliefs for every subjects in 

Table 1   Analysis of average normalized observed expectations

Output of OLS regressions of the form Y = �X + � , where Y = B when the state is orange and Y = 1 − B 
whenthe state is purple, and B is the subject’s reported belief. Thefirst two columns consider Players 2 
and 3 in all treatments; thethird and fourth columns consider Players 1--3 in the privatetreatment; the 
last two columns consider Player 1--3 in the publictreatment. Standard errors are clustered at the level of 
individualsubjects
Subject-clustered standard errors in parentheses
∗p < 0.10 ,  ∗∗p < 0.05 ,  ∗∗∗p < 0.01 ,  ∗∗∗∗p < 0.001

Players 2 and 3 All players, private All players, public

Private −0.0651*** −0.0400**
(0.0221) (0.0174)

Period 0.00706**** 0.00854**** 0.00710****
(0.000720) (0.00113) (0.00117)

Period × Private −0.00162
(0.00109)

Player 2 −0.0697* −0.0330 0.0264 0.0277
(0.0358) (0.0257) (0.0373) (0.0283)

Player 3 −0.0742** −0.0146 0.0341 0.0342
(0.0343) (0.0255) (0.0366) (0.0295)

Period × Player 2 −0.00237 −0.0000800
(0.00159) (0.00166)

Period × Player 3 −0.00385** −0.00000986
(0.00165) (0.00144)

Constant 0.666**** 0.557**** 0.673**** 0.541**** 0.636**** 0.526****
(0.0160) (0.0136) (0.0276) (0.0205) (0.0292) (0.0215)

Observations 14940 14940 11610 11610 10800 10800

26  The online experiment has a single round to make it shorter, given the possibility of dropouts.
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every period. This allows us to explore whether subjects assume that others process 
information differently than they themselves do.

The subject pool consists of U.S. workers on Amazon Mechanical Turk (MTurk), 
and the experiment was conducted using the software oTree (Chen et al., 2016). For 
the within-public treatment, we collected data from 204 subjects between June and 
September 2019. Data for the within-private treatment were collected from an addi-
tional 150 MTurk subjects at the request of a referee. The average hourly wage was 
$14.75, which is more than three times higher than the standard MTurk task (Hara 
et al., 2018). Subjects took 16 minutes on average to complete the experiment. Fur-
ther implementational details can be found in Appendix A.27

Each subject is matched with a partner for a single round of 30 periods. In each 
round, each subject receives one signal about the state of the world and provides 
first- and second-order beliefs. A random period and belief type are drawn for pay-
ment, and the payment is determined using the binarized scoring rule, as in the 
between-subjects treatments. I.e., the within-public and within-private treatments 
are similar to their between-subjects counterparts with the difference that only one 
round of matching occurs and beliefs of Players 1 and 2 are elicited within-subjects.

The first two panels of Fig. 5 plot the average normalized first- and second-order 
beliefs in the within-public and within-private treatments. We find that first-order 
beliefs in the within-public and within-private treatments evolve similarly to their 
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Fig. 4   The failure of higher-order learning. Accuracy of higher-order beliefs is measured by 
1 − |a

it
− a

−i,t| . The data are  plotted for different treatments, player types, and periods. Higher-order 
beliefs are not more accurate with public than private information and fail to become more accurate over 
time in either treatment

27  The average length of the lab sessions (75 minutes) was much longer than that of the online sessions. 
This is because each lab session included welcoming subjects, distributing, explaining and collecting the 
consent forms, distributing the instructions, actual playing time, and paying subjects at the end. Further-
more, lab subjects went through three rounds of belief elicitation, each consisting of 30 periods. Thus, 
the difference in session length was due both to longer playing time and logistics related to the imple-
mentation of a session in the laboratory.
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counterparts in the laboratory experiment (N=437, P = 0.654).28 We also find no 
significant effect of private information when we compare second-order beliefs in 
the within-public and within-private treatments ( P = 0.560 ), which suggests that 
Result 1 does not replicate in the within-subjects data. On the other hand, comparing 
the average difference between first- and second-order beliefs in the within-public 
and within-private treatments, we find the difference to be twice as large on average 
in the private case, although the difference-in-differences is only marginally signifi-
cant ( P < 0.1 ). On average, second-order beliefs are shaded toward the prior more 
in the private than in the public treatment, although the size of the shading is only 
0.034 in within-private and 0.014 in within-public.29

To further explore the effect of private information, we analyze the gap between 
first- and second-order beliefs at the subject level. To this end, we compute the mean 
and median difference between first- and second-order beliefs for each subject. If the 
effect of private information is correctly taken into account, subjects should report 
equal first-and second-order beliefs more often in within-public than within-private. 
To test this prediction, we create a dummy variable equal to one if the mean differ-
ence between first- and second-order beliefs is negative (first column of Table 3), 
positive (second column), and zero (third column) and regress these dummy 

Table 2   Analysis of belief accuracy

Accuracy of higher-order beliefs is measured by 1 − |ait − a
−i,t| . Output of OLS regressions of the form 

Y = �X + �  , where Y = 1 − |ait − a
−i,t| . The first four columns use data from the laboratory; the last 

two columns use data from the MTurk treatments discussed in Sect. 4. Standard errors are clustered at 
the level of individual subjects. The period trend is not significantly positive for any treatment or player 
type,suggesting a failure of higher-order learning
Subject-clustered standard errors in parentheses
∗p < 0.10 ,  ∗∗p < 0.05 ,  ∗∗∗p < 0.01 ,  ∗∗∗∗p < 0.001

Lab MTurk

Players 2 and 3 Player 2 Player 3 Players 2 and 3 Player 2 Player 2

Private −0.0173 −0.0169 −0.0177 0.0307 −0.0136 −0.0402**
(0.0190) (0.0282) (0.0255) (0.0194) (0.0172) (0.0189)

Period −0.000556 −0.00196***
(0.000610) (0.000701)

Period × Private −0.00310*** 0.00172*
(0.00101) (0.00101)

Constant 0.736**** 0.724**** 0.749**** 0.745**** 0.672**** 0.703****
(0.0150) (0.0225) (0.0199) (0.0136) (0.0123) (0.0131)

Observations 14940 7470 7470 14940 10620 10620

28  We obtain this p-value from a regression of normalized first-order beliefs against an MTurk dummy 
variable using the data from the public, private, within-public, and within-private treatments. For the 
data from the between-subjects treatments, only the first round (the first 30 periods) is used.
29  Both of these values are significantly bigger than zero with largest p < 0.05.
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variables against the treatment dummies. We also repeat this exercise for the median 
in the last three columns of Table 3.

While we find no significant effects on mean differences, private information 
causes a shift in the medians. Relative to the within-public baseline, we find that 
the proportion of subjects reporting a positive median difference between first- and 
second-order beliefs in within-private increases by 13.6% ( P < 0.01 ), while that 
reporting a zero median difference decreases by 14.3% ( P < 0.01 ). Thus, a signifi-
cant fraction of subjects report higher-order beliefs closer to the prior in the pres-
ence of private information.

We conclude that the effect of private information is weaker but nevertheless sig-
nificant in the within-subjects treatments. One possibility is that the within-subjects 
nature of the design lessened the impact of private information due to bounded 
rationality. I.e., the subjects might have found it difficult to reason about private 
information in a setting where they had more tasks (reporting beliefs for both player 
roles). Another is that the effect would be stronger with learning (i.e., more rounds 
of matching). We leave these questions open for future research.

Results 2 and 3 replicate in the within-subjects data (last two columns of Table 2). 
The first two panels of Fig. 6 plot the evolution of belief accuracy, 1 − |ait − a

−i,t| , 
over time in the within-public and within-private treatments. The figure suggests 
that higher-order beliefs are not more accurate with public than private information 
( P = 0.431 , fifth column of Table 2). The period effect on belief accuracy is nega-
tive in the within-public treatment ( P < 0.01 ) and insignificant in the within-private 
treatment ( P = 0.739 , last column of Table 2). Overall, higher-order beliefs do not 
become more accurate over time.

We can use subject-level differences between first- and second-order beliefs to 
infer what assumptions subjects make about the reasoning of others. A substantial 
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Fig. 5   The evolution of first- and second-order beliefs in the MTurk treatments. The beliefs are normal-
ized by the correct state so that the variable being plotted is B when the state is orange and 1 − B when 
the state is purple, where B is the reported belief
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fraction of subjects–62.3% in the within-public treatment and 48% in the within-pri-
vate treatment–report a median difference of zero (Table 3). In the private treatment, 
this suggests that some subjects assume the private information of others to be the 
same as their own. Projection of private information unto others has recently been 
experimentally investigated by Danz et  al., (2019). To the extent that such behav-
ior deviates from Bayesian use of objective information, it precludes higher-order 
learning.

A subject in the public treatment might put equal probabilities on her matched 
partner over- and under-updating relative to her own belief, which would predict 
equal first- and second-order beliefs despite the fact that the subject believes her 
partner to be less Bayesian than she herself is.30 Nevertheless, assuming that one’s 
partner has equal beliefs on average might exacerbate belief inaccuracy in the pres-
ence of heterogeneity, as argued in Sect. 2.1 (Fig. 2). In Sect. 5, we model subjects’ 
deviations from Bayesian thinking and explore their influence on higher-order belief 
accuracy in more detail.

5 � Base‑rate neglect and long‑run behavior

As discussed in Sect. 2.1, higher-order learning might fail in this case if deviations 
from Bayesian updating are not anticipated or shared. We now argue that both of 
these issues are present in the data. First, there exists substantial heterogeneity in 
updating types (i.e., deviations from Bayesian updating are not shared). Second, if 
subjects correctly took this heterogeneity into account, their higher-order beliefs 
would have been more accurate (i.e., deviations from Bayesian updating are to some 
extent not anticipated). Nevertheless, higher- and lower-order beliefs would fail to 

Table 3   The effect of private information on the median and mean of the difference between first- and 
second-order beliefs

Output of OLS regressions, where each observation is a subject inthe experiment. The fraction of sub-
jects with a median positivedifference between first- and second-order beliefs is greater in thewithin-
private than the within-public treatment
Standard errors in parentheses
∗p < 0.10 ,  ∗∗p < 0.05 ,  ∗∗∗p < 0.01 ,  ∗∗∗∗p < 0.001

(1) (2) (3) (4) (5) (6)
Mean Median

Neg. Pos. Zero Neg. Pos. Zero

Private −0.0659 0.0843 −0.0184 0.00627 0.136*** −0.143***
(0.0508) (0.0527) (0.0271) (0.0386) (0.0493) (0.0532)

Constant 0.373**** 0.549**** 0.0784**** 0.147**** 0.230**** 0.623****
(0.0339) (0.0349) (0.0189) (0.0249) (0.0296) (0.0340)

Observations 354 354 354 354 354 354

30  This argument was suggested by a referee.
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converge even if subjects were able to forecast the beliefs of others optimally. As 
we show below, this a consequence of base-rate neglect: subjects’ updating rules are 
such that neither  higher- nor lower-order beliefs converge to the truth even after a 
large number of signals, making belief inaccuracies persistent.

Consider the case of public signals. We model deviations from Bayesianism fol-
lowing the approach in Grether (1980). Note that Bayes’ rule implies that:

where �n is the subject’s (first-order) posterior belief, �n−1 is her prior belief,31 
and LRn is the likelihood ratio following the observation of the current ball, with 
LRn ∈ {LRorange = 2, LRpurple =

1

2
} . The following model can be estimated to cap-

ture the extent to which subjects deviate from correctly taking into account prior and 
new information:

For simplicity, we focus only on the public between-subjects treatment.32 Follow-
ing Holt and Smith,(2009), we recode 0 guesses as 0.01 and 1 guesses as 0.99 to 
ensure that equation (4) is well-defined.

(3)

�n

1 − �n

=

�n−1

1 − �n−1

Prob(Current ball|Urn = Orange)

Prob(Current ball|Urn = Purple)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

LRn

,

(4)ln

(
�n

1 − �n

)
= �0 + �Prior ln

(
�n−1

1 − �n−1

)
+ �LR ln(LRn) + �.
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Fig. 6   Failure of higher-order learning in the MTurk treatments. Accuracy of higher-order beliefs is 
measured by 1 − |a

it
− a

−i,t| . Higher-order beliefs in the MTurk treatments are not more accurate with 
public than private information and fail to become more accurate over time

31  The prior belief in each period is defined as the reported first-order belief from the previous period. In 
period 1, the prior belief is exogenously given and set at 0.5.
32  The model is not valid for the private treatment. In the within-subjects treatments, two updating rules 
would need to be estimated for every subject.
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Figure 7 shows the histograms of the �Prior and �LR coefficients for subjects in the 
public treatment. The figure suggests that a substantial degree of heterogeneity is 
present in the data. Moreover, the distributions of coefficients do not vary signifi-
cantly across player roles, with the exception of the difference in �Prior between Play-
ers 1 and 2 and the difference in �LR between Players 1 and 3, both of which are mar-
ginally statistically significant according to a Kolmogorov-Smirnov test ( P < 0.1).

The estimated distributions of �Prior and �LR allow us to perform the following 
counterfactual exercise. We form 5000 simulated groups of Player 1, Player 2, and 
Player 3. For each player in each group, we randomly draw a vector (�Prior, �LR) from 
the empirical distribution of parameters corresponding to her player type. We then 
randomly draw 300 signals for each 3-player team. For each player in each group 
and following each signal, we generate posterior beliefs recursively using the fol-
lowing model, which can easily be obtained from (4):

For each player in the role of Player 2 or Player 3, we compute belief accuracy in 
each period based on the simulated beliefs of the player and the player’s matched 
partner. We then average the distances across all players in a given role for a period-
specific prediction of belief accuracy.

The predicted accuracy of higher-order beliefs is reported in Fig. 8. Focusing on 
the first 30 periods, the simulations provide a reasonable match for the data. While 
the observed distances between higher- and lower-order beliefs are noisier than the 
simulated ones, average belief accuracy is 0.72 for Player 2 and 0.75 for Player 3 in 
the data; the average simulated belief accuracies in the first 30 periods are 0.76 and 
0.78 for Players 2 and 3, respectively.

Second, given the updating rules used by the subjects, higher- and lower-order 
beliefs fail to converge even after 300 periods. Instead, belief accuracy decreases ini-
tially and remains flat as more signals are received. Thus, the updating rules used by 
the players generate a bound for the accuracy of higher-order beliefs. This implies 
the following prediction:

Prediction 4  The accuracy of higher-order beliefs does not improve any more after 
300 than 30 signals.

We also simulate optimal beliefs, i.e., the beliefs that would be reported by a 
sophisticated player that took the empirical distribution of updating coefficients of 
the target player into account. In order to do this, for every simulated group, every 
Player k, k > 1 in that group, and every realized public history of signals, we first 
compute the belief corresponding to each possible updating type of Player k − 1 
(using that player’s empirical distribution of updating coefficients), and then aver-
age out those posterior beliefs. The average belief corresponds to Player k’s optimal 
belief given her observed signal history.

(5)E[�n|�n−1, LRn] =

�
�Prior
n−1

�
�Prior
n−1

+ e−�0 (1 − �n−1)
�PriorLR

−�LR
n

.

Downloaded from https://www.cambridge.org/core. 24 Aug 2025 at 15:19:22, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1254	 P. Evdokimov, U. Garfagnini 

1 3

The average accuracy of optimal beliefs is reported in Fig. 8. We find that opti-
mal beliefs are 19% more accurate than observed beliefs for Player 2 and 25% more 
accurate for Player 3. I.e., taking the distribution of updating types into account con-
fers a benefit. This benefit, however, is limited. Moreover, even if players formed 
beliefs optimally by taking the distribution of updating types into account, higher- 
and lower-order beliefs would still diverge. Convergence would not take place even 
after a large number of signals.

Why do optimal higher-order beliefs fail to correctly predict lower-order beliefs? 
Our analysis of updating rules shows a pervasive amount of base-rate neglect, that 
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Fig. 7   Histograms of updating parameters estimated at the level of individual subjects in the public treat-
ment ( N = 120). Following Grether, (1980), the parameters are estimated from the following model: 
ln

(
�
n

1−�
n

)
= �0 + �

Prior
ln

(
�
n−1

1−�
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)
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is, the tendency to underuse one’s own previous information.33 This is reflected in 
the coefficient �Prior being less than 1. While the average subject also manifests an 
under-inference to new information, that is, 𝛽LR < 1 , suppose that �LR were equal to 
1 for simplicity. Would beliefs converge to the correct state of the world for an agent 
who exhibits base-rate neglect? To illustrate, Fig. 9 simulates the beliefs of an agent 
with mild base-rate neglect ( �Prior = 0.9) and no under- or over-inference from new 
information ( �LR = 1 ) over 5000 randomly drawn histories and averages out beliefs 
by period. The simulation shows that even a mild base-rate neglect will lead to long-
run beliefs failing to converge and exhibiting non-negligible uncertainty about the 
correct state of the world.

This observation is not a coincidence. In a recent paper, Benjamin et al., (2019) 
show theoretically that base-rate neglect has a moderating effect on beliefs, rela-
tive to the Bayesian benchmark, and that beliefs fail to converge to the correct state 
even after observing a large amount of information. Thus, the behavior highlighted 
in Fig. 9 is a long-run implication of base-rate neglect. In the presence of base-rate 
neglect and heterogeneity in belief updating, beliefs of players in different roles will 
converge to different limiting beliefs, if they converge at all. Thus, increasing the 
amount of information is predicted to generate a failure of higher-order learning 
even if higher-order beliefs are formed optimally, that is, taking the distribution of 
updating types into account. This highlights that failure of higher-order learning is 
generated by the type of heterogeneity present, and not the presence of heteroge-
neity per se. For example, suppose that agents exhibited no base-rate neglect but 
under-inferred information contained in new signals. Even with heterogeneity in the 
�LR parameters across agents, individual beliefs would converge to the correct state, 
albeit at slower rates than the Bayesian benchmark. Thus, as long as agents believed 
that others’ were heterogeneous only in the �LR parameter, higher-order beliefs 
would become more accurate over time.

Fig. 8   Simulated long-run belief 
accuracy and data in the public 
treatment. Given subjects’ 
updating rules estimated from 
the public treatment, higher- 
and lower-order beliefs fail to 
converge even after 300 periods 
in all of the simulations
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33  This is a well-known fact in the belief updating literature. For example, see Benjamin (2019, Sect. 4.3, 
Stylized Fact 9).
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5.1 � The long treatment

We ran an additional treatment, within-long, to test Prediction 4. In this treatment, 
which was otherwise identical to the within-public treatment, each subject received 
10 signals about the state of the world in each period. Data from 154 MTurk sub-
jects are reported in the second panel of Fig. 10.34

First-order beliefs in the within-long treatment are reported in the top panel of 
Fig. 10, with those in the within-public treatment also shown for comparison. In the 
first period, first-order beliefs in the within-long treatment are higher by 11 percent-
age points than those in the within-public treatment ( P < 0.01 ). On the other hand, 
first-order beliefs are not significantly different across these two treatments in period 
30 ( P = 0.912 ). Overall, the pattern reported in Fig. 10 suggests that subjects take 
advantage of additional signals in the early rounds, but that there exists an upper 
bound on how much the average subject can learn about the state.35

After 30 signals, first-order beliefs are less accurate in the within-long treatment 
than those in the within-public treatment. It is possible that this is driven by how 
the within-long treatment was implemented. As mentioned above, we presented sub-
jects with 10 signals about the state of the world in each period of the within-long 
treatment.36 Providing subjects with 10 signals at a time, as opposed to a sequence 
of 10 signals, might lead to underinference as discussed by Benjamin (2019, Sec. 
4.2, Stylized Fact 2). On the other hand, the simulations, which do not assume 
bundling, point to an upper bound on first-order belief accuracy. Thus, the initial 

Fig. 9   A simulated path of 
normalized first-order beliefs for 
an agent with base-rate neglect. 
The beliefs are normalized by 
the correct state so that the vari-
able being plotted is B when the 
state is orange and 1 − B when 
the state is purple, where B is 
the simulated belief. First-order 
beliefs fail to converge even 
after 300 periods
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34  We refer to Appendix A for details about the implementation of this treatment.
35  In a recent paper, Esponda et al., (2020) investigate the long-term effect of base-rate neglect by having 
subjects repeat an updating task involving a binary state and a binary signal 200 times. After each task, 
subjects are told the realized state. Posterior beliefs are far from the Bayesian benchmark despite the 
large number of repetitions. While our design and scope are arguably different, Esponda et al’s finding 
also points to a bound on learning.
36  This was done in order to keep the number of elicitations the same across treatments, as well as to 
avoid decision fatigue.
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underinference in the within-long treatment might be driven by bundling, but the 
overall upper bound on belief accuracy is consistent with base-rate neglect.

The average belief accuracy in the within-long treatment is plotted in the bot-
tom panel of Fig. 10, with that in the within-public treatment again shown for com-
parison. Overall, we find that beliefs in the within-long treatment are more accurate 
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Fig. 10   The evolution of first- and second-order beliefs a and failure of higher-order learning b in 
the within-long treatment. Data from the within-public treatment are shown for comparison. In a, the 
beliefs are normalized by the correct state. In b, the accuracy of second-order beliefs is measured by 
1 − |a

it
− a

−i,t|
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than those in the within-public treatment, although the effect is only marginally sig-
nificant ( P < 0.1 in a regression of the accuracy measure on a within-long dummy, 
using only the data from the within-public and within-long treatments). The mag-
nitude of belief inaccuracy in the within-long treatment remains large. Moreover, 
beliefs in the last 15 periods of the within-long treatment are not more accurate than 
those in the first 15 periods ( P = 0.361 in a regression of the accuracy measure on a 
dummy variable for being in the last 15 rounds using only the data from the within-
long treatment). This result is in line with Prediction 4.

The observed accuracy of second-order beliefs in the within-long treatment, 
together with the out of sample predictions described above, are shown together in 
Fig. 11. Overall, the data track the simulated predictions well. Taken together, the 
results in the within-long treatment suggest little benefit in terms of higher-order 
belief accuracy from receiving 300 as opposed to 30 public signals.

6 � Conclusion

This paper presents the first experiment on how higher-order beliefs are updated in 
response to new information about the fundamentals. We find that subjects engage 
in higher-order thinking and shade their beliefs toward the prior when they receive 
private as opposed to public signals. On the other hand, we find that beliefs are not 
more accurate with public signals, contrary to the Bayesian prediction. Moreover, 
we find that beliefs do not become more accurate over time with either public or 
public signals, suggesting a failure of higher-order learning. We attribute this failure 
to base-rate neglect, heterogeneity in updating rules, and subjects’ failure to cor-
rectly model how other players deviate from Bayesian reasoning.

Failure of higher-order learning has implications for macroeconomic models. 
For instance, in a Calvo model with incomplete information about nominal shocks, 
Angeletos and La’O (2009) show that knowledge about the evolution of first-order 
beliefs is insufficient to quantify the rate of price adjustment without taking into 
account the evolution of higher-order beliefs. In turn, higher-order beliefs affect 
firms’ forecasts of other firms’ equilibrium actions, which determine their own pric-
ing choices. Our analysis shows that firms might have persistently incorrect beliefs 
about other firms’ beliefs about the size of a nominal shock. More importantly, slug-
gish price adjustments could persist even when firms in the economy observe only 
publicly available information.

Our investigation focuses attention on introspective learning where subjects do 
not receive feedback about the beliefs of others. This design choice guarantees that 
subjects’ higher-order beliefs are not simply the result of adaptation to the behavior 
of the matched partner. However, it also removes an important source of information 
which is often available in practice. An interesting extension would be to explore 
the evolution of higher-order beliefs in the presence of feedback about the average 
beliefs of a group of subjects to see whether the failure of higher-order learning that 
we observed could be reduced or even resolved. Noisy feedback, on the other hand, 
might generate a failure of higher-order learning similar to that we identify.
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Appendix

A Implementation of the online treatments

For the within-public, within-private, and within-long treatments, the subject 
pool consisted of U.S. workers on Amazon Mechanical Turk (MTurk).37 The data 
were collected using the software oTree (Chen et al., 2016). Each subject was only 
allowed to participate in the experiment once, and the experiment was implemented 
through the assignment of MTurk qualifications to subjects that accepted the HIT 
(human intelligence task).

The data for the within-public treatment were collected separately as part of a 
different project. At the beginning of this treatment, subjects were administered a 
longer version of the Cognitive Reflection test (Frederick, 2005). The data for the 
within-long and within-private treatments were collected at the request of two refer-
ees and did not include any pre-experiment test.38

In all the online treatments, each subject made a total of 60 decisions (30 guesses 
about the state and 30 guesses about the partner’s guess). The experiments’ fram-
ing was identical to that of the laboratory experiment. Each subject was paid on the 
basis of one randomly chosen decision out of 60 according to the Binarized Scoring 
rule with a bonus of $3.00 or nothing. The payment rule was clearly explained to the 
subjects in the instructions and several examples were provided, including a table 
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Fig. 11   Out of sample predicted accuracy of second-order beliefs together with the MTurk data in the 
within-long treatment. For the out of sample predictions, laboratory data from Player 2 in the public 
treatment is used. Belief accuracy is measured by 1 − |a

it
− a

−i,t|

37  The data for the within-public treatment were collected by Umberto Garfagnini and funded by the 
University of Surrey. The data for the other two online treatments were collected by Piotr Evdokimov 
and funded by the Higher School of Economics.
38  These two more recent treatments also included a completion bonus of $1 to increase the attractive-
ness of the HIT for potential participants. As this was a flat payment, it did not affect incentives which 
were kept exactly the same across all the online treatments.
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indicating the loss corresponding to one’s choice and the different value of the tar-
get (the state of the world for the first decision, and the partner’s choice otherwise). 
Each decision screen summarized the most important information from the instruc-
tions, including a table of potential losses. The instructions and screenshots can be 
found in the online Appendix.

Subjects were shown the instructions for the experiment on their screens. After a 
subject finished reading the instructions, the subject waited to be matched. Given the 
possibility of no match occurring, subjects were asked to wait for at least up to five 
minutes for a match (no more than five minutes for within-long and within-private), 
after which they were allowed to quit (were terminated from) the study and collected 
their earnings up to that point plus a bonus to compensate the dismissed subjects 
for their time.39 If two subjects were matched, the experiment automatically began. 
Each of the two per-period choices was presented on a separate screen and a subject 
had two minutes (one minute in the within-long and within-private treatments) to 
submit each choice.40

B The dynamics of higher‑order beliefs with private signals

Suppose that learning occurs through private signals. Let Θ = {𝜃, 𝜃̄} and 
p = Prob(𝜃 = 𝜃̄) denote the common prior belief that the state of the world is 𝜃 = 𝜃̄ 
in period 0. Consider a binary signal technology with s ∈ {s, s̄} and

Since we are assuming that players are Bayesian expected utility maximizers and the 
signal technology is binary, a sufficient statistic for a history of length n observed by 
a player is the number of signals of type s̄ out of n total signals observed, which we 
denote by n̄.

Let pn
i
(𝜃̄|n̄) denote Player i’s posterior belief that the state is 𝜃̄ after having 

observed n̄ signals of type s̄ . By Bayes’ rule, this probability equals

Players 1, 2 and 3 form the same belief about the state of the world after having 
observed the same set of signals. Furthermore, if Player i − 1 observed a history 
(n, n̄�) , and Player i knew which history Player i − 1 observed, then Player i would 
assign probability one to Player i − 1 assigning probability pn

i−1
(𝜃̄|n̄�) to state 𝜃̄.

(6)Prob(s = s̄|𝜃̄) = q̄, and Prob(s = s̄|𝜃) = q.

(7)pn
i
(𝜃̄|n̄) = q̄n̄(1 − q̄)n−n̄p

q̄n̄(1 − q̄)n−n̄p + qn̄(1 − q)n−n̄(1 − p)
.

39  The slight differences between the within-public and the other two treatments is due to software 
updates to the oTree platform which occurred after we ran the within-public treatment in 2019.
40  The time constraint was used to catch dropouts and reassure participants that they would be paid 
regardless of whether their partner dropped out. While the within-public treatment allowed up to 2 min-
utes to make each decision, we reduced the time limit to one minute per decision after observing that the 
vast majority of decisions in the within-public treatment took less than 60 seconds. This is also the case 
in the lab treatments were subjects faced no time constraints.
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However, as learning occurs through private signals, players in higher-order roles 
need to form beliefs about the histories that players in lower-order roles might have 
observed. So, suppose that Player i observes history (n, n̄) , she will use this informa-
tion to update her beliefs about the state of the world which also informs her about 
the probability with which Player i − 1 might have observed any feasible history. 
For any n̄� ∈ {0, 1, ..., n} , Player i assigns probability Rn

i
(n̄�|n̄) to Player i − 1 having 

observed n̄′ signals of type s̄ in n draws when she observed n̄ such signals in n draws, 
this probability is given by

where, from the binomial distribution,

denotes the probability of observing n̄′ signals of type s̄ out of n signals, conditional 
on state �.

Given the incentives provided by the Binarized scoring rule in an arbitrary period 
n, Player 2 reports her expectation about the first-order beliefs held by Player 1 
which is given by

We abuse notation slightly and write an
2
(𝜃̄|n̄) instead of an

2
(n̄) to make explicit the 

fact that the beliefs are referenced to the state of the world being equal to 𝜃̄.
Similarly, Player 3 reports her expectation about the report made by Player 2 

which is given by

Next, we prove the following result:

Proposition B1  Suppose that the state of the world is 𝜃̄ and 1 > q̄ >
1

2
> q > 0 . 

Then, the following properties hold true: 

a.	 En[a
n
1
(𝜃̄|n̄)|𝜃̄] > En[a

n
2
(𝜃̄|n̄)|𝜃̄] > En[a

n
3
(𝜃̄|n̄)|𝜃̄] , for any n > 0.

b.	 For any i ∈ {1, 2, 3} , limn→∞
En[a

n
1
(𝜃̄|n̄)|𝜃̄] = 1.

We split the proof into several steps. We first show two auxiliary results.

(8)Rn
i
(n̄�|n̄) = pn

i
(𝜃̄|n̄)rn(n̄�|𝜃̄) + (1 − pn

i
(𝜃|n̄))rn(n̄�|𝜃),

(9)rn(n̄
��𝜃) =

⎧
⎪⎨⎪⎩

�
n

n̄�

�
q̄n̄

�

(1 − q̄)n−n̄
�

, if 𝜃 = 𝜃̄,
�

n

n̄�

�
qn̄

�

(1 − q)n−n̄
�

, otherwise,

(10)

an
2
(𝜃̄|n̄) = En

[
an
1
(𝜃̄|n̄�)|n̄] = En

[
pn
1
(𝜃̄|n̄�)|n̄] =

n∑
n̄�=0

pn
1
(𝜃̄|n̄�)Rn

i
(n̄�|n̄), ∀ n̄ ∈ {0, 1, ..., n}.

(11)an
3
(𝜃̄|n̄) = En

[
an
2
(𝜃̄|n̄�)|n̄] =

n∑
n̄�=0

an
2
(𝜃̄|n̄�)Rn

i
(n̄�|n̄), ∀ n̄ ∈ {0, 1, ..., n}.
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Lemma B1  For any n > 0 , En

[
an
1
(𝜃̄|n̄)|𝜃̄] < En+1

[
an+1
1

(𝜃̄|n̄)|𝜃̄].

Proof  Let

and notice that

which is strictly positive and well-defined because 1 > q̄ >
1

2
> q > 0 . Then,

This implies that

which completes the proof. 	�  ◻

Lemma B2  En

[
an
1
(𝜃̄|n̄)|𝜃̄] > En

[
an
1
(𝜃̄|n̄)|𝜃] , for any n > 0.

Proof.  Note that, for any n > 0, 

(12)A(n̄, n) =
q̄2n̄(1 − q̄)2(n−n̄)p

q̄n̄(1 − q̄)n−n̄p + qn̄(1 − q)n−n̄(1 − p)
,

(13)

𝜕A(n̄, n)

𝜕n
=p ln

(
q̄

1 − q̄

)
q̄2n̄(1 − q̄)2(n−n̄)

×

q̄n̄(1 − q̄)n−n̄p +

[
1 + ln

(
q̄

1−q̄

)
− ln

(
q

1−q

)]
qn̄(1 − q)n−n̄(1 − p)

[
q̄n̄(1 − q̄)n−n̄p + qn̄(1 − q)n−n̄(1 − p)

]2 ,

(14)𝜕

𝜕n

[(
n

n̄

)
A(n̄, n)

]
= A(n̄, n)

(
n

n̄

) n̄−1∑
k=0

1

n − k
+

(
n

n̄

)
𝜕A(n̄, n)

𝜕n
> 0.

En

[
an
1
(𝜃̄|n̄)|𝜃̄] =

n∑
n̄=0

(
n

n̄

)
A(n̄, n)

≤

n∑
n̄=0

(
n + 1

n̄

)
A(n̄, n + 1)

≤

n∑
n̄=0

(
n + 1

n̄

)
A(n̄, n + 1) +

(
n + 1

n + 1

)
A(n + 1, n + 1)

=

n+1∑
n̄=0

(
n + 1

n̄

)
A(n̄, n + 1)

=En+1

[
an+1
1

(𝜃̄|n̄)|𝜃̄],
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where the inequality follows from Lemma B1. Since

the result follows from the opposite monotonicity of the two sequences 
{E

n
[an

1
(𝜃̄|n̄)]𝜃̄}

n
 and {E

n
[an

1
(𝜃̄|n̄)|𝜃]}

n
 . 	�  ◻

We now prove part a) of the proposition.

Lemma B3  For any n ≥ 1 and i ≥ 2 , En[a
n
i−1

(𝜃̄|n̄)|𝜃̄] > En[a
n
i
(𝜃̄|n̄)|𝜃̄].

Proof  Notice that

Then,

(15)

En

[
an
1
(𝜃̄|n̄)|𝜃] = En

[
pn
1
(𝜃̄|n̄)|𝜃]

= En

[
1 − pn

1
(𝜃̄|n̄)|𝜃]

= 1 − En[p
n
1
(𝜃̄|n̄)|𝜃]

≥ 1 − En+1[p
n+1
1

(𝜃̄|n̄)|𝜃]
= En+1[a

n+1
1

(𝜃̄|n̄)|𝜃]

(16)

E1[a
1
1
(𝜃̄|n̄)|𝜃̄] − E1[a

1
1
(𝜃̄|n̄)|𝜃] =

q(1 − q̄)p

(1 − q̄)p + (1 − q)(1 − p)
+

q̄(1 − q)p

q̄p + q(1 − p)
> 0,

(17)

En[a
n
i
(𝜃̄|n̄)|𝜃̄] =

n∑
n̄=0

an
i
(𝜃̄|n̄)rn(n̄|𝜃̄)

=

n∑
n̄=0

[
n∑

n̄�=0

an
i−1

(𝜃̄|n̄�)Rn
i
(n̄�|n̄)

]
rn(n̄|𝜃̄)

=

n∑
n̄�=0

an
i−1

(𝜃̄|n̄�)
[

n∑
n̄=0

Rn
i
(n̄�|n̄)rn(n̄|𝜃̄)

]

=

n∑
n̄�=0

an
i−1

(𝜃̄|n̄�)[(rn(n̄�|𝜃̄) − rn(n̄
�|𝜃))En

[
pn
i
(𝜃̄|n̄)|𝜃̄] + rn(n̄

�|𝜃)]

=En[a
n
i−1

(𝜃̄|n̄)|𝜃]
+ En

[
pn
i
(𝜃̄|n̄)|𝜃̄]{En[a

n
i−1

(𝜃̄|n̄)|𝜃̄] − En[a
n
i−1

(𝜃̄|n̄)|𝜃]}.

(18)

En[a
n
i−1

(𝜃̄|n̄)|𝜃̄] − En[a
n
i
(𝜃̄|n̄)|𝜃̄] ={1 − En[p

n
i
(𝜃̄|n̄)|𝜃̄]}

×

{
En[a

n
i−1

(𝜃̄|n̄)|𝜃̄] − En[a
n
i−1

(𝜃̄|n̄)|𝜃]},
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which is positive if and only if En[a
n
i−1

(𝜃̄|n̄)|𝜃̄] > En[a
n
i−1

(𝜃̄|n̄)|𝜃].41 We know from 
Lemma B2 that this inequality holds for i = 1 . So, suppose that it holds for i = k − 1 , 
we will show that it also holds for i = k . By equivalently expressing equation (17) in 
terms of � instead of 𝜃̄ gives

Next, given that the state space is binary, it holds that

Combining (17) and (20), and rearranging using (20), we obtain

where the second equality follows from the observation that all players share the same 
first-order beliefs given the same history. Since En

[
an
1
(𝜃̄|n̄)|𝜃̄] − En

[
an
1
(𝜃̄|n̄)|𝜃] > 0 

by Lemma B2, and En[a
n
k−1

(𝜃̄|n̄)|𝜃̄] − En[a
n
k−1

(𝜃̄|n̄)|𝜃] > 0 by the induction hypoth-
esis, it follows that En[a

n
k
(𝜃̄|n̄)|𝜃̄] − En[a

n
k
(𝜃̄|n̄)|𝜃] > 0 . Finally, this implies that 

En[a
n
k
(𝜃̄|n̄)|𝜃̄] > En[a

n
k+1

(𝜃̄|n̄)|𝜃̄] , for any k ≥ 1 . 	�  ◻

Next, we show part b) of the proposition. By Lemma  B1, the sequence {
En[a

n
1
(𝜃̄|n̄)|𝜃̄]}∞

n=1
 is monotonically increasing. As the sequence is also uniformly 

bounded above by 1, it converges. That limn→∞
En[a

n
1
(𝜃̄|n̄)|𝜃̄] = 1 follows from 

Markov’s inequality and a standard argument on the martingale property of Bayes-
ian updating and is thus omitted. Similarly, limn→∞

En[a
n
1
(𝜃̄|n𝜃)|𝜃] = 0 . Therefore, 

from (17) with i = 2 , we can conclude that limn→∞
En[a

n
2
(𝜃̄|n̄)|𝜃̄] = 1 . Using this 

fact and (17) again, we can show that the claim also holds for i = 3 . This completes 
the proof.

(19)
En[a

n
k
(𝜃|n̄)|𝜃] =En

[
an
k−1

(𝜃|n̄)|𝜃̄] + En[p
n
k
(𝜃|n̄)|𝜃]En

[
an
k−1

(𝜃|n̄)|𝜃]

− En

[
pn
k
(𝜃|n̄)|𝜃]En

[
an
k−1

(𝜃|n̄)|𝜃̄].

(20)

En[a
n
k
(𝜃̄|n̄)|𝜃] =En[En[a

n
k−1

(𝜃̄|n̄�)|n̄]|𝜃]
=En[1 − En[a

n
k−1

(𝜃|n̄)�|n̄]|𝜃]
=1 − En[En[a

n
k−1

(𝜃|n̄)�|n̄]|𝜃]
=1 − En[a

n
k
(𝜃|n̄)|𝜃].

(21)

En[a
n
k
(𝜃̄|n̄)|𝜃̄] − En[a

n
k
(𝜃̄|n̄)|𝜃] ={1 + En

[
pn
k
(𝜃̄|n̄)|𝜃̄] − En

[
pn
k
(𝜃|n̄)|𝜃]}

×

{
En[a

n
k−1

(𝜃̄|n̄)|𝜃̄] − En[a
n
k−1

(𝜃̄|n̄)|𝜃]}

=

{
1 + En

[
pn
1
(𝜃̄|n̄)|𝜃̄] − En

[
pn
1
(𝜃̄|n̄)|𝜃]}

×

{
En[a

n
k−1

(𝜃̄|n̄)|𝜃̄] − En[a
n
k−1

(𝜃̄|n̄)|𝜃]}

=

{
1 + En

[
an
1
(𝜃̄|n̄)|𝜃̄] − En

[
an
1
(𝜃̄|n̄)|𝜃]}

×

{
En[a

n
k−1

(𝜃̄|n̄)|𝜃̄] − En[a
n
k−1

(𝜃̄|n̄)|𝜃]}

41  En[p
n
i
(𝜃̄|n̄)|𝜃̄] ∈ (0, 1).
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