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Abstract

A cyclotomic polynomial Φk(x) is an essential cyclotomic factor of f (x) ∈ Z[x] if Φk(x) | f (x) and every
prime divisor of k is less than or equal to the number of terms of f . We show that if a monic polynomial
with coefficients from {−1, 0, 1} has a cyclotomic factor, then it has an essential cyclotomic factor. We
use this result to prove a conjecture posed by Mercer [‘Newman polynomials, reducibility, and roots on
the unit circle’, Integers 12(4) (2012), 503–519].
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1. Introduction

Questions about the reducibility and irreducibility of polynomials with coefficients
0, ±1 continue to attract attention (see [5, 7, 9, 10, 12, 13]). Selmer [12] gave a
complete solution to the reducibility of xn ± x ± 1. Ljunggren [7] extended Selmer’s
work to the irreducibility of xn ± xm ± xr ± 1. A polynomial f (x) of degree n is said
to be reciprocal if f (x) = ±xn f (x−1). Let ζn be a primitive nth root of unity. The nth
cyclotomic polynomial

Φn(x) =
∏

1≤i≤n,(i,n)=1

(x − ζ i
n)

is a reciprocal polynomial with integer coefficients. Both Selmer and Ljunggren
focused on finding the number of nonreciprocal factors when the special trinomials
and quadrinomials shown above are reducible and proved that polynomials of the
form xn + ε1xm + ε2xr ± 1, where εi ∈ {−1, 0, 1}, have a cyclotomic factor whenever
they are reducible. It is natural to ask whether this extends to polynomials with five
or more terms. The following examples from Filaseta and Solan [4] suggest that such
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polynomials may not always have reciprocal factors:

x14 + x12 + x10 + x2 − 1 = (x6 + x2 − 1)(x8 + x6 + 1),
x14 + x12 − x4 − x2 + 1 = (x6 + x4 − 1)(x8 + x2 − 1),
x14 − x12 + x4 − x2 − 1 = (x6 − x4 + 1)(x8 − x2 − 1),
x14 − x12 − x4 − x2 − 1 = (x6 − x4 − 1)(x8 + x2 + 1),

x2n−2 + xn+2 + xn−2 − x4 + 1 = (xn − x2 + 1)(xn−2 + x2 + 1),

where n ≥ 5 and n . 0, 3, 4, 6, 9 (mod 12). Note that, in all these examples, at least
one of the coefficients is negative. Filaseta and Solan proved the following result.

Theorem 1.1 (Filaseta and Solan [4]). If f (x) = xn + xm + xr + xs + 1 is reducible and
n > m > r > s > 0, then f has a reciprocal factor together with at most one irreducible
nonreciprocal factor.

Mercer [8] made the following conjecture.

Conjecture 1.2 [8, Conjecture 6, page 5]. If f (x) = xn + xm + xr + xs + 1 is reducible
and n > m > r > s > 0, then f has a cyclotomic factor.

Let S ∗ = {xn + an−1xn−1 + · · · + a1x + a0 | ai ∈ {−1, 0, 1}}. A polynomial f ∈ S ∗ is
called a Borwein polynomial if f (0) , 0 and a Newman polynomial if its coefficients
are either 0 or 1. In other words, a Newman polynomial f (x) has the form

f (x) = xm(xn0 + xn1 + · · · + xnr−1 + xnr + · · · + xnv + 1), (1.1)

where m ≥ 0 and n0 > n1 > · · · > nv > 0. A polynomial f ∈ S is called a Littlewood
polynomial if its coefficients are either −1 or +1. The set of Borwein polynomials
dividing a Newman polynomial or a Littlewood polynomial has been studied in [3].
We denote the set of Borwein polynomials by S in the rest of the paper.

Let f (x) = xn0 + ε1xn1 + · · · + εvxnv + εv+1 ∈ S , where εi ∈ {−1, 1}. The number of
terms in f is called the length of the polynomial and is denoted by `( f ). A polynomial
f (x) = xn0 + a1xn1 + · · · + avxnv + av+1 ∈ Z[x], where ai , 0, is called primitive if
gcd(n0, n1, n2, . . . , nv) = 1.

Mercer refined Conjecture 1.2 and proposed the following conjecture.

Conjecture 1.3. Suppose f (x) is a Newman polynomial of length five with a
cyclotomic factor. Then f (x) is divisible by either Φ5γ (x) or Φ2α3β(x) for some
α, β, γ ≥ 1.

We prove Conjecture 1.3 at the end of this paper (see Theorem 3.2).
If f (x) is not primitive, then f (x) = g(xd) for some d ≥ 2, where g(x) is a primitive

polynomial. Let (n, d) = t < n. Then (n/t, d/t) = 1 and ζd
n = ζd/t

n/t so that ζd
n is a

primitive (n/t)th root of unity. From f (ζn) = g(ζd
n ) = 0, we deduce that Φn/t(x) | g(x).

Hence Φn/t(xd) | f (x). Now, Φn/t(xd) =
∏

u∈D Φu(x),where D = {u | [u, d] = [n, d]}, and
[a, b] denotes the least common multiple of a and b. Hence

∏
u∈D Φu(x) divides f (x).
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In particular, for every cyclotomic factor Φk(x) of g(x), there exists a cyclotomic factor
Φm(x) of f (x) such that m and k have the same set of prime divisors.

If a Newman polynomial f (x) is divisible by Φn(x), then f (ζn) = 0, giving a
vanishing sum of roots of unity. The study of minimal vanishing sums of roots
of unity is of independent interest (see [6, 11]). Lam and Leung [6] proved that
if Φn(x) divides f (x), then `( f ) ∈ P(n), where P(n) is the set of all nonnegative
integer linear combinations of prime divisors of n: that is, if n = pa1

1 pa2
2 · · · p

ar
r , then

P(n) =
{∑r

i=1 ni pi | ni ∈ {0, 1, 2, . . .}
}
. As a consequence, the smallest prime factor of

n is less than or equal to `( f ). It is natural to ask whether every prime divisor of n
is less than `( f ), but this is not the case. If p is an odd prime, then Φ2p | xp + 1.
Similarly, if p is a prime greater than three, then Φ3p | x2p + xp + 1. Note that xp + 1
and x2p + xp + 1 are not primitive. By definition, every Newman polynomial of length
two except x + 1 is not primitive. From [7], every cyclotomic factor of xn + xm + 1 is
of the form Φ3(x(n,m)). Hence, it is not possible to find a primitive Newman polynomial
with `( f ) ≤ 3 divisible by Φk(x) with one prime divisor of k greater than `( f ).

2. Main results

The following result shows that, for `( f ) ≥ 4, one can find such a family of primitive
Newman polynomials.

Theorem 2.1. For every positive integer n > 3 there exists a positive integer k with a
prime factor greater than n such that Φk(x) | fn(x), where fn(x) is a primitive Newman
polynomial of length n.

Proof. If 6 | a, then it is easy to see that P(a) = N \ {1}, that is, every natural number
m ≥ 2 can be expressed as m = 2t1 + 3t2, where t1, t2 ∈ N ∪ {0}. Let n, k ∈ N, where
n ≥ 4 and k has a prime factor greater than n. Then n = 2r + 3s for some r, s ∈ N ∪ {0}.
Also, fn(x) =

∑r
i=1 xniΦ2(x3k) +

∑s
j=1 xnr+3k+ jΦ3(x2k), where 0 = n1 < n2 < · · · < nr and

gcd(n1, n2, . . . , nr) = 1, is the desired primitive Newman polynomial of length n and it
is divisible by Φ6k(x). �

Now we show that the above result can be extended to monic polynomials with
coefficients in {−1, 0, 1}. Suppose that n ≥ 2, n = 2t1 + 3t2, where t1, t2 are nonnegative
integers and k has a prime factor greater than n. One of the desired polynomials is

fn(x) = ε1Φ2(x3k) +

t1∑
i=2

εixniΦ2(x3k) +

t2−1∑
j=1

δ jxnt1 +3k+ jΦ3(x2k) + xnt1 +3k+t2Φ3(x2k),

where 0 < n2 < · · · < nt1 , gcd(n1, n2, . . . , nt1 ) = 1 and εi, δ j ∈ {−1, 1}. Then fn is a monic
Borwein polynomial of length n. It can be seen that fn(x) is divisible by Φ6k(x).

Next we investigate the following question. If a Borwein polynomial f (x) is
divisible by a cyclotomic polynomial Φk(x) and the smallest prime factor of k is p,
is p ≤ `( f )? The polynomial xp − 1, where p is an odd prime, is a counterexample.
However, we can obtain a partial result.
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Lemma 2.2. Suppose f ∈ S and Φp(x) divides f (x), where p > `( f ) is a prime. Then
f (1) = 0.

Proof. If f (x) is not primitive, then f (x) = h(xd) for some d > 1, where h ∈ S and h is
primitive. If d ≡ 0 (mod p), then f (ζp) = h(ζd

p) = 0, which gives h(1) = 0 and hence
f (1) = 0. If d . 0 (mod p), then ζd

p is also a primitive pth root of unity and hence
Φp(x) | h(x).

Hence, without loss of generality, we can assume that f (x) is primitive. Since
ζ

p
p = 1, by reducing the exponents modulo p in the identity f (ζp) = 0 we get a new

identity f̄ (ζp) = 0.
The number of terms in f̄ (ζp) is less than p. This is possible only when f (ζp) is

a linear combination of terms of the form ζδp(ζ pt
p − 1) for some δ with 0 ≤ δ ≤ p and

t ≥ 0. From the primitivity of f ,

f (x) =

r∑
i=0

ε(xpti+δi − xδi ),

where ε ∈ {−1, 1}, ti, δi ≥ 0 and at least one δi , 0. The result follows. �

We need the following results to continue. We give the proof of the first for the sake
of completeness.

Theorem 2.3 (Dresden [2]). If f , g ∈ Z[x] and f has all nonreal roots, then the
resultant, Res( f , g), of f and g is a nonnegative integer.

Proof. Since all the roots of f (x) are nonreal, f (x) has even degree and we can denote
its roots by ζ1, ζ2, . . . , ζr, ζ̄1, ζ̄2, . . . , ζ̄r. Then

Res( f , g) =

r∏
i=1

g(ζi)
r∏

j=1

g(ζ̄i) =

r∏
i=1

g(ζi)
r∏

j=1

g(ζi) =

r∏
i=1

|g(ζi)|2.

Since Res( f , g) is the determinant of the Sylvester matrix associated with f and g,
Res( f , g) ∈ Z. Thus Res( f , g) ∈ N ∪ {0}. �

Theorem 2.4 (de Bruijn [1]). Suppose f ∈ Z[x] is a polynomial of degree m. Then
Φn(x) divides f (x) if and only if f (x) =

∑
p|n Φp(xn/p) fp(x), where fp(x) ∈ Z[x].

Theorem 2.5. If f ∈ S , f (1) , 0 and Φk(x) divides f (x), then there is a prime divisor
p of k such that p ≤ `( f ).

Proof. Suppose Φk(x) divides f (x) and k =
∏r

i=1 pai
i , where pi > `( f ) for all i. From

Theorem 2.4,

f (x) =

r∑
i=1

Φpi (xk/pi ) fpi (x), (2.1)

where fpi ∈ Z[x] and fpi . 0 for at least one i. Suppose fpi . 0 exactly when
i ∈ {i1, i2, . . . , is} ⊆ {1, 2, . . . , r}. By rearranging the primes, if necessary, we can write
(2.1) as f (x) =

∑s
i=1 Φpi (xk/pi ) fpi (x), where fpi . 0 for 1 ≤ i ≤ s.
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Let w = ζ
p1
k , that is, w is a primitive (k/p1)th root of unity. Then it is easy to see that

f (w) = p1 fp1 (w). Thus | f (w)| = p1| fp1 (w)| or, equivalently, | fp1 (w)| ≤ `( f )/p1 < 1. The
same is true for the remaining primitive (k/p1)th roots of unity. Hence

|Res(Φk/p1 (x), fp1 (x))| =
∏

(i,k/p1)=1

| fp1 (wi)| < 1.

From Theorem 2.3, Res(Φk/p1 (x), fp1 (x)) = 0 and Φk/p1 (x) | f (x).
Continuing in this way, we can show that Φpi (x) | f (x) for some i. But then, from

Lemma 2.2, f (1) = 0, which is a contradiction. Hence the result follows. �

Definition 2.6. A cyclotomic factor Φk(x) of a polynomial f ∈ Z[x] is called an
essential cyclotomic factor of f if p | k and p prime implies that p ≤ `( f ).

For `( f ) = 2, there are only two Borwein polynomials: x ± 1. The cyclotomic factor
is the same as the essential cyclotomic factor in this case. From [7], the cyclotomic
factors of xn ± xm ± 1 are either Φ3(x(n,m)) or Φ6(x(n,m)). In other words, if a Borwein
polynomial of length three has a cyclotomic factor, then it has an essential cyclotomic
factor. In the following theorem, we show that this holds for arbitrary Borwein
polynomials f provided f (1) , 0.

Theorem 2.7. Suppose f ∈ S , f (1) , 0 and Φk(x) divides f (x). Then there is a
cyclotomic polynomial, Φk1 (x), dividing f (x) such that k1 | k and every prime factor of
k1 is less than or equal to `( f ).

Proof. If k itself has all its prime divisors less than or equal to `( f ), then there is
nothing to prove. Suppose k has at least one prime factor greater than `( f ).

First, we consider k = 2q, where q > `( f ) is an odd prime. Since Φ2q(x) | f (x),
f (x) = Φq(−x)g(x) for some g ∈ Z[x]. Since Φq(x) divides f (−x), it follows from
Lemma 2.2 that f (−1) = 0. Thus Φ2(x) | f (x).

Now let k =
∏r

i=1 pai
i
∏s

j=1 qb j

j , where pi ≤ `( f ) for 1 ≤ i ≤ r, q j > `( f ) for 1 ≤ j ≤ s
and k/q j > 2 for 1 ≤ j ≤ s. Since Φk(x) divides f (x), from Theorem 2.4,

f (x) =

r∑
i=1

Φpi (xk/pi ) fpi (x) +

s∑
j=1

Φq j (xk/q j )gq j (x) (2.2)

for some fpi (x), gq j (x) ∈ Z[x]. We divide the proof into two cases.

Case I: for every j, gq j ≡ 0. From (2.2), we see that Φk1 (x) divides a common factor of
Φp1 (xk/p1 ), . . . ,Φpr (xk/pr ), where k1 =

∏r
i=1 pai

i .

Case II: some gq j . 0. By rearranging the terms, if necessary, suppose gq1 . 0. Let
z = ζ

q1
k be a (k/q1)th primitive root of unity. For a prime divisor p of k, if p , q1, then

zk/p = ζ
kq1/p
k is a primitive pth root of unity. On the other hand, if p = q1, then zk/p = 1.

Hence, from (2.2),
f (z) = Φq1 (1)gq1 (z) = q1gq1 (z)
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and

q1|gq1 (z)| = | f (z)| ≤
r∑

i=0

|zni | + 1 = `( f ).

Consequently, |gq1 (z)| ≤ `( f )/q1 < 1. The same holds for the other primitive
(k/q1)th roots of unity. Since k/q1 > 2, it follows that ϕ(k/q1) is even and
Res(Φk/q1 (x), gq1 (x)) = Res(gq1 (x),Φk/q1 (x)). Hence∏

i,(i,k/q1)=1

|gq1 (zi)| = |Res(Φk/q1 (x), gq1 (x))| < 1.

Further, all the roots of Φk/q1 (x) are nonreal. From Theorem 2.3, we conclude that
|Res(Φk/q1 (x), gq1 (x))| = Res(Φk/q1 (x), gq1 (x)) = 0, that is, gq1 (z) = 0 and f (z) = 0.

Now we replace k by k/q1 and repeat the argument. We reach the required result
after a finite number of steps. �

3. Applications
Theorem 3.1. Let q ≥ 5 be a prime and let f ∈ S be a primitive polynomial of length
q.

(1) If Φkq(x) is an essential cyclotomic factor of f, then Φk(x) divides f (x).
(2) Suppose f (x) is a Newman polynomial. Then, for every prime p < q, Φpq(x)

cannot be an essential cyclotomic factor of f (x). In particular, Φ2q(x) and Φ3q(x)
do not divide f (x).

Proof. (1) Since Φkq(x) divides f (x),

f (x) =
∑
p|k

Φp(xkq/p) fp(x) + Φq(xk)gq(x).

If gq(x) ≡ 0, then, as before, Φk(x) divides f (x).
If, on the other hand, g(x) . 0, then f (ζk) = qgq(ζk) so that |gq(ζk)| ≤ 1. If

|gq(ζk)| = 1, then | f (ζk)| = q, which is possible if and only if all the exponents of f (x)
are multiples of k and all the coefficients of f (x) are of same sign, which contradicts
f (x) being primitive. Hence |gq(ζk)| < 1 and, in the same way as before, Φk(x) | f (x).

(2) The proof of (2) follows from that of (1) together with the fact the only minimal
vanishing sums of ζp of length at most p, up to a rotation, are ζ p

p − 1 and Φp(ζp). �

We now resolve Conjecture 1.3.

Theorem 3.2. Let f be a primitive Newman polynomial of length five. If f (x) has a
cyclotomic factor, then either Φ5(x) | f (x) or Φ2α3β(x) mod f (x) for some α, β ≥ 1.

Proof. From Theorem 2.7, f (x) has an essential cyclotomic factor Φn(x) for some
n. Suppose n′ is the largest square-free part of n. Since Φn(x) = Φn′(xn/n′), it is
sufficient to consider square-free values of n. If n is square-free and Φn(x) divides
f (x), then n = 5, 6, 10, 15 or 30. From Theorem 3.1, n = 5 or 6. Since f (x) is primitive,
Φ5γ (x) - f (x) for γ > 1. Hence, for a primitive Newman polynomial of length five, the
cyclotomic factors are either Φ5(x) or Φ2α3β(x) for some α, β ≥ 1. �
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