
The Journal of Symbolic Logic

Volume 88, Number 3, September 2023

ON COHESIVE POWERS OF LINEAR ORDERS

RUMEN DIMITROV, VALENTINA HARIZANOV , ANDREY MOROZOV , PAUL SHAFER ,
ALEXANDRA A. SOSKOVA , AND STEFAN V. VATEV

Abstract. Cohesive powers of computable structures are effective analogs of ultrapowers, where cohesive
sets play the role of ultrafilters. Let �, � , and � denote the respective order-types of the natural numbers,
the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of
computable linear orders, with special emphasis on computable copies of �. If L is a computable copy
of � that is computably isomorphic to the usual presentation of �, then every cohesive power of L has
order-type � + ��. However, there are computable copies of �, necessarily not computably isomorphic
to the usual presentation, having cohesive powers not elementarily equivalent to � + ��. For example, we
show that there is a computable copy of � with a cohesive power of order-type � + �. Our most general
result is that if X ⊆ N \ {0} is a Boolean combination of Σ2 sets, thought of as a set of finite order-types,
then there is a computable copy of � with a cohesive power of order-type � + �(X ∪ {� + �� + �∗}),
where �(X ∪ {� + �� + �∗}) denotes the shuffle of the order-types in X and the order-type� + �� + �∗.
Furthermore, if X is finite and non-empty, then there is a computable copy of � with a cohesive power of
order-type � + �(X).

§1. Introduction. The ultimate inspiration for this work is Skolem’s 1934
construction of a countable non-standard model of arithmetic [22]. Skolem’s
construction can be described roughly as follows. For sets X,Y ⊆ N, write X ⊆∗ Y
if X \ Y is finite. First, fix an infinite set C ⊆ N that is cohesive for the collection of
arithmetical sets: for every arithmetical A ⊆ N, either C ⊆∗ A or C ⊆∗ A. Next,
define an equivalence relation =C on the arithmetical functions f : N→ N by
f =C g if and only if C ⊆∗ {n : f(n) = g(n)}. Then define a structure on the =C -
equivalence classes [f] by [f] + [g] = [f + g], [f]× [g] = [f × g] (where f + g
and f × g are computed pointwise), and [f] < [g] ⇔ C ⊆∗ {n : f(n) < g(n)}.
Using the arithmetical cohesiveness of C, one then shows that this structure is
elementarily equivalent to (N,+,×, <). The structure is countable because there are
only countably many arithmetical functions, and it has non-standard elements, such
as the element represented by the identity function. See [6] for a further discussion
of Skolem’s model.

Think of Skolem’s construction as a more effective analog of an ultrapower
construction. Instead of building a structure from all functions f : N→ N, Skolem
builds a structure from only the arithmetical functions f. The arithmetically cohesive
set C plays the role of the ultrafilter. Feferman, Scott, and Tennenbaum [10]

Received February 18, 2021.
2020 Mathematics Subject Classification. Primary 03C57, 03D45.
Key words and phrases. computable structures, effective ultrapowers, cohesive powers, linear orders.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/23/8803-0003
DOI:10.1017/jsl.2023.14

947

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://orcid.org/0000-0002-6626-5074
https://orcid.org/0000-0001-8647-5629
https://orcid.org/0000-0001-5386-9218
https://orcid.org/0000-0002-4392-4284
https://orcid.org/0000-0001-5719-1467
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2023.14
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.14&domain=pdf
https://doi.org/10.1017/jsl.2023.14

948 RUMEN DIMITROV ET AL.

investigate the question of whether Skolem’s construction can be made more
effective by assuming that C is only r-cohesive (i.e., cohesive for the collection
of computable sets) and by restricting to computable functions f. They answer the
question negatively by showing that it is not even possible to obtain a model of
Peano arithmetic in this way. Lerman [16] investigates the situation further and
shows that if one restricts to cohesive sets C (i.e., cohesive for the collection of c.e.
sets) that are co-c.e. and to computable functions f, then the first-order theory of the
structure obtained is exactly determined by the many-one degree of C. Additional
results in this direction appear in [12, 13].

Dimitrov [4] generalizes the effective ultrapower construction to arbitrary
computable structures. These cohesive powers of computable structures are studied
in [3, 5, 8] in relation to the lattice of c.e. subspaces, modulo finite dimension,
of a fixed computable infinite dimensional vector space over the field Q. In this
work, we investigate a question dual to the question studied by Lerman. Lerman
fixes a computable presentation of a computable structure (indeed, all computable
presentations of the standard model of arithmetic are computably isomorphic) and
studies the effect that the choice of the cohesive set has on the resulting cohesive
power. Instead of fixing a computable presentation of a structure and varying the
cohesive set, we fix a computably presentable structure and a cohesive set, and then
we vary the structure’s computable presentation. We focus on linear orders, with
special emphasis on computable presentations of �. We choose to work with linear
orders because they are a good source of non-computably categorical structures
and because the setting is simple enough to be able to completely describe certain
cohesive powers up to isomorphism. This work is a greatly expanded version of the
preliminary work of [9].

Our main results are the following. Below, �, � , and � denote the respective
order-types of the natural numbers, the integers, and the rationals. For each k ≥ 1,
k denotes the order-type of the k-element linear order.

• If C is cohesive andL is a computable copy of� that is computably isomorphic
to the usual presentation of � (i.e., the immediate successor relation of L is
computable), then the cohesive power

∏
C L has order-type � + �� (Theorem

4.5).
• If C is co-c.e. and cohesive and L is a computable copy of �, then the finite

condensation of the cohesive power
∏
C L has order-type 1 + � (Theorem 4.4;

see Definition 3.3 for the definition of finite condensation).
• If C is co-c.e. and cohesive, then there is a computable copy L of � where the

cohesive power
∏
C L has order-type � + � (Corollary 5.4).

• More generally, if C is co-c.e. and cohesive and X ⊆ N \ {0} is a Boolean
combination of Σ2 sets, thought of as a set of finite order-types, then there
is a computable copy L of � where the cohesive power

∏
C L has order-type

� + �(X ∪ {� + �� + �∗}). Here �∗ denotes the reverse of �, and � denotes
the shuffle operation of Definition 6.2. Furthermore, if X is finite and non-
empty, then there is a computable copy L of� where the cohesive power

∏
C L

has order-type � + �(X) (Theorem 6.10).

This work also serves to compare and contrast properties of cohesive powers
with those of classical ultrapowers. The key points are the following. Recall that a

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 949

computable structure is decidable if its elementary diagram is computable and is
n-decidable if its Σn-elementary diagram is computable. These definitions are
discussed in more detail in Section 2.

• Classically, an ultrapower of a structure is elementarily equivalent to the base
structure by Łoś’s theorem. Effectively, Łoś’s theorem holds for cohesive powers
of decidable structures (Corollary 2.10). For cohesive powers of n-decidable
structures, Łoś’s theorem need only hold up to Δn+3-expressible sentences. In
fact, every Σn+3 sentence true of an n-decidable structure is also true of all of
its cohesive powers (Theorem 2.9), but this is optimal in general (Corollary
4.9).

• Classically, ultrapowers of isomorphic structures over a fixed ultrafilter are
isomorphic. Effectively, cohesive powers of computably isomorphic computable
structures over a fixed cohesive set are isomorphic (Theorem 2.20). However, it
is possible for isomorphic (but not computably isomorphic) computable struc-
tures to have non-elementarily equivalent (hence non-isomorphic) cohesive
powers over a fixed cohesive set. Together, Theorems 4.5 and 4.8 imply that for
every cohesive set C, there are computable copies L0 and L1 of � such that the
cohesive powers

∏
C L0 and

∏
C L1 are not elementarily equivalent. This sort

of phenomenon can also be witnessed by computable structures whose cohesive
powers are completely described. Fix a co-c.e. cohesive set. Example 5.5 shows
that for every k ≥ 1, there is a computable copyL of� with

∏
C L ∼= � + k�.

The order-types � + k� are pairwise non-elementarily equivalent for k ≥ 1.
Theorem 6.10 shows that many more order-types are achievable as cohesive
powers of computable copies of �.

• Classically, the Keisler–Shelah theorem states that two structures are elemen-
tarily equivalent if and only if there is an ultrafilter (on a set of appropriate
size) over which the corresponding ultrapowers are isomorphic. Effectively, an
analogous result holds for decidable structures: decidable structures A and B
are elementarily equivalent if and only if

∏
C A ∼=

∏
C B for every cohesive

set C (Theorem 2.22, which is essentially due to Nelson [20] in a slightly
different context). IfA andB are computable structures that are not necessarily
decidable, then the effective version of the Keisler–Shelah theorem can fail in
either direction. As explained in the previous bullet, there are many examples
of elementarily equivalent computable linear orders having non-isomorphic
cohesive powers. Example 5.5 also shows that it is possible for non-elementarily
equivalent computable linear orders to have isomorphic cohesive powers.

• Classically, for a countable language, ultrapowers over countably incomplete
ultrafilters (i.e., ultrafilters that are not closed under countable intersections)
are always ℵ1-saturated. Effectively, cohesive powers of decidable structures
are recursively saturated (Theorem 2.16 item (3), which is essentially due to
Nelson [20] in a slightly different context). Furthermore, for n > 0, cohesive
powers of n-decidable structures are Σn-recursively saturated (Theorem 2.16
item (4)). Most interestingly, if the cohesive set is assumed to be co-c.e., then
we obtain the n = 0 case as well as an additional level of saturation: cohesive
powers of n-decidable structures over co-c.e. cohesive sets are Σn+1-recursively
saturated (Theorem 2.18).

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

950 RUMEN DIMITROV ET AL.

This work is organized as follows. Section 2 presents the basic theory of
cohesive products and cohesive powers, focusing on analogs of Łoś’s theorem,
substructures, saturation, and isomorphisms. Section 3 concerns the cohesive powers
of computable linear orders in general. Section 4 concerns the cohesive powers of
computable copies of �. In Section 5, given a co-c.e. cohesive set C, we construct
a computable copy L of � whose cohesive power

∏
C L has order-type � + �.

Section 6 leverages the construction of Section 5 to shuffle various patterns of finite
order-types into cohesive powers of computable copies of �.

§2. Cohesive products and powers of computable structures. We assume familiarity
with the basic concepts and notation from computability theory and computable
structure theory. Comprehensive references include [17, 23, 24] for computability
theory and [1, 18] for computable structure theory. See also [11] for a survey of
computable structure theory.

Throughout, N denotes the natural numbers, and � denotes its order-type when
thought of as a linear order. For each n ≥ 2, we use 〈x0, ... , xn–1〉 : Nn → N to
denote the usual computable bijective n-tupling function, which we may assume
is increasing in all coordinates. For each i < n, �i denotes the corresponding
projection function onto coordinate i. For X ⊆ N and n ∈ N, X �n denotes the
set X ∩ {0, 1, ... , n – 1}. Often we consider expressions of the form limn∈C f(n),
lim supn∈C f(n), lim infn∈C f(n), etc., where f : N→ N is some function and
C ⊆ N is an infinite set. For this, let n0 < n1 < n2 < ... be the elements of C listed
in increasing order. Then limn∈C f(n) means limi→∞ f(ni), and lim supn∈C f(n)
and lim infn∈C f(n) are interpreted similarly. Notice that for functions f : N→ N,
limn∈C f(n) = ∞ if and only if lim infn∈C f(n) = ∞.

We denote partial computable functions by ϕ, �, etc. For a partial computable
function ϕ, ϕ(n)↓ means that ϕ halts on input n, thus producing an output, and
ϕ(n)↑ means that ϕ does not halt on input n. The notation ϕ � � means that
ϕ and � are equal partial functions: for every n, either ϕ(n)↓ = �(n)↓ or both
ϕ(n)↑ and �(n)↑. We also use the � notation to define one partial computable
function in terms of another. For example, “let ϕ(n) � �(n) + 1” means compute
ϕ(n) by running �(n) and adding 1 to the output if �(n) halts. As usual, (ϕe)e∈N

denotes the standard effective enumeration of all partial computable functions, and
ϕe,s(n) denotes the result (if any) of running ϕe on input n for s computational
steps. Sometimes we also write ϕ0, ... , ϕn–1 to refer to an arbitrary list of partial
computable functions. The usage of subscripts will be clear from context.

Throughout, we consider only first-order languages L and finite first-order L-
formulas. For k ∈ N, we sometimes use the abbreviation ∃≥kxΦ(x) to express that
there are at least k distinct x for which Φ(x) holds

∃≥kxΦ(x) ≡ ∃x0, ... , xk–1

⎡⎣⎛⎝ ∧
i<j<k

xi �= xj

⎞⎠ ∧
(∧
i<k

Φ(xi)

)⎤⎦ .
Similarly, we use the abbreviation ∃=kxΦ(x) to express that there are exactly k
distinct x for which Φ(x) holds: ∃=kxΦ(x) ≡ ∃≥kxΦ(x) ∧ ¬∃≥k+1xΦ(x). We
point out that, for example, if Φ(x) is a Σ1 formula, then ∃≥kxΦ(x) is equivalent

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 951

to a Σ1 formula and ∃=kxΦ(x) is equivalent to the conjunction of a Σ1 formula and
a Π1 formula. In a slight abuse of the terminology, we say that a formula is Δn if it
is logically equivalent to both a Σn formula and a Πn formula. So if Φ(x) is Σ1, then
∃=kxΦ(x) is Δ2.

Fix a computable language L. A computable L-structure A consists of a non-
empty computable domain A ⊆ N and a uniformly computable interpretation of
all relation, function, and constant symbols of L. We often denote the domain
of a structure A by |A|. A computable L-structure A is decidable if there is an
algorithm which, given a formula Φ(x0, ... , xm–1), with all free variables displayed,
and a sequence of parameters 〈a0, ... , am–1〉 each from |A|, determines whether or
notA |= Φ(a0, ... , am–1). Likewise, a computableL-structureA is n-decidable if there
is such an algorithm determining whether or not Σn formulas with parameters from
|A| hold in A. In other words, a computable structure is a structure having a com-
putable atomic diagram (or, equivalently, a computable quantifier-free diagram); a
decidable structure is a structure having a computable elementary diagram; and an
n-decidable structure is a structure having a computable Σn-elementary diagram.
A 0-decidable structure is the same thing as a computable structure. Similarly, a
sequence (Ai : i ∈ N) of L-structures is uniformly computable, uniformly decidable,
or uniformly n-decidable if the respective sequence of atomic, elementary, or Σn-
elementary diagrams is uniformly computable.

We find it convenient to extend the decidability terminology to individual formulas
and to computable sequences of formulas that are not necessarily all members of
some fixed syntactic class. Say that a computable sequence of formulas (Φi : i ∈ N)
is uniformly decidable in a computable L-structure A if there is an algorithm that,
given a subformula Ψ(�y) of Φi for some i (including of course the possibility
Ψ = Φi) and an appropriate sequence of parameters �a from |A|, determines whether
or not A |= Ψ(�a). The reason for including the decidability of subformulas is to
permit inductive arguments and to ensure that we can effectively search for witnesses
to existential quantifiers. These properties are used in the subsections on analogs
of Łoś’s theorem and on saturation below, for example. Formally, (Φi : i ∈ N) is
uniformly decidable in A if the set

{〈i,Ψ(�y), �a〉 : Ψ is a subformula of Φi ∧ |�a| = |�y| ∧ A |= Ψ(�a)}

is computable. In the case of sequences of structures, say that a computable sequence
of formulas (Φi : i ∈ N) is uniformly decidable in a computable sequence (An : n ∈
N) of L-structures if the set

{〈n, i,Ψ(�y), �a〉 : Ψ is a subformula of Φi ∧ |�a| = |�y| ∧ An |= Ψ(�a)}

is computable. In the case of a single formula Φ (and its subformulas), we simply
say that Φ is decidable in a computable L-structure A and that Φ is uniformly
decidable in a uniformly computable sequence (An : n ∈ N) of L-structures. In a
decidable structure, every computable sequence of formulas is uniformly decidable.
In an n-decidable structure, every computable sequence of Σn formulas (indeed,
every computable sequence of Boolean combinations of Σn formulas) is uniformly
decidable.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

952 RUMEN DIMITROV ET AL.

2.1. Cohesive products and cohesive powers.

Definition 2.1. An infinite set C ⊆ N is cohesive if for every c.e. set W, either
C ⊆∗ W or C ⊆∗ W .

More generally, a straightforward induction shows that if C is a cohesive set
and X is a Boolean combination of c.e. sets, then either C ⊆∗ X or C ⊆∗ X .
Notice that if C is cohesive and X is a Boolean combination of c.e. sets, then
C ∩ X being infinite implies that C ⊆∗ X . We use quantifiers ∀∞n and ∃∞n as
abbreviations for “for almost every n” and “there are infinitely many n.” So, for
example, (∀∞n ∈ C)(n ∈ X) means C ⊆∗ X .

Definition 2.2. LetL be a computable language. Let (An : n ∈ N) be a uniformly
computable sequence of L-structures with corresponding uniformly computable
sequence of non-empty domains (|An| : n ∈ N). LetC ⊆ Nbe cohesive. The cohesive
product of (An : n ∈ N) over C is the L-structure

∏
C An defined as follows:

• Let D be the set of partial computable functions ϕ such that ∀n (ϕ(n)↓ →
ϕ(n) ∈ |An|) and C ⊆∗ dom(ϕ).

• Forϕ,� ∈ D, letϕ =C � denoteC ⊆∗ {n : ϕ(n)↓ = �(n)↓}. The relation =C
is an equivalence relation on D. Let [ϕ] denote the equivalence class of ϕ ∈ D
with respect to =C .

• The domain of
∏
C An is the set |

∏
C An| = {[ϕ] : ϕ ∈ D}.

• Let R be an m-ary relation symbol of L. For [ϕ0], ... , [ϕm–1] ∈ |
∏
C An|, define

R
∏
C An ([ϕ0], ... , [ϕm–1]) by

R
∏
C An ([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {n : RAn (ϕ0(n), ... , ϕm–1(n))

}
.

Here we think of RAn (ϕ0(n), ... , ϕm–1(n)) as including the condition that
ϕi (n)↓ for each i < m.

• Let f be an m-ary function symbol of L. For [ϕ0], ... , [ϕm–1] ∈ |
∏
C An|, let �

be the partial computable function defined by

�(n) � fAn (ϕ0(n), ... , ϕm–1(n)),

and notice that C ⊆∗ dom(�) because C ⊆∗ dom(ϕi) for each i < m. Define
f
∏
C An by

f
∏
C An ([ϕ0], ... , [ϕm–1]) = [�].

• Let c be a constant symbol ofL. Let� be the total computable function defined
by �(n) = cAn , and define c

∏
C An = [�].

In the case where An is the same fixed computable structure A for every n, the
cohesive product

∏
C An is called the cohesive power ofA over C and is denoted∏

C A.

In Definition 2.2, it is equivalent to relax the condition∀n (ϕ(n)↓ → ϕ(n) ∈ |An|)
and C ⊆∗ dom(ϕ) of the first bullet to (∀∞n ∈ C)(ϕ(n)↓ ∧ ϕ(n) ∈ |An|). If ϕ is
a partial computable function satisfying the relaxed condition, let � be the partial

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 953

computable function given by

�(n) =

{
ϕ(n), if ϕ(n)↓ and ϕ(n) ∈ |An|,
↑, otherwise.

Then � satisfies the original condition, and � =C ϕ.
We often consider cohesive powers of computable structures by co-c.e. cohesive

sets. The co-c.e. cohesive sets are exactly the complements of the maximal sets, which
are the co-atoms of the lattice of c.e. sets modulo finite difference (see [23, Section
X.3]). Such sets exist by a well-known theorem of Friedberg (see [23, Theorem
X.3.3]). Cohesive powers are intended to be effective analogs of ultrapowers, so in
light of this analogy, it makes sense to impose effectivity on the cohesive set, which
plays the role of the ultrafilter, as well as on the base structure itself. Technically, it
helps to be able to learn what numbers are not in the cohesive set C when building
a computable structure A so as to influence

∏
C A in a particular way. Cohesive

products by co-c.e. cohesive sets also have the helpful property that every member
of the cohesive product has a total computable representative. Let (An : n ∈ N) be
a uniformly computable sequence of structures with non-empty domain |An| for
each n, and let an be the first element of |An| for each n. Suppose that C is co-c.e.
and cohesive, and let ϕ : N→ N be a partial computable function representing an
element [ϕ] of

∏
C An. Then C ⊆∗ dom(ϕ), so let N be such that (∀n > N)(n ∈

C → ϕ(n)↓). Define a total computablef : N→ N as follows. If n ≤ N , then output
f(n) = an. If n > N , then simultaneously run ϕ(n) and enumerate the complement
C of C. Either ϕ(n)↓, n ∈ C , or both. If ϕ(n) halts before n is enumerated into
C , then output f(n) = ϕ(n); and if n is enumerated into C before ϕ(n) halts, then
output f(n) = an. This f is total and satisfies f =C ϕ.

As with structures and their ultrapowers, a computable structure A always
naturally embeds into its cohesive powers. Fora ∈ |A|, letfa be the total computable
function with constant value a. Then for any cohesive set C, the map a �→ [fa]
embeds A into

∏
C A. This map is called the canonical embedding of A into

∏
C A.

If A is finite and C is cohesive, then every partial computable function ϕ : N→ |A|
withC ⊆∗ dom(ϕ) is eventually constant on C. In this case, every element of

∏
C A

is in the range of the canonical embedding, and therefore A ∼=
∏
C A. If A is an

infinite computable structure, then every cohesive power
∏
C A is countably infinite:

infinite becauseA embeds into
∏
C A, and countable because the elements of

∏
C A

are represented by partial computable functions. See [4] for further details.

2.2. Analogs of Łoś’s theorem. A restricted form of Łoś’s theorem holds for
cohesive powers. Let L be a computable language, let A be an n-decidable L-
structure, and let C be cohesive. We show that for every Σn+3 sentence Φ, A |= Φ
implies that

∏
C A |= Φ. It follows that A and

∏
C A agree on all Δn+3 sentences.

It also follows that if A is decidable, then A and
∏
C A are elementarily equivalent.

Thus for decidable structures, we recover the full Łoś theorem (for first-order logic).
These results update Dimitrov’s fundamental theorem of cohesive powers [4], which
is the 0-decidable case: ifA is a computable L-structure, C is cohesive, and Φ is a Σ3

sentence, thenA |= Φ implies that
∏
C A |= Φ. In general, the fundamental theorem

of cohesive powers is the best possible analog of Łoś’s theorem. In Sections 4–6,
we see several examples of computable linear orders L where the Π3 sentence

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

954 RUMEN DIMITROV ET AL.

“every element has an immediate successor” is true of L but false of some cohesive
power of L. For sequences of structures, we show that if (Ai : i ∈ N) is a sequence
of uniformly n-decidable L-structures, C is cohesive, and Φ is a Πn+2 sentence,
then C ⊆∗ {i : Ai |= Φ

}
implies that

∏
C Ai |= Φ. This updates the fundamental

theorem of cohesive products from [7], which is the 0-decidable case. In Section 4,
we show that the fundamental theorem of cohesive products is best possible by
uniformly computing a sequence of finite linear orders (Li : i ∈ N) such that for
every cohesive set C, the cohesive product

∏
C Li is a linear order with no maximum

element.

Lemma 2.3. Let L be a computable language, let (An : n ∈ N) be a uniformly
computable sequence of L-structures, and let C be cohesive. Let t(v0, ... , vm–1) be a
term, with all variables displayed. Let [ϕ0], ... , [ϕm–1] ∈ |

∏
C An|. Let� be the partial

computable function given by

�(n) � tAn (ϕ0(n), ... , ϕm–1(n)).

Then

t
∏
C An ([ϕ0], ... , [ϕm–1]) = [�].

Proof. The proof is a straightforward induction on the construction of the term
t, using Definition 2.2. �

Lemma 2.4. Let L be a computable language, let (An : n ∈ N) be a uniformly
computable sequence of L-structures, and let C be cohesive. Let Φ(v0, ... , vm–1) be a
formula (with all free variables displayed) that is uniformly decidable in (An : n ∈ N).
Then for any [ϕ0], ... , [ϕm–1] ∈ |

∏
C An|,∏

C
An |= Φ([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {n : An |= Φ(ϕ0(n), ... , ϕm–1(n))

}
.

Proof. Proceed by induction on the construction of the formula Φ. For the
base case, assume that Φ(v0, ... , vm–1) is the atomic formula R

(
t0(v0, ... , vm–1), ... ,

t�–1(v0, ... , vm–1)
)
, where R is either a relation symbol from L or equality, and

t0, ... , t�–1 are terms whose variables are among v0, ... , vm–1. For each i < �, define

�i(n) � tAni (ϕ0(n), ... , ϕm–1(n))

as in Lemma 2.3 so that t
∏
C An

i ([ϕ0], ... , [ϕm–1]) = [�i]. Then∏
C
An |= R

(
t0([ϕ0], ... , [ϕm–1]), ... , t�–1([ϕ0], ... , [ϕm–1])

)
⇔

∏
C
An |= R([�0], ... , [��–1])

⇔ C ⊆∗ {n : An |= R(�0(n), ... , ��–1(n))
}

⇔ C ⊆∗ {n : An |= R
(
t0(ϕ0(n), ... , ϕm–1(n)), ... , t�–1(ϕ0(n), ... , ϕm–1(n))

)}
.

We consider the inductive cases for the connectives ∧ and ¬ and for the
quantifier ∃.

Assume that Φ(v0, ... , vm–1) is the formula Φ0(v0, ... , vm–1) ∧Φ1(v0, ... , vm–1).
Then

∏
C An |= Φ([ϕ0], ... , [ϕm–1]) if and only if (∀i < 2)

(∏
C An |= Φi([ϕ0], ... ,

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 955

[ϕm–1])
)
. Formulas Φ0 and Φ1 are uniformly decidable in (An : n ∈ N) because

they are subformulas of Φ. Thus the induction hypothesis yields that∏
C
An |= Φi([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {n : An |= Φi(ϕ0(n), ... , ϕm–1(n))

}
for each i < 2. Finally,C ⊆∗ {n : An |= Φi(ϕ0(n), ... , ϕm–1(n))

}
holds for both i = 0

and i = 1 if and only if

C ⊆∗ {n : An |= Φ0(ϕ0(n), ... , ϕm–1(n)) ∧Φ1(ϕ0(n), ... , ϕm–1(n))
}
.

Putting this all together yields that∏
C
An |= Φ0([ϕ0], ... , [ϕm–1]) ∧Φ1([ϕ0], ... , [ϕm–1])

if and only if

C ⊆∗ {n : An |= Φ0(ϕ0(n), ... , ϕm–1(n)) ∧Φ1(ϕ0(n), ... , ϕm–1(n))
}
.

Now assume that Φ(v0, ... , vm–1) is the formula ¬Ψ(v0, ... , vm–1). Then
∏
C An |=

Φ([ϕ0], ... , [ϕm–1]) if and only if
∏
C An �|= Ψ([ϕ0], ... , [ϕm–1]). The formula Ψ is

uniformly decidable in (An : n ∈ N) because it is a subformula of Φ. Thus the
induction hypothesis yields that∏

C
An �|= Ψ([ϕ0], ... , [ϕm–1]) ⇔ C �∗ {n : An |= Ψ(ϕ0(n), ... , ϕm–1(n))

}
.

We have that C �∗ {n : An |= Ψ(ϕ0(n), ... , ϕm–1(n))
}

if and only if C has infinite
intersection with the set

{
n : An �|= Ψ(ϕ0(n), ... , ϕm–1(n))

}
, which is co-c.e. because

Ψ(v0, ... , vm–1) is uniformly decidable in (An : n ∈ N). By cohesiveness and the fact
that C ⊆∗ dom(ϕi) for each i < m, we therefore have that

C �∗ {n : An |= Ψ(ϕ0(n), ... , ϕm–1(n))
}

⇔ C ⊆∗ {n : An �|= Ψ(ϕ0(n), ... , ϕm–1(n))
}

⇔ C ⊆∗ {n : An |= ¬Ψ(ϕ0(n), ... , ϕm–1(n))
}
.

Putting this all together yields that∏
C
An |= ¬Ψ([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {n : An |= ¬Ψ(ϕ0(n), ... , ϕm–1(n))

}
.

Finally, assume that Φ(v0, ... , vm–1) is the formula ∃xΨ(x, v0, ... , vm–1). First
suppose that

∏
C An |= ∃xΨ(x, [ϕ0], ... , [ϕm–1]). Then there is a [] ∈ |

∏
C An| such

that
∏
C An |= Ψ([], [ϕ0], ... , [ϕm–1]). The formula Ψ is uniformly decidable in (An :

n ∈ N) because it is a subformula of Φ. Thus the induction hypothesis yields that∏
C
An |= Ψ([], [ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {n : An |= Ψ((n), ϕ0(n), ... , ϕm–1(n))

}
.

Clearly{
n : An |= Ψ((n), ϕ0(n), ... , ϕm–1(n))

}
⊆
{
n : An |= ∃xΨ(x, ϕ0(n), ... , ϕm–1(n))

}
,

so we have that C ⊆∗ {n : An |= ∃xΨ(x, ϕ0(n), ... , ϕm–1(n))
}
.

Conversely, suppose that C ⊆∗ {n : An |= ∃xΨ(x, ϕ0(n), ... , ϕm–1(n))
}
. The for-

mula Ψ(x, v0, ... , vm–1) is uniformly decidable in (An : n ∈ N), so we may define a
partial computable function 	 by

	(n) � the first a ∈ |An| such that An |= Ψ(a, ϕ0(n), ... , ϕm–1(n)).

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

956 RUMEN DIMITROV ET AL.

The assumption C ⊆∗ {n : An |= ∃xΨ(x, ϕ0(n), ... , ϕm–1(n))
}

implies that C ⊆∗

dom(). We therefore have that [] ∈ |
∏
C An| and that

C ⊆∗ {n : An |= Ψ((n), ϕ0(n), ... , ϕm–1(n))
}
.

The induction hypothesis then yields that
∏
C An |= Ψ([], [ϕ0], ... , [ϕm–1]). There-

fore
∏
C An |= ∃xΨ(x, [ϕ0], ... , [ϕm–1]). This completes the proof. �

Lemma 2.5. Let L be a computable language, let (An : n ∈ N) be a
uniformly computable sequence of L-structures, and let C be cohesive. Let
Ψ(x0, ... , xk–1, y0, ... , y�–1, v0, ... , vm–1) be a formula that is uniformly decidable
in (An : n ∈ N).

(1) For any [ϕ0], ... , [ϕm–1] ∈ |
∏
C An|,∏

C
An |= ∃ �x ∀�yΨ(�x,�y, [ϕ0], ... , [ϕm–1]) ⇒

C ⊆∗ {n : An |= ∃ �x ∀�yΨ(�x, �y, ϕ0(n), ... , ϕm–1(n))
}
.

(2) For any [ϕ0], ... , [ϕm–1] ∈ |
∏
C An|,

C ⊆∗ {n : An |= ∀ �x ∃�yΨ(�x, �y,ϕ0(n), ... , ϕm–1(n))
}

⇒∏
C
An |= ∀ �x ∃�yΨ(�x, �y, [ϕ0], ... , [ϕm–1]).

Proof. For item (1), suppose that
∏
C An |= ∃ �x ∀�yΨ(�x, �y, [ϕ0], ... , [ϕm–1]). Let

[�0], ... , [�k–1] ∈ |
∏
C An| be such that∏

C
An |= ∀�yΨ([�0], ... , [�k–1], �y, [ϕ0], ... , [ϕm–1]). (∗)

The set

X =
{
n : An |= ∀�yΨ(�0(n), ... , �k–1(n), �y, ϕ0(n), ... , ϕm–1(n))

}
is a Boolean combination of c.e. sets, so by cohesiveness, eitherC ⊆∗ X orC ⊆∗ X .
IfC ⊆∗ X , then becauseC ⊆∗ dom(ϕi) for each i < m andC ⊆∗ dom(�i) for each
i < k, we would have that

C ⊆∗ {n : An |= ∃�y ¬Ψ(�0(n), ... , �k–1(n), �y, ϕ0(n), ... , ϕm–1(n))
}
.

As Ψ is uniformly decidable in (An : n ∈ N), we could then argue as in the ∃ case of
the proof of Lemma 2.4 and simultaneously define partial computable functions 	i
for i < � as follows. Given n, search for the first sequence 〈a0, ... , a�–1〉 ∈ |An|� such
that

An |= ¬Ψ(�0(n), ... , �k–1(n), a0, ... , a�–1, ϕ0(n), ... , ϕm–1(n)),

and set 	i(n) = ai for each i < �. Then

C ⊆∗ {n : An |= ¬Ψ(�0(n), ... , �k–1(n), 	0(n), ... , 	�–1(n), ϕ0(n), ... , ϕm–1(n))
}
,

so ∏
C
An |= ¬Ψ([�0], ... , [�k–1], [0], ... , [�–1], [ϕ0], ... , [ϕm–1])

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 957

by Lemma 2.4, which contradicts (∗). Thus we cannot have C ⊆∗ X , so it must be
that C ⊆∗ X . Therefore

C ⊆∗ {n : An |= ∀�yΨ(�0(n), ... , �k–1(n), �y, ϕ0(n), ... , ϕm–1(n))
}
,

⊆
{
n : An |= ∃ �x ∀�yΨ(�x, �y, ϕ0(n), ... , ϕm–1(n))

}
,

as desired.
Item (2) follows from item (1). Suppose that

∏
C An �|= ∀ �x ∃�yΨ(�x, �y, [ϕ0], ... ,

[ϕm–1]). Then
∏
C An |= ∃ �x ∀�y ¬Ψ(�x, �y, [ϕ0], ... , [ϕm–1]). The formula ¬Ψ is uni-

formly decidable in (An : n ∈ N) because Ψ is, so applying item (1) to ¬Ψ yields
that

C ⊆∗ {n : An |= ∃ �x ∀�y ¬Ψ(�x, �y, ϕ0(n), ... , ϕm–1(n))
}
.

Therefore

C �∗ {n : An |= ∀ �x ∃�yΨ(�x, �y, ϕ0(n), ... , ϕm–1(n))
}

because the two sets are disjoint. �

Lemma 2.6. Let L be a computable language, let (An : n ∈ N) be a uniformly com-
putable sequence ofL-structures, and let C be cohesive. Let Φ(v0, ... , vm–1) be a formula
that is logically equivalent to a formula of the form ∃ �x ∀�yΨ0(�x, �y, v0, ... , vm–1) and
to a formula of the form ∀ �x ∃�yΨ1(�x, �y, v0, ... , vm–1), where Ψ0 and Ψ1 are uniformly
decidable in (An : n ∈ N). Then for any [ϕ0], ... , [ϕm–1] ∈ |

∏
C An|,∏

C
An |= Φ([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {n : An |= Φ(ϕ0(n), ... , ϕm–1(n))

}
.

Proof. The “⇒” implication is by Lemma 2.5 item (1) and the equivalence of
Φ(�v) with ∃ �x ∀�yΨ0(�x, �y, �v). The “⇐” implication is by Lemma 2.5 item (2) and
the equivalence of Φ(�v) with ∀ �x ∃�yΨ1(�x, �y, �v). �

The following theorem refines the fundamental theorem of cohesive products from
[7].

Theorem 2.7. Let L be a computable language, let (Ai : i ∈ N) be a sequence of
uniformly n-decidable L-structures, and let C be cohesive.

(1) Let Φ(v0, ... , vm–1) be a Σn+2 formula. Then for any [ϕ0], ... , [ϕm–1] ∈ |
∏
C Ai |,∏

C
Ai |= Φ([ϕ0], ... , [ϕm–1]) ⇒ C ⊆∗ {i : Ai |= Φ(ϕ0(i), ... , ϕm–1(i))

}
.

(2) Let Φ(v0, ... , vm–1) be a Πn+2 formula. Then for any [ϕ0], ... , [ϕm–1] ∈ |
∏
C Ai |,

C ⊆∗ {i : Ai |= Φ(ϕ0(i), ... , ϕm–1(i))
}

⇒
∏
C
Ai |= Φ([ϕ0], ... , [ϕm–1]).

(3) Let Φ(v0, ... , vm–1) be a Δn+2 formula. Then for any [ϕ0], ... , [ϕm–1] ∈ |
∏
C Ai |,∏

C
Ai |= Φ([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {i : Ai |= Φ(ϕ0(i), ... , ϕm–1(i))

}
.

Proof. Item (1) follows from Lemma 2.5 item (1) because a Σn+2 formula
Φ(v0, ... , vm–1) has the form ∃ �x ∀�yΨ(�x, �y, v0, ... , vm–1), where Ψ(�x, �y, v0, ... , vm–1)
is Σn and hence is uniformly decidable in the uniformly n-decidable sequence

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

958 RUMEN DIMITROV ET AL.

(Ai : i ∈ N). Likewise, item (2) follows from Lemma 2.5 item (2), and item (3)
follows from Lemma 2.6. �

Proposition 4.10 shows that Theorem 2.7 is tight in general. We now switch from
cohesive products to cohesive powers.

Lemma 2.8. Let L be a computable language, let A be a computable L-structure,
and let C be cohesive. Let Φ be a sentence of the form ∀ �x ∃�y ∀�zΨ(�x, �y, �z), where
Ψ(�x, �y, �z) is decidable in A. Then∏

C
A |= Φ ⇒ A |= Φ.

Proof. Suppose that
∏
C A |= Φ. Write �x = x0, ... , xm–1. For each i < m, fix an

ai ∈ |A|, and let ϕi be the constant function with value ai . Then [ϕ0], ... , [ϕm–1] ∈
|
∏
C A|, so ∏

C
A |= ∃�y ∀�zΨ([ϕ0], ... , [ϕm–1], �y, �z).

Therefore

C ⊆∗ {n : A |= ∃�y ∀�zΨ(ϕ0(n), ... , ϕm–1(n), �y, �z)} =
{
n : A |= ∃�y ∀�zΨ(a0, ... , am–1, �y, �z)

}
by Lemma 2.5 item (1) applied to the formula ∃�y ∀�zΨ(�x, �y, �z) and the sequence
of structures (An : n ∈ N) where An is A for each n. It must therefore be that
A |= ∃�y ∀�zΨ(a0, ... , am–1, �y, �z). The sequence a0, ... , am–1 ∈ |A| was arbitrary, so
we have shown that A |= ∀ �x ∃�y ∀�zΨ(�x, �y, �z). That is, A |= Φ. �

The next theorem is our version of Łoś’s theorem for cohesive powers of n-
decidable structures, which refines the fundamental theorem of cohesive powers from
[4].

Theorem 2.9. Let L be a computable language, letA be an n-decidable L-structure,
and let C be a cohesive set.

(1) Let Φ(v0, ... , vm–1) be a Δn+2 formula. Then for any [ϕ0], ... , [ϕm–1] ∈ |
∏
C A|,∏

C
A |= Φ([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {n : A |= Φ(ϕ0(n), ... , ϕm–1(n))

}
.

(2) Let Φ be a Δn+3 sentence. Then A |= Φ if and only if
∏
C A |= Φ.

(3) Let Φ be a Σn+3 sentence. If A |= Φ, then
∏
C A |= Φ.

Proof. Item (1) is the special case of Theorem 2.7 item (3) in which each structure
Ai isA. Item (2) follows from item (3) because if Φ is a Δn+3 sentence, then both Φ
and¬Φ are logically equivalent to Σn+3 sentences. For item (3), consider the sentence
¬Φ, which is logically equivalent to a Πn+3 sentence Θ. The sentence Θ thus has the
form ∀ �x ∃�y ∀�zΨ(�x, �y, �z), where Ψ(�x, �y, �z) is Σn. The formula Ψ(�x, �y, �z) is decidable
inA becauseA is n-decidable. Therefore

∏
C A |= Θ implies thatA |= Θ by Lemma

2.8. The contrapositive yields that A |= Φ implies that
∏
C A |= Φ. �

Corollary 4.9 shows that Theorem 2.9 item (3) is tight in general. As mentioned
above, we recover Łoś’s theorem for all first-order sentences when we consider
cohesive powers of decidable structures. This is essentially the same as Nelson’s [20,
Theorem 0.5]. See also [4].

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 959

Corollary 2.10. Let L be a computable language, and let C be a cohesive set.

(1) Let (Ai : i ∈ N) be a sequence of uniformly decidable L-structures, and let
Φ(v0, ... , vm–1) be a formula with all free variables displayed. Then for any
[ϕ0], ... , [ϕm–1] ∈ |

∏
C Ai |,∏

C
Ai |= Φ([ϕ0], ... , [ϕm–1]) ⇔ C ⊆∗ {i : Ai |= Φ(ϕ0(i), ... , ϕm–1(i))

}
.

In particular, if Φ is a sentence, then∏
C
Ai |= Φ ⇔ C ⊆∗ {i : Ai |= Φ}.

(2) If A is a decidable L-structure, then A and
∏
C A are elementarily equivalent.

Proof. Item (1) follows from Theorem 2.7 because the structures (Ai : i ∈ N)
are uniformly n-decidable for every n. Item (2) follows from the special case of item
(1) in which Ai is A for each i. Item (2) also follows from Theorem 2.9 item (2)
because A is n-decidable for every n. �

We pause to point out that we can recover a version of Skolem’s countable non-
standard model of arithmetic by relativizing everything to 0(�), the �th Turing jump
of 0. Let N = (N,+,×, <) denote the standard model of arithmetic. Then N is

a decidable structure relative to 0(�). Therefore N ≡
∏0(�)

C N for any C that is

cohesive relative to 0(�) by the relativized version of Corollary 2.10. Thus
∏0(�)

C N
is a countable non-standard model of arithmetic. The superscript 0(�) in

∏0(�)

C N
indicates that we relativize the cohesive power construction to 0(�) by requiring that
C be cohesive for the collection of sets that are c.e. relative to 0(�) and by building
the cohesive power from functions that are partial computable relative to 0(�).

2.3. Reducts, substructures, and disjoint unions. Cohesive products respect reducts
of computable structures. Let L ⊆ L+ be two languages, and let A be an L+-
structure. Then the reduct A�L of A to L is the L-structure obtained from A by
forgetting about the symbols of L+ \ L. If L ⊆ L+ are computable languages andA
is a computable L+-structure, then A�L is a computable L-structure.

Many of our arguments make implicit use of the following proposition.

Proposition 2.11. Let L ⊆ L+ be computable languages, let (An : n ∈ N) be a
uniformly computable sequence of L+-structures, and let C be a cohesive set. Then∏

C
(An�L) ∼=

(∏
C
An
)
�L.

Thus in the case of a single computable L+-structure A,∏
C

(A�L) ∼=
(∏

C
A
)
�L.

Proof. The L-structures
∏
C (An�L) and

(∏
C An

)
�L share the same domain,

which is the set of all =C -equivalence classes [ϕ] of partial computable functions ϕ
such that ∀n (ϕ(n)↓ → ϕ(n) ∈ |An|) and C ⊆∗ dom(ϕ). One then checks that the
identity map is the desired isomorphism. �

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

960 RUMEN DIMITROV ET AL.

Cohesive powers respect computable substructures and finite disjoint unions of
computable structures.

Proposition 2.12. Let L be a computable language with a unary relation symbol
U. Let (An : n ∈ N) be a uniformly computable sequence of L-structures, and suppose
that {a ∈ |An| : An |= U (a)} forms the domain of a computable substructure Bn of
An for every n. Let C be a cohesive set. Then

{
[ϕ] ∈ |

∏
C An| :

∏
C An |= U ([ϕ])

}
forms the domain of a substructure D of

∏
C An, and

∏
C Bn ∼= D.

Proof. Let f be an m-ary function symbol of L, and let [ϕ0], ... , [ϕm–1] be
elements of {[ϕ] ∈ |

∏
C An| :

∏
C An |= U ([ϕ])}. Then (∀∞n ∈ C)(An |=

∧
i<m

U (ϕi(n))), so (∀∞n ∈ C)
[
An |= U (f(ϕ0(n), ... , ϕm–1(n)))

]
because {a ∈ |An| :

An |= U (a)} is closed underfAn as it is the domain of the substructureBn. Therefore∏
C An |= U (f([ϕ0], ... , [ϕm–1])) by Theorem 2.7 item (3). Thus

{
[ϕ] ∈ |

∏
C An| :∏

C An |= U ([ϕ])
}

is closed under f
∏
C An . Similar reasoning shows that

∏
C An |=

U (c) for every constant symbol c of L. Thus
{
[ϕ] ∈ |

∏
C An| :

∏
C An |= U ([ϕ])

}
forms the domain of a substructure of

∏
C An.

Recall that Bn is the substructure of An with domain {a ∈ |An| : An |= U (a)}
for each n, and let D be the substructure of

∏
C An with domain

{
[ϕ] ∈ |

∏
C An| :∏

C An |= U ([ϕ])
}
. In view of the comment following Definition 2.2, the domains of∏

C Bn and of D are in both cases the =C -equivalence classes of partial computable
functions ϕ such that (∀∞n ∈ C)

(
ϕ(n)↓ ∧ UAn (ϕ(n))

)
. One may then check that

the map [ϕ] �→ [ϕ] from
∏
C Bn to D is an isomorphism. �

We usually apply Proposition 2.12 in the case of a single computable structure
A. In this situation, the proposition says that if A is a computable structure, if
{a ∈ |A| : A |= U (a)} forms the domain of a computable substructure B of A,
and if C is cohesive, then

{
[ϕ] ∈ |

∏
C A| :

∏
C A |= U ([ϕ])

}
forms the domain of a

substructure D of
∏
C A with

∏
C B ∼= D.

Definition 2.13. Let L be a relational language, and let A0, ... ,Ak–1 be L-
structures for some k > 0. The disjoint union of A0, ... ,Ak–1 is the L-structure⊔
i<k Ai with domain

⋃
i<k({i} × |Ai |) defined as follows. For every m-ary

relation symbol R and every (i0, x0), ... , (im–1, xm–1) ∈
∣∣⊔
i<k Ai

∣∣, the relation
R
⊔
i<k Ai ((i0, x0), ... , (im–1, xm–1)) holds if and only if i0 = ··· = im–1 = i for some

i < k and RAi (x0, ... , xm–1) holds.

In the case of computable L-structures A0, ... ,Ak–1 for a computable relational
language L, one may use the pairing function to compute a copy of

⊔
i<k Ai . Thus

if A0, ... ,Ak–1 are computable structures, then so is
⊔
i<k Ai .

Proposition 2.14. Let L be a computable relational language, let A0, ... ,Ak–1 be
computable L-structures for some k > 0, and let C be cohesive. Then∏

C

(⊔
i<k

Ai

)
∼=
⊔
i<k

(∏
C
Ai
)
.

Proof. Expand L to L+ = L ∪ {U0, ... , Uk–1}, where U0, ... , Uk–1 are k fresh
unary relation symbols. Expand

⊔
i<k Ai to a computable L+-structure by

interpreting Ui as the domain ofAi for each i < k: U
⊔
i<k Ai

i (x) holds if and only if

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 961

�0(x) = i . Then for eachx ∈
∣∣⊔
i<k Ai

∣∣ there is a unique i < k for whichU
⊔
i<k Ai

i (x)
holds:

⊔
i<k

Ai |= ∀x

⎡⎢⎢⎣
(∨
i<k

Ui(x)

)
∧

⎛⎜⎜⎝∧
i,j<k
i 	=j

(Ui(x) → ¬Uj(x))

⎞⎟⎟⎠
⎤⎥⎥⎦ . (∗)

Furthermore, for each m-ary relation symbol R ∈ L, if R
⊔
i<k Ai (x0, ... , xm–1) holds

for some x0, ... , xm–1 ∈
∣∣⊔
i<k Ai

∣∣, then there is an i < k such that U
⊔
i<k Ai

i (xj)
holds for all j < m:

⊔
i<k

Ai |= ∀x0, ... , xm–1

⎡⎣R(x0, ... , xm–1) →
∨
i<k

∧
j<m

Ui(xj)

⎤⎦ . (
)

The L+-sentences in (∗) and (
) are Π1; therefore
∏
C (
⊔
i<k Ai) also satisfies

all of these sentences by Theorem 2.9 item (2). For each i < k, let Di be the
L-substructure of

∏
C (
⊔
i<k Ai) whose domain consists of the [ϕ] for which∏

C (
⊔
i<k Ai) |= Ui([ϕ]). Then

∏
C (
⊔
i<k Ai) ∼=

⊔
i<k Di as L-structures. This

is because each [ϕ] ∈
∣∣∏
C (
⊔
i<k Ai)

∣∣ is in |Di | for exactly one i < k; and if
R
∏
C (
⊔
i<k Ai)([ϕ0], ... , [ϕm–1]) holds for an m-ary relation symbol R ∈ L and

[ϕ0], ... , [ϕm–1] ∈
∣∣∏
C (
⊔
i<k Ai)

∣∣, then [ϕ0], ... , [ϕm–1] must all be in |Di | for the
same i < k. We have thatDi ∼=

∏
C Ai as L-structures for each i < k by Proposition

2.12, so
∏
C

(⊔
i<k Ai

)
∼=
⊔
i<k(

∏
C Ai) as L-structures. �

2.4. Saturation. There are many classical results concerning the saturation of
ultraproducts. See, for example, [2, Section 6.1]. One well-known result is that,
for a countable language, ultraproducts over countably incomplete ultrafilters are
alwaysℵ1-saturated (see [2, Theorem 6.1.1]). Here we show that cohesive products of
uniformly decidable structures are always recursively saturated (which is essentially
due to Nelson [20]) and that, for n > 0, cohesive products of uniformly n-decidable
structures are always Σn-recursively saturated. Furthermore, we show that if the
cohesive set is assumed to be co-c.e., then we obtain the n = 0 case and can
also squeeze one more level of saturation out of the cohesive product: cohesive
products of uniformly n-decidable structures over co-c.e. cohesive sets are always
Σn+1-recursively saturated.

We follow the terminology of [15, Section 11.2] regarding types and saturation.
Beware that what we call a type over a structureA, other authors may call a type over
a finite set{c0, ... , c�–1} of parameters from A. Let L be a language, and let A be an
L-structure. Consider a setp(�x) = p(x0, ... , xm–1) of formulas of the form Φ(�x; �c) =
Φ(x0, ... , xm–1; c0, ... , c�–1) in the language L ∪ {c0, ... , c�–1}, where x0, ... , xm–1 are
m fixed variables and c0, ... , c�–1 are � fixed parameters from |A| that are identified
with fresh constant symbols. Such a set p(�x) is called a type overA if it is finitely
satisfied in A: for every Φ0(�x; �c), ... ,Φk–1(�x; �c) ∈ p(�x), A |= ∃ �x ∧i<k Φi(�x; �c). A
type p(�x) overA is realized if there are a0, ... , am–1 ∈ |A| such that for all Φ(�x; �c) ∈
p(�x), A |= Φ(�a; �c). A type p(�x) over A is a Σn-type if every formula in p(�x) is Σn.
An L-structure A is recursively saturated if it realizes every computable type over

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

962 RUMEN DIMITROV ET AL.

A. Similarly, A is Σn-recursively saturated if it realizes every computable Σn-type
over A.

When discussing a formula Φ(�x; �c) of a type p(�x), we write Φ(�x; �y) for the
corresponding L-formula, with fresh variables �y in place of the constants �c. We
sometimes write p(�x; �c) or p(�x; �y) in place of p(�x) when we want to emphasize the
type’s parameters or the corresponding variables.

Lemma 2.15. Let L be a computable language, let (An : n ∈ N) be a uniformly
computable sequence ofL-structures, and let C be cohesive. Letp(�x; �c) be a computable
type over

∏
C An with computable enumeration (Φi : i ∈ N). Assume that the formulas(

∃ �x
∧
i<k

Φi(�x; �y) : k ∈ N

)

are uniformly decidable in the structures (An : n ∈ N). Then
∏
C An realizes p(�x; �c).

Proof. Let �c = [�0], ... , [��–1] be the parameters of the type p(�x; �c), so that∏
C
An |= ∃ �x

∧
i<k

Φi(�x; [�0], ... , [��–1])

for each k. To ease notation, pack �0, ... , ��–1 into a single partial computable
function � : N→ N� given by �(n) � 〈�0(n), ... , ��–1(n)〉. Notice that C ⊆∗

dom(�). Write
−→
[�] as an abbreviation for [�0], ... , [��–1].

Define a partial computable function ϕ : N→ Nm as follows. Given n, first search
for the greatest k ≤ n such that

An |= ∃ �x
∧
i<k

Φi(�x;�(n)).

This search is effective on account of the uniform decidability assumption. If
such a k is found, search for the first tuple �a = 〈a0, ... , am–1〉 such that An |=∧
i<k Φi(�a;�(n)), and set ϕ(n) = �a. If there is no such k, then ϕ(n)↑.
Consider a fixed k. By assumption,

∏
C An |= ∃ �x ∧i<k Φi

(
�x;
−→
[�]
)

. Thus C ⊆∗{
n : An |= ∃ �x ∧i<k Φi(�x;�(n))

}
by Lemma 2.4. This means that for almost every

n ∈ C with n ≥ k, the initial search in the computation of ϕ(n) succeeds and finds
a k̂ with k ≤ k̂ ≤ n. Thus C ⊆∗ dom(ϕ) and

C ⊆∗

{
n : An |=

∧
i<k

Φi(ϕ(n);�(n))

}
.

Let ϕi = �i ◦ ϕ for each i < m. Then [ϕ0], ... , [ϕm–1] ∈ |
∏
C An|. Let

−→
[ϕ] abbreviate

the sequence [ϕ0], ... , [ϕm–1]. Then
∏
C An |=

∧
i<k Φi

(−→
[ϕ];

−→
[�]
)

by Lemma 2.4.

This implies that
∏
C An |= Φi

(−→
[ϕ];

−→
[�]
)

for every i. Thus [ϕ0], ... , [ϕm–1] realize

p(�x;
−→
[�]) in

∏
C An. �

Items (1) and (3) of the next theorem are essentially [20, Theorem 2.2].

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 963

Theorem 2.16. Let L be a computable language, and let C be a cohesive set.

(1) Let (Ai : i ∈ N) be a sequence of uniformly decidableL-structures. Then
∏
C Ai

is recursively saturated.
(2) Let (Ai : i ∈ N) be a sequence of uniformly n-decidable L-structures for an
n > 0. Then

∏
C Ai is Σn-recursively saturated.

(3) Let A be a decidable L-structure. Then
∏
C A is recursively saturated.

(4) LetA be an n-decidable L-structure for an n > 0. Then
∏
C A is Σn-recursively

saturated.

Proof. Item (1) follows directly from Lemma 2.15 because every computably
enumerable sequence of formulas is uniformly decidable in (Ai : i ∈ N). Item (2)
also follows from Lemma 2.15. If (Φi : i ∈ N) is a computable enumeration of Σn
formulas and n > 0, then (

∃ �x
∧
i<k

Φi(�x; �y) : k ∈ N

)

is a computable enumeration of (formulas that are logically equivalent to) Σn
formulas and hence is uniformly decidable in (Ai : i ∈ N). Items (3) and (4) are
the special cases of items (1) and (2) in which Ai is A for each i. �

If we restrict to co-c.e. cohesive sets, then we can include n = 0 and improve
Σn-recursive saturation to Σn+1-recursive saturation in Theorem 2.16 items (2) and
(4).

Lemma 2.17. Let L be a computable language, let (An : n ∈ N) be a uniformly
computable sequence of L-structures, and let C be co-c.e. and cohesive. Let p(�x; �c) be
a computable type over

∏
C An consisting of formulas of the form ∃�z Φ(�x, �z; �c), with

computable enumeration (∃�zi Φi(�x, �zi ; �c) : i ∈ N). Further assume that the formulas
(Φi(�x, �zi ; �y) : i ∈ N) are uniformly decidable in the structures (An : n ∈ N). Then∏
C An realizes p(�x; �c).

Proof. Let �c = [�0], ... , [��–1] be the parameters of the type p(�x; �c), so that∏
C
An |= ∃ �x

∧
i<k

∃�zi Φi(�x, �zi ; [�0], ... , [��–1])

for each k. As in the proof of Lemma 2.15, let� : N→ N� be the partial computable
function given by�(n) � 〈�0(n), ... , ��–1(n)〉. Notice thatC ⊆∗ dom(�), and write−→
[�] as an abbreviation for [�0], ... , [��–1].

The goal is to partially compute a function 	 : N→ Nm so thatC ⊆∗ dom() and

(∃∞n ∈ C)
(
An |= ∃�zi Φi((n), �zi ;�(n))

)
(∗)

for each i. The set {
n : An |= ∃�zi Φi((n), �zi ;�(n))

}

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

964 RUMEN DIMITROV ET AL.

is c.e. for each i because Φi is uniformly decidable in (An : n ∈ N). Thus (∗) implies
that

(∀∞n ∈ C)
(
An |= ∃�zi Φi((n), �zi ;�(n))

)
for each i by cohesiveness. Letting ϕj = �j ◦ 	 for each j < m, we therefore have
that [ϕ0], ... , [ϕm–1] ∈ |

∏
C An| and that∏

C
An |= ∃�zi Φi

(−→
[ϕ], �zi ;−→[�]

)
for each i by Lemma 2.6. Thus [ϕ0], ... , [ϕm–1] realize p(�x;

−→
[�]) in

∏
C An.

The strategy for partially computing 	 is to keep track of the numbers k that
are covered, meaning that it looks like there is an n ∈ C with n > k such that
An |=

∧
i<k ∃�zi Φi((n), �zi ;�(n)). As the computation progresses, a k that is covered

may become uncovered because the n that covers it is enumerated in the complement
of C. When this happens, we note the least k that becomes uncovered, we search
for the first n > k where 	(n) is not yet defined, it looks like n ∈ C , and there looks
to be an �a ∈ Nm such that An |=

∧
i<k ∃�zi Φi(�a, �zi ;�(n)), and we attempt to cover

k again by setting 	(n) = �a. This strategy eventually succeeds because if n0 ∈ C is
sufficiently large and we never choose a smaller member of C to cover k, then we
eventually choose n0 to cover either k or an even bigger number.

Formally, let W denote the c.e. set C , and let (Ws)s∈N be a computable ⊆-
increasing enumeration of W. Let (Uk : k ∈ N) be the uniformly c.e. sequence of
sets given by

Uk =

{
〈�a, n〉 ∈ Nm × N : An |=

∧
i<k

∃�zi Φi(�a, �zi ;�(n))

}

with uniformly computable ⊆-increasing enumerations (Uk,s)s∈N for each k. The
sequence (Uk : k ∈ N) is uniformly c.e. because the formulas (Φi : i ∈ N) are
uniformly decidable in (An : n ∈ N). Observe that if k0 ≤ k1, then Uk1 ⊆ Uk0 .

To partially compute 	, we compute an increasing sequence 	0 ⊆ 	1 ⊆ 	2 ⊆ ... of
finite approximations to 	. Start at stage 0 with 	0 = ∅. At stage s, we have 	s and
we define 	s+1.

Say that n covers k at stage s if:

• n > k,
• n /∈Ws ,
• 	s(n)↓, and
• 〈	s(n), n〉 ∈ Uk,s .

If there is an n that covers k at stage s, then also say that k is covered at stage s. Let k0
s

be the least number that is not covered at stage s. If s > 0, let Xs =Ws \Ws–1. Let
k1
s be the least number, if it exists, for which some n ∈ Xs covered k1

s at stage s – 1
but no m < n covers k1

s at stage s. If k1
s is defined, let ks = min{k0

s , k
1
s }. Otherwise,

let ks = k0
s . Now search for the least n > ks such that n /∈Ws , such that 	s(n)↑,

and such that 〈�a, n〉 ∈ Uks ,s for some �a. If there is such an n, let �a be the first
corresponding �a, and extend 	s to 	s+1 by setting 	s+1(n) = �a. If there is no such n,
then set 	s+1 = 	s . Go to stage s + 1. This completes the partial computation of 	.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 965

If n covers k at some stage s, there could be a later stage t > s at which n does
not cover k because n ∈Wt . However, if n ∈ C , then n /∈Wt for every t, so k stays
covered by n forever.

Claim. Every k is eventually covered by an n ∈ C .

Proof of Claim. Proceed by induction on k. Let s0 be a stage by which all k̂ < k
have been covered by members of C. Let c be the greatest member of C covering a
k̂ < k at stage s0, and let s1 > s0 be a stage such thatWs1�c =W �c. Then ks ≥ k
at all stages s > s1. By assumption,∏

C
An |= ∃ �x

∧
i<k

∃�zi Φi
(

�x, �zi ;−→[�]
)
,

and therefore

C ⊆∗

{
n : An |= ∃ �x

∧
i<k

∃�zi Φi
(�x, �zi ;�(n))

}

by Lemma 2.6. To see that Lemma 2.6 applies here, pull the ∃�zi quantifiers out in
front of the conjunction. The resulting formula has the form ∃ �wΨ(�w; �y), where Ψ
is uniformly decidable in (An : n ∈ N). Let n0 be least such that n0 > k, such that
n0 ∈ C , such that 	s1 (n0)↑, such that �(n0)↓, and such that

An0 |= ∃ �x
∧
i<k

∃ �zi Φi(�x, �zi ;�(n0)).

If 	s(n0)↓ for the first time at some stage s > s1, it is to cover some j ≥ k. As n0 ∈ C ,
we have that n0 covers j and therefore covers k at all later stages.

Let s2 > s1 be large enough so thatWs2�n0 =W �n0 and so that there is an �a with
〈�a, n0〉 ∈ Uk,s2 . Consider stage s2. If k is not covered at stage s2, then it must be that
	s2(n0)↑. In this case, ks2 = k, and n0 is least such that n0 > ks2 , n0 /∈Ws2 , 	s2(n0)↑,
and 〈�a, n0〉 ∈ Uks2 ,s2 for some �a. So 	s2+1(n0) is defined to cover k at stage s2.

Suppose instead that k is covered at stage s2. In this case, let n1 be least such
that there is a stage s3 ≥ s2 at which n1 covers k. If n1 ∈ C , then this is as desired.
Otherwise, n1 ∈W , in which case there is a least s > s3 with n1 ∈Ws . The number
n1 covers k at stage s – 1, but by choice of n1, no n < n1 covers k at stage s. Thus
k1
s = k, so ks = k. If 	s(n0)↓, then n0 must already cover k, as noted above. If
	s(n0)↑, then n0 is least such that n0 > ks , n0 /∈Ws , 	s(n0)↑, and 〈�a, n0〉 ∈ Uks ,s for
some �a. So 	s+1(n0) is defined to cover k at stage s. This completes the proof of the
claim. �

To finish the proof, consider the formula ∃�zi Φi . By the claim, every k is eventually
covered by an n ∈ C . Thus for every k > i , there is an n > k with n ∈ C , 	(n)↓, and
〈	(n), n〉 ∈ Uk . Thus C ⊆∗ dom() by cohesiveness, and

(∃∞n ∈ C)
(
An |= ∃�zi Φi((n), �zi ;�(n))

)
,

as desired. �

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

966 RUMEN DIMITROV ET AL.

Theorem 2.18. Let L be a computable language, and let C be a co-c.e. cohesive set.

(1) Let (Ai : i ∈ N) be a sequence of uniformly n-decidable L-structures. Then∏
C Ai is Σn+1-recursively saturated.

(2) Let A be an n-decidable L-structure. Then
∏
C A is Σn+1-recursively saturated.

Proof. Item (1) follows from Lemma 2.17. A computable Σn+1-type can be
computably enumerated as (∃�zj Φj : j ∈ N), where Φj is Πn for every j. The formulas
(Φj : j ∈ N) are then uniformly decidable in (Ai : i ∈ N) because (Ai : i ∈ N) is a
uniformly n-decidable sequence of structures. Item (2) is the special case of item (1)
in which Ai is A for each i. �

The n = 0 case of Theorem 2.18 is particularly noteworthy.

Corollary 2.19. Let L be a computable language, and let C be a co-c.e. cohesive
set.

(1) Let (Ai : i ∈ N) be a uniformly computable sequence of L-structures. Then∏
C Ai is Σ1-recursively saturated.

(2) Let A be a computable L-structure. Then
∏
C A is Σ1-recursively saturated.

2.5. Isomorphisms. Classically, an isomorphism between two structures induces
an isomorphism between the corresponding ultrapowers over a fixed ultrafilter. In
the effective case, a computable isomorphism between two computable structures
induces an isomorphism between the corresponding cohesive powers over a fixed
cohesive set. This fact essentially appears in [4], but we include a proof here for
completeness.

Theorem 2.20. Let L be a computable language, let A0 and A1 be computable
L-structures that are computably isomorphic, and let C be cohesive. Then

∏
C A0

∼=∏
C A1.

Proof. We first prove the theorem under the assumption that L is a relational
language. Let A0 and A1 be computable L-structures, and let f : |A0| → |A1| be a
computable isomorphism. Expand the language to L+ = L ∪ {U0, U1, Rf}, where
U0 andU1 are fresh unary relation symbols andRf is a fresh binary relation symbol.
Expand A0 � A1 to a computable L+-structure by interpreting U0 and U1 as the
domains of A0 and A1 and by interpreting Rf as the graph of f.

• For each i < 2, UA0�A1
i (x) holds if and only if �0(x) = i .

• RA0�A1
f

(x, y) holds if and only if �0(x) = 0, �0(y) = 1, andf(�1(x)) = �1(y).

The function f is an isomorphism, so RA0
A1
f is the graph of an isomorphism

betweenA0 andA1 as L-structures in the L+-structureA0 � A1. That is,Rf has the
following properties in A0 � A1.

• The domain of Rf corresponds to |A0|: ∀x (∃y Rf(x, y) ↔ U0(x)).
• The image of Rf corresponds to |A1|: ∀y (∃x Rf(x, y) ↔ U1(y)).
• Rf is single-valued on its domain: ∀x∀y0∀y1 (Rf(x, y0) ∧Rf(x, y1) → y0 =
y1).

• Rf is injective on its domain: ∀x0∀x1∀y (Rf(x0, y) ∧Rf(x1, y) → x0 = x1).

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 967

• Rf respects the relations of L: for every m-ary relation symbol S ∈ L,

∀x0 ... ∀xm–1∀y0 ... ∀ym–1

(∧
i<m

Rf(xi , yi) → (S(x0, ... , xm–1) ↔ S(y0, ... , ym–1))

)
.

The above properties constitute a collection of Π2 L+-sentences that hold in
A0 � A1, so they also hold in the cohesive power

∏
C (A0 � A1) as an L+-structure

by Theorem 2.9 item (2). For each i < 2, let Di denote the substructure of∏
C (A0 � A1) with domain given by Ui : |Di | =

{
[ϕ] :

∏
C (A0 � A1) |= Ui([ϕ])

}
.

Then
∏
C Ai ∼= Di�L as an L-structure for each i < 2 by Proposition 2.12. In∏

C (A0 � A1), R
∏
C (A0
A1)
f is the graph of an isomorphism between the reducts

D0�L and D1�L. Therefore
∏
C A0

∼=
∏
C A1 as L-structures.

Now suppose that L contains constant and function symbols in addition to
relation symbols. For uniformity of argument, treat constant symbols as 0-ary
function symbols. Let Lrel be the relational language obtained from L by replacing
each m-ary function symbol f by a fresh (m + 1)-ary relation symbol Gf whose
intended interpretation is the graph of f. We may translate any L-structure A into
an Lrel-structure Arel with the same domain by defining

GArel

f (x0, ... , xm–1, y) ⇔ fA(x0, ... , xm–1) = y

for every m-ary function symbol f ∈ L and every x0, ... , xm–1, y ∈ |A|. Conversely,
suppose that A is an Lrel-structure such that for every m-ary function symbol
f ∈ L, Gf is the graph of a function: ∀x0 ...∀xm–1∃! y GA

f (x0, ... , xm–1, y). Then
we may translate A into an L-structure Afun with the same domain by defining
fAfun

(x0, ... , xm–1) to be the unique y such that GA
f (x0, ... , xm–1, y) for every m-ary

function symbol f ∈ L and every x0, ... , xm–1 ∈ |A|. If A and B are isomorphic
L-structures, then the isomorphism is also an isomorphism betweenArel and Brel as
Lrel-structures. Conversely, if A and B are isomorphic Lrel-structures such that Gf
is the graph of a function in both structures for every function symbol f ∈ L, then
the isomorphism is also an isomorphism between Afun and Bfun as L-structures.

If L is a computable language and A is a computable L-structure, then Lrel

is a computable language and Arel is a computable Lrel-structure. Let L be a
computable language, let A and B be computably isomorphic L-structures, and
let C be a cohesive set. Then Arel and Brel are computably isomorphic computable
Lrel-structures, so

∏
C Arel ∼=

∏
C Brel as Lrel-structures. For each function symbol

f ∈ L, Gf is the graph of a function in Arel and in Brel. Therefore Gf is the
graph of a function in

∏
C Arel and in

∏
C Brel by Theorem 2.9 item (2) because

the statement “Gf is the graph of a function” is expressible by a Π2 Lrel-sentence.
Therefore (

∏
C Arel)fun ∼= (

∏
C Brel)fun asL-structures. It is straightforward to check

that
∏
C Arel = (

∏
C A)rel and therefore that (

∏
C Arel)fun =

∏
C A; and similarly for

B. Thus
∏
C A ∼=

∏
C B as L-structures, as desired. �

Recall that a computable structure A is called computably categorical if every
computable structure that is isomorphic to A is isomorphic to A via a computable
isomorphism. It follows from Theorem 2.20 that if A is a computably categorical
computable structure and C is cohesive, then

∏
C A ∼=

∏
C B whenever B is a

computable structure isomorphic to A.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

968 RUMEN DIMITROV ET AL.

Corollary 2.21. Let L be a computable language, let A be a computably
categorical computable L-structure, let B be a computable L-structure that is
isomorphic to A, and let C be cohesive. Then

∏
C A ∼=

∏
C B.

In Theorem 2.20, it is essential that the two structures are isomorphic via a
computable isomorphism. In Sections 4–6, we see many examples of pairs of
computable linear orders that are isomorphic (but not computably isomorphic)
to � but have non-elementarily equivalent cohesive powers.

The next theorem says that decidable structures A and B are elementarily
equivalent if and only if

∏
C A and

∏
C B are isomorphic for every cohesive set

C. It is essentially [20, Theorem 2.1], though we give a slightly different proof.
Compare this to the Keisler–Shelah theorem, which states that, in general, two
structures are elementarily equivalent if and only if there is an ultrafilter (on a set of
appropriate size) over which the corresponding ultrapowers are isomorphic (see [2,
Theorem 6.1.15]).

Theorem 2.22. Let L be a computable language, and let A and B be decidable
L-structures. Then A ≡ B if and only if for every cohesive set C,

∏
C A ∼=

∏
C B.

Proof. In general, say that two structuresM andN have the same types (without
parameters) if for every sequence �a = a0, ... , am–1 of elements of |M|, there is a
corresponding sequence �b = b0, ... , bm–1 of elements of |N | such that for every
formula Φ(x0, ... , xm–1) with m free variables,

M |= Φ(a0, ... , am–1) ⇔ N |= Φ(b0, ... , bm–1),

and similarly with the roles ofM andN reversed. Now recall [15, Corollary 15.15],
which states that ifM andN are countable recursively saturated L-structures, then
M∼= N if and only if M and N are elementarily equivalent and have the same
types.

For the forward direction, let A and B be decidable L-structures that are
elementarily equivalent, and let C be cohesive. Then

∏
C A and

∏
C B are countable,

are elementarily equivalent by Corollary 2.10 (which yields that
∏
C A ≡ A ≡ B ≡∏

C B), and are recursively saturated by Theorem 2.16. Thus to conclude that∏
C A ∼=

∏
C B, it suffices to show that

∏
C A and

∏
C B have the same types.

We show that for every [ϕ0], ... , [ϕm–1] ∈ |
∏
C A|, there are [�0], ... , [�m–1] ∈

|
∏
C B| with the same type. A symmetric argument shows that the same holds

with the roles of A and B reversed. As in the proofs of Lemmas 2.15 and 2.17, let
ϕ : N→ Nm be the partial computable function ϕ(n) � 〈ϕ0(n), ... , ϕm–1(n)〉, and
let
−→
[ϕ] denote [ϕ0], ... , [ϕm–1]. Note that C ⊆∗ dom(ϕ). Let (Φi(�x) : i ∈ N) be a

computable enumeration of all formulas with m free variables.
Define a partial computable function � : N→ Nm as follows. If ϕ(n)↓, then for

each i ≤ n, use the decidability of A to determine whether A |= Φi(ϕ(n)). If A |=
Φi(ϕ(n)), let Θi = Φi ; and ifA �|= Φi(ϕ(n)), let Θi = ¬Φi . Thenϕ(n) witnesses that
A |= ∃ �x ∧i≤n Θi(�x), so B |= ∃ �x ∧i≤n Θi(�x) because B ≡ A. By the decidability of

B, search for the first �b such that B |=
∧
i≤n Θi(�b), and define �(n) = �b. On the

other hand, if ϕ(n)↑, then �(n)↑.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 969

Consider the formula Φi , and suppose that
∏
C A |= Φi

(−→
[ϕ]
)

. Then C ⊆∗ {n :

A |= Φi(ϕ(n))} by Corollary 2.10. Thus for sufficiently large n ≥ i with n ∈ C , we
have that Θi = Φi in the computation of �(n), and therefore �(n) is defined so that
B |= Φi(�(n)). Thus C ⊆∗ {n : B |= Φi(�(n))}. Letting �j = �j ◦ � for each j <

m yields that
∏
C B |= Φi

(−→
[�]
)

by Corollary 2.10. If instead
∏
C A |= ¬Φi

(−→
[ϕ]
)

,

then
∏
C B |= ¬Φi

(−→
[�]
)

by a similar argument. Thus [�0], ... , [�m–1] has in
∏
C B

the same type that [ϕ0], ... , [ϕm–1] has in
∏
C A, as desired.

For the converse, letA andB be decidableL-structures, and suppose that
∏
C A ∼=∏

C B for every cohesive set C. Fix any cohesive set C. ThenA ≡
∏
C A ≡

∏
C B ≡ B

by Corollary 2.10. �

Again, the decidability assumption in Theorem 2.22 is essential, as we shall see
examples of isomorphic (and hence elementarily equivalent) computable linear
orders having non-elementarily equivalent (and hence non-isomorphic) cohesive
powers. We shall also see examples of non-elementarily equivalent computable linear
orders having isomorphic cohesive powers.

§3. Linear orders and their cohesive powers. We investigate the cohesive powers
of computable linear orders, with special attention to computable linear orders of
type �. A linear order L = (L,≺) consists of a non-empty set L equipped with a
binary relation ≺ satisfying the following axioms:

• ∀x (x ⊀ x).
• ∀x∀y∀z [(x ≺ y ∧ y ≺ z) → x ≺ z].
• ∀x∀y (x ≺ y ∨ x = y ∨ y ≺ x).

Additionally, a linear order L is dense if ∀x∀y∃z (x ≺ y → x ≺ z ≺ y) and has no
endpoints if ∀x∃y∃z (y ≺ x ≺ z). Rosenstein’s book [21] is an excellent reference
for linear orders.

For a linear order L = (L,≺), we use the usual interval notation (a, b)L =
{x ∈ L : a ≺ x ≺ b} and [a, b]L = {x ∈ L : a " x " b} to denote open and closed
intervals of L. Sometimes it is convenient to allow b " a in this notation, in which
case, for example, (a, b)L = ∅. The notation |(a, b)L| denotes the cardinality of the
interval (a, b)L. The notations min≺{a, b} and max≺{a, b} denote the minimum
and maximum of a and b with respect to ≺.

As is customary, � denotes the order-type of (N, <), � denotes the order-type
of (Z, <), and � denotes the order-type of (Q, <). That is, �, � , and � denote
the respective order-types of the natural numbers, the integers, and the rationals,
each with their usual order. We refer to (N, <), (Z, <), and (Q, <) as the usual
presentations of �, � , and �, respectively. Recall that every countable dense linear
order without endpoints has order-type � (see [21, Theorem 2.8]). Furthermore,
every computable countable dense linear order without endpoints is computably
isomorphic to (Q, <) (see [21, Exercise 16.4]).

To help reason about order-types, we use the sum, product, and reverse of linear
orders as well as condensations of linear orders.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

970 RUMEN DIMITROV ET AL.

Definition 3.1. Let L0 = (L0,≺L0) and L1 = (L0,≺L1) be linear orders.

• The sum L0 + L1 of L0 and L1 is the linear order S = (S,≺S), where S =
({0} × L0) ∪ ({1} × L1) and

(i, x) ≺S (j, y) if and only if (i < j) ∨ (i = j ∧ x ≺Li y).

• The product L0L1 of L0 and L1 is the linear order P = (P,≺P), where P =
L1 × L0 and

(x, a) ≺P (y, b) if and only if (x ≺L1 y) ∨ (x = y ∧ a ≺L0 b).

Note that, by (fairly entrenched) convention, L0L1 is given by the product
order on L1 × L0, not on L0 × L1.

• The reverse L∗0 of L0 is the linear order R = (R,≺R), where R = L0 and
x ≺R y if and only if y ≺L0 x. (We warn the reader that the ∗ in the notation
L∗0 is unrelated to the ∗ in the notation X ⊆∗ Y .)

If L0 and L1 are computable linear orders, then one may use the pairing function
to compute copies of L0 + L1 and L0L1. Clearly, if L is a computable linear order,
then so is L∗.

Definition 3.2. Let L = (L,≺L) be a linear order. A condensation of L is any
linear orderM = (M,≺M) obtained by partitioning L into a collection M of non-
empty intervals and, for intervals I, J ∈M , defining I ≺M J if and only if (∀a ∈
I)(∀b ∈ J)(a ≺L b).

The most important condensation is the finite condensation.

Definition 3.3. Let L = (L,≺L) be a linear order. For x ∈ L, let cF(x) denote
the set of y ∈ L for which there are only finitely many elements between x and y:

cF(x) =
{
y ∈ L : the interval

[
min≺L{x, y},max≺L{x, y}

]
L in L is finite

}
.

The set cF(x) is always a non-empty interval because x ∈ cF(x). The finite
condensation cF(L) of L is the condensation obtained from the partition {cF(x) :
x ∈ L}.

For example, cF(�) ∼= 1, cF(�) ∼= 1, cF(�) ∼= �, and cF(� + ��) ∼= 1 + �. Notice
that for an element x of a linear order L, the order-type of cF(x) is always either
finite, �, �∗, or � .

We often refer to the intervals that comprise a condensation of a linear order
as blocks. For the finite condensation of a linear order L, a block is a maximal
interval I such that for any two elements of I, there are only finitely many elements
of L between them. For elements a and b of L, we write a ÎL b if the interval
(a, b)L (equivalently, the interval [a, b]L) in L is infinite. For a ≺L b, we have that
a ÎL b if and only if a and b are in different blocks. See [21, Chapter 4] for more
on condensations.

Let C be a cohesive set. It follows from Theorem 2.7 that if (Ln : n ∈ N) is
a uniformly computable sequence of linear orders, then

∏
C Ln is again a linear

order because linear orders are axiomatized by Π1 sentences. Likewise, if (Ln : n ∈
N) is a uniformly computable sequence of dense linear orders without endpoints,

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 971

then
∏
C Ln is again a dense linear order without endpoints because dense linear

orders without endpoints are axiomatized by Π2 sentences. In particular, if L is
a computable linear order, then

∏
C L is a linear order; and if L is a computable

dense linear order without endpoints, then
∏
C L is a dense linear order without

endpoints.
The case of Q = (Q, <) is curious and deserves a digression. We have seen that

if A is a finite structure, then A ∼=
∏
C A for every cohesive set C. For Q,

∏
C Q is

a countable dense linear order without endpoints, and hence isomorphic to Q, for
every cohesive set C. Thus Q is an example of an infinite computable structure with
Q ∼=

∏
C Q for every cohesive set C. ThatQ is isomorphic to all of its cohesive powers

is no accident. By combining Theorem 2.9 with the theory of Fraı̈ssé limits (see, for
example, [14, Chapter 6]), we see that a uniformly locally finite ultrahomogeneous
computable structure for a finite language is always isomorphic to all of its cohesive
powers. Recall that a structure is locally finite if every finitely-generated substructure
is finite and is uniformly locally finite if there is a function f : N→ N such that every
substructure generated by at most n elements has cardinality at most f(n). Notice
that every structure for a finite relational language is uniformly locally finite. Also
recall that a structure is ultrahomogeneous if every isomorphism between two finitely-
generated substructures extends to an automorphism of the whole structure.

Proposition 3.4. Let A be an infinite uniformly locally finite ultrahomogeneous
computable structure for a finite language, and let C be cohesive. Then A ∼=

∏
C A.

Proof. The structure A is ultrahomogeneous, so it is the Fraı̈ssé limit of its
age (i.e., the class of all finitely-generated structures embeddable into A). By [14,
Theorem 6.4.1] and its proof, the first-order theory of A is ℵ0-categorical and is
axiomatized by a set T of Π2 sentences. Thus if B is any countable model of T, then
A ∼= B. We have that

∏
C A |= T by Theorem 2.9 item (2), so A ∼=

∏
C A. �

Proposition 3.4 implies that if a uniformly locally finite computable structure
for a finite language is a Fraı̈ssé limit, then it is isomorphic to all of its cohesive
powers. Thus computable presentations of the Rado graph and the countable
atomless Boolean algebra are additional examples of computable structures that
are isomorphic to all of their cohesive powers. Examples of this phenomenon that
cannot be attributed to ultrahomogeneity appear in Sections 4 and 5.

Returning to linear orders, it is helpful to recall the following well-known lemma
stating that a strictly order-preserving surjection from one linear order onto another
is necessarily an isomorphism.

Lemma 3.5. Let L = (L,≺L) and M = (M,≺M) be linear orders. If f : L→
M is surjective and satisfies (∀x, y ∈ L)(x ≺L y → f(x) ≺M f(y)), then f is an
isomorphism.

Cohesive powers commute with sums, products, and reverses.

Theorem 3.6. Let L0 and L1 be computable linear orders, and let C be cohesive.
Then:

(1)
∏
C (L0 + L1) ∼=

∏
C L0 +

∏
C L1,

(2)
∏
C (L0L1) ∼=

(∏
C L0

)(∏
C L1

)
, and

(3)
∏
C (L∗

0) ∼=
(∏
C L0

)∗
.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

972 RUMEN DIMITROV ET AL.

Proof. We give proofs in the style of that of Theorem 2.20. For alternate proofs,
see [9, Theorem 6].

For (1), let M = L0 + L1. Expand the disjoint union L0 � L1 �M by adding
unary relation symbols L0, L1, and M that are interpreted as |L0|, |L1|, and |M|;
and by adding a 2-ary relation symbol Rf that is interpreted as the graph of the
function f : |L0 � L1| → |M| inside L0 � L1 �M given by

f(〈i, x〉) = 〈2, 〈i, x〉〉

for each i < 2. In L0 � L1 �M, the ≺ relation is a linear order when restricted to
|L0|, |L1|, or |M|. Furthermore, Rf is the graph of a function f from |L0 � L1|
onto |M| with the following properties, which together witness that M∼= L0 + L1

as linear orders.

• ∀x∀y [(L0(x) ∧ L0(y) ∧ x ≺ y) → f(x) ≺ f(y)].
• ∀x∀y [(L1(x) ∧ L1(y) ∧ x ≺ y) → f(x) ≺ f(y)].
• ∀x∀y [(L0(x) ∧ L1(y)) → f(x) ≺ f(y)].

All of the above is expressible by a Π2 sentence. By Proposition 2.12, the
substructures of

∏
C (L0 � L1 �M) corresponding toL0,L1, and M are isomorphic

to
∏
C L0,

∏
C L1, and

∏
CM. By Theorem 2.9 item (2),

∏
C L0,

∏
C L1, and∏

CM are linear orders as {≺}-structures, and R
∏
C (L0
L1
M)
f yields a function

from |
∏
C L0 �

∏
C L1| onto |

∏
CM|witnessing that

∏
CM∼=

∏
C L0 +

∏
C L1 as

linear orders. Thus
∏
C (L0 + L1) ∼=

∏
C L0 +

∏
C L1.

For (2), letM = L0L1. Expand the disjoint union L0 � L1 �M by adding unary
relation symbols L0, L1, and M that are interpreted as |L0|, |L1|, and |M|; and by
adding a 3-ary relation symbol Rf that is interpreted as the graph of the function
f : |L1| × |L0| → |M| inside L0 � L1 �M given by

f(〈1, x〉, 〈0, a〉) = 〈2, 〈x, a〉〉.

InL0 � L1 �M, the≺ relation is a linear order when restricted to |L0|, |L1|, or |M|.
Furthermore, Rf is the graph of a function f from |L1| × |L0| onto |M| with the
following property, which witnesses thatM∼= L0L1 as linear orders.

∀a∀b∀x∀y
[(
L0(a) ∧ L0(b) ∧ L1(x) ∧ L1(y)

)
→(

f(x, a) ≺ f(y, b) ↔
(
x ≺ y ∨ (x = y ∧ a ≺ b)

))]
.

All of the above is expressible by a Π2 sentence. By Proposition 2.12, the
substructures of

∏
C (L0 � L1 �M) corresponding toL0,L1, and M are isomorphic

to
∏
C L0,

∏
C L1, and

∏
CM. By Theorem 2.9 item (2),

∏
C L0,

∏
C L1, and

∏
CM

are linear orders as {≺}-structures, and R
∏
C (L0
L1
M)
f yields a function from

|
∏
C L1| × |

∏
C L0| onto |

∏
CM| witnessing that

∏
CM∼=

(∏
C L0

)(∏
C L1

)
as

linear orders. Thus
∏
C (L0L1) ∼=

(∏
C L0

)(∏
C L1

)
.

For (3), letM = L∗
0 . Expand the disjoint unionL0 �M by adding unary relation

symbols L0 and M that are interpreted as |L0| and |M|; and by adding a 2-ary
relation symbol Rf that is interpreted as the graph of the function f : |L0| → |M|
inside L0 �M given by f(〈0, x〉) = 〈1, x〉. In L0 �M, the ≺ relation is a linear

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 973

order when restricted to |L0| or |M|, and Rf is the graph of a function f from |L0|
onto |M| such that

∀x∀y [(L0(x) ∧ L0(y) ∧ x ≺ y) → f(y) ≺ f(x)],

which witnesses that M∼= L∗
0 as linear orders. All of the above is expressible by a

Π2 sentence. By Proposition 2.12, the substructures of
∏
C (L0 �M) corresponding

toL0 and M are isomorphic to
∏
C L0 and

∏
CM. By Theorem 2.9 item (2),

∏
C L0

and
∏
CM are linear orders as {≺}-structures, and R

∏
C (L0
M)
f yields a function

from |
∏
C L0| onto |

∏
CM| witnessing that

∏
CM∼=

(∏
C L0

)∗
as linear orders.

Thus
∏
C (L∗

0) ∼=
(∏
C L0

)∗
. �

Sections 4–6 concern calculating the order-types of cohesive powers of computable
copies of�. To do this, we must be able to determine when one element of a cohesive
power is an immediate successor or immediate predecessor of another, and we must
be able to determine when two elements of a cohesive power are in different blocks
of its finite condensation.

In a cohesive power
∏
C L of a computable linear order L, [ϕ] is the immediate

successor of [�] if and only if ϕ(n) is the immediate successor of �(n) for almost
every n ∈ C . Therefore also [�] is the immediate predecessor of [ϕ] if and only if
�(n) is the immediate predecessor of ϕ(n) for almost every n ∈ C .

Lemma 3.7. Let (Ln : n ∈ N) be a uniformly computable sequence of linear orders,
let C be cohesive, and let [�] and [ϕ] be elements of

∏
C Ln. Then the following are

equivalent.
(1) [ϕ] is the ≺∏

C Ln -immediate successor of [�].
(2) (∀∞n ∈ C)(ϕ(n) is the ≺Ln -immediate successor of �(n)).
(3) (∃∞n ∈ C)(ϕ(n) is the ≺Ln -immediate successor of �(n)).

Proof. That x is the ≺-immediate successor of y is a Π1 property of x and y.
Therefore items (1) and (2) are equivalent by Theorem 2.7 item (3). The set

{n : ϕ(n) is the ≺Ln -immediate successor of �(n)}
is the intersection of a c.e. set and a co-c.e. set, so items (2) and (3) are equivalent
by cohesiveness. �

Lemma 3.8. Let (Ln : n ∈ N) be a uniformly computable sequence of linear orders,
let C be cohesive, and let [�] and [ϕ] be elements of

∏
C Ln. Then the following are

equivalent.
(1) [�] Î∏

C Ln [ϕ].
(2) limn∈C |(�(n), ϕ(n))Ln | = ∞.
(3) lim supn∈C |(�(n), ϕ(n))Ln | = ∞.

Proof. We show that the following are equivalent for each fixed k ∈ N.
(i) |([�], [ϕ])∏

C Ln | ≥ k.
(ii) (∀∞n ∈ C)(|(�(n), ϕ(n))Ln | ≥ k).

(iii) (∃∞n ∈ C)(|(�(n), ϕ(n))Ln | ≥ k).
That an interval (x, y) in a linear order contains at least k distinct elements for

a fixed k is a Σ1 property of x and y. Therefore items (i) and (ii) are equivalent by

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

974 RUMEN DIMITROV ET AL.

Theorem 2.7 item (3). The set {n : |(�(n), ϕ(n))Ln | ≥ k} is c.e., so items (ii) and
(iii) are equivalent by cohesiveness.

It now follows that items (1)–(3) are equivalent. Item (1) holds if and only if item
(i) holds for every k; item (2) holds if and only if item (ii) holds for every k; and
item (3) holds if and only if item (iii) holds for every k. �

The finite condensation of a cohesive product of computable linear orders by a
co-c.e. cohesive set is always dense.

Theorem 3.9. Let (Ln : n ∈ N) be a uniformly computable sequence of linear
orders, and let C be a cohesive set. If either (Ln : n ∈ N) is uniformly 1-decidable
or C is co-c.e., then cF(

∏
C Ln) is dense.

Proof. The cohesive product
∏
C Ln is Σ1-recursively saturated by Theorem 2.16

item (2) in the uniformly 1-decidable case and by Corollary 2.19 item (1) in the co-
c.e. case. Thus it suffices to show that ifM = (M,≺M) is a Σ1-recursively saturated
linear order, then cF(M) is dense. To see this, let a, b ∈M be such that a ÎM b.
For each k ∈ N, let Φk(x; a, b) be the following formula (with parameters a and b)
expressing that there are at least k elements between a and x and at least k elements
between x and b:

Φk(x; a, b) ≡ ∃≥kz (a ≺M z ≺M x) ∧ ∃≥kz (x ≺M z ≺M b).

Let p(x) = {Φk(x; a, b) : k ∈ N}. Then p(x) is a computable set of Σ1 formulas.
Furthermore,p(x) is a type overMbecause the interval (a, b)M is infinite. Therefore
p(x) is realized by some c ∈M because M is Σ1-recursively saturated. Thus the
intervals (a, c)M and (c, b)M are both infinite, so a ÎM c ÎM b. It follows that
cF(M) is dense. �

§4. Cohesive powers of computable copies of�. We investigate the cohesive powers
of computable linear orders of type �. Observe that an infinite linear order has type
� if and only if every element has only finitely many predecessors. We rely on this
characterization throughout. Though not part of the language of linear orders, every
linear orderL has an associated immediate successor relation SL ⊆ |L| × |L|, where
SL(a, b) holds for a, b ∈ |L| if and only if b is the ≺L-immediate successor of a. As
explained in [19, Section 3], a computable linear order L is 1-decidable if and only
if the immediate successor relation SL is computable. It is straightforward to check
that a computable copy L of � is computably isomorphic to the usual presentation
(N, <) if and only if SL is computable. Thus the computable copies of � that are
computably isomorphic to the usual presentation are exactly the 1-decidable copies
of �.

We show that if L is a computable copy of � that is computably isomorphic
to the usual presentation, then every cohesive power of L has order-type � + ��
(Theorem 4.5). This is to be expected because � + �� is familiar as the order-type
of every countable non-standard model of Peano arithmetic (see [15, Theorem
6.4]). However, being computably isomorphic to the usual presentation is not a
characterization of the computable copies of � having cohesive powers of order-
type � + ��. We show that there is a computable copy of � that is not computably
isomorphic to the usual presentation, yet still has every cohesive power isomorphic

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 975

to� + �� (Theorem 4.7). Thus to compute a copy of� having a cohesive power not
of type � + ��, one must do more than simply arrange for the immediate successor
relation to be non-computable. We show that for every cohesive set C, there is a
computable copy L of � such that the cohesive power

∏
C L does not have order-

type� + �� (Theorem 4.8). However, we also show that wheneverL is a computable
copy of � and C is a co-c.e. cohesive set, the finite condensation cF(

∏
C L) of the

cohesive power
∏
C L always has order-type 1 + � (Theorem 4.4).

First, a cohesive power of a computable copy of � always has an initial segment
of order-type �.

Lemma 4.1. Let L be a computable copy of �, and let C be cohesive. Then the
image of the canonical embedding of L into

∏
C L is an initial segment of

∏
C L of

order-type �.

Proof. Let a0 ≺L a1 ≺L a2 ≺L ... be the (not necessarily computable) listing of
|L| in≺L-increasing order. The image of the canonical embedding consists of those
elements of the form [�ak], where�ak is the total computable function with constant
value ak .

For each k ∈ N, we have that L |= ∃=kx (x ≺L ak) and therefore that (∀∞n ∈
C)(∃=kx)(x ≺L �ak (n)). Thus also

∏
C L |= (∃=kx)(x ≺∏

C L [�ak]) by Theorem
2.9 item (1). That is, for each k ∈ N, there are exactly k many elements of

∏
C L

that are ≺∏
C L-below [�ak]. Thus [�a0] ≺∏

C L [�a1] ≺∏
C L ··· is an initial segment

of
∏
C L of order-type �. �

LetLbe a computable copy of�, let C be cohesive, and letϕ : N→ |L|be any total
computable bijection. Then [ϕ] is not in the image of the canonical embedding of L
into

∏
C L, so it must be ≺∏

C L-above every element in the image of the canonical
embedding. Thus

∏
C L is of the form � +M for some non-empty linear orderM.

By analogy with the terminology for models of arithmetic, we call the elements of
the �-part of

∏
C L (i.e., the image of the canonical embedding) standard and the

elements of theM-part of
∏
C L non-standard. In terms of the finite condensation, we

have that cF(
∏
C L) ∼= 1 +N for some linear orderN . Call the block corresponding

to 1 the standard block and the blocks corresponding to N the non-standard blocks.
Lemma 4.3 implies that N is always infinite and therefore thatM is always infinite
as well.

Lemma 4.2. Let L = (L,≺L) be a computable copy of �, let C be cohesive,
and let [ϕ] be an element of

∏
C L. Then [ϕ] is non-standard if and only if

lim infn∈C ϕ(n) = ∞.

Proof. If [ϕ] is standard, then ϕ is eventually constant on C, so lim infn∈C ϕ(n)
is finite. Conversely, suppose that lim infn∈C ϕ(n) = k is finite. Then (∃∞n ∈
C)(ϕ(n) = k). By cohesiveness, it must therefore be that (∀∞n ∈ C)(ϕ(n) = k).
That is, ϕ is eventually constant on C, so [ϕ] is standard. �

In Lemma 4.2, the condition lim infn∈C ϕ(n) = ∞ may be replaced by either
limn∈C ϕ(n) = ∞ or lim supn∈C ϕ(n) = ∞ because if C is cohesive, ϕ is partial
computable, and C ⊆∗ dom(ϕ), then lim infn∈C ϕ(n) = ∞, limn∈C ϕ(n) = ∞, and
lim supn∈C ϕ(n) = ∞ are all equivalent conditions.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

976 RUMEN DIMITROV ET AL.

The following Lemma 4.3 says that if L is a computable copy of � and C is
cohesive, then

∏
C L has neither a least nor a greatest non-standard block. If L is

1-decidable or C is co-c.e., then this can be proved by a saturation argument similar
to that given in the proof of Theorem 3.9. Instead, we give a hands-on proof that
works for all computable L ∼= � and all cohesive C.

Lemma 4.3. Let L = (L,≺L) be a computable copy of �, let C be cohesive, and let
[ϕ] be a non-standard element of

∏
C L. Then there are non-standard elements [�–]

and [�+] of
∏
C L with [�–] Î∏

C L [ϕ] Î∏
C L [�+].

Proof. Let (�i : i ∈ N) be a computable enumeration of L. Compute a sequence
x0 ≺L x1 ≺L x2 ≺L ··· that is cofinal in L by letting x0 = �0 and by letting each
xi+1 be the<-least number with max≺L{xi , �i} ≺L xi+1. Such an xi+1 always exists
because L has no ≺L-maximum element.

Consider a non-standard [ϕ] ∈ |
∏
C L|. Define partial computable functions

�–, �+ : N→ L by

�–(n) �
{
xi , if x2i "L ϕ(n) ≺L x2i+2,

↑, if ϕ(n)↑,

�+(n) �
{
x2i , if xi "L ϕ(n) ≺L xi+1,

↑, if ϕ(n)↑.

The element [ϕ] is non-standard, so (∀i)(∀∞n ∈ C)(x2i "L ϕ(n)). Thus
(∀i)(∀∞n ∈ C)(xi "L �

–(n)), so [�–] is non-standard as well. Moreover, if x2i "L
ϕ(n) ≺L x2i+2, then �–(n) = xi , and therefore |(�–(n), ϕ(n))L| ≥ i – 1 because
xi+1, ... , x2i–1 ∈ (�–(n), ϕ(n))L. Therefore lim supn∈C |(�–(n), ϕ(n))L| = ∞, so
[�–] Î∏

C L [ϕ] by Lemma 3.8. Similar reasoning shows that [ϕ] Î∏
C L [�+]. Thus

[�–] Î∏
C L [ϕ] Î∏

C L [�+]. �

If the computable linear orderL is 1-decidable or the cohesive set C is co-c.e., then
between any two blocks there is a third. We therefore have the following theorem.

Theorem 4.4. Let L be a computable copy of �, and let C be a cohesive set. If
either L is 1-decidable or C is co-c.e., then cF(

∏
C L) has order-type 1 + �.

Proof. By Lemma 4.1, the standard elements of
∏
C L form an initial block. By

Theorem 3.9 and Lemma 4.3, the non-standard blocks of
∏
C L form a countable

dense linear order without endpoints. Thus cF(
∏
C L) ∼= 1 + �. �

Thinking in terms of blocks, showing that a linear order M has type � + ��
amounts to showing thatM consists of an initial block of order-type � followed by
densely (without endpoints) ordered blocks of type � .

Theorem 4.5. Let L be a computable copy of � that is computably isomorphic to
the usual presentation, and let C be cohesive. Then

∏
C L has order-type � + ��.

Proof. As explained above, it follows from [19, Section 3] that a computable
copy L of � is computably isomorphic to the usual presentation if and only if L is
1-decidable. Thus we show that if L is a 1-decidable copy of � and C is cohesive,
then

∏
C L ∼= � + ��.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 977

Let L be a 1-decidable copy of �, and let C be cohesive. By Lemma 4.1 and
Theorem 4.4,

∏
C L consists of an initial standard block of order-type � followed

by a densely (without endpoints) ordered collection of non-standard blocks. It
remains to show that each non-standard block has order-type � . To do this, it
suffices to show that every non-standard element of

∏
C L has an ≺∏

C L-immediate
successor and an ≺∏

C L-immediate predecessor.
Let [ϕ] ∈ |

∏
C L|. As L ∼= �, we have that

(∀∞n ∈ C)
(
L |= ∃x (x is the ≺L -immediate successor of ϕ(n))

)
.

The linear order L is 1-decidable and the relevant formula is Σ2, so [ϕ] has a≺∏
C L-

immediate successor in
∏
C L by the n = 1 case of Theorem 2.9 item (1). Now

additionally suppose that [ϕ] is not the ≺∏
C L-least element of

∏
C L. Then for

almost every n ∈ C , ϕ(n) is not the ≺L-least element of L. Therefore

(∀∞n ∈ C)
(
L |= ∃x (x is the ≺L -immediate predecessor of ϕ(n))

)
,

so [ϕ] has an ≺∏
C L-immediate predecessor in

∏
C L by Theorem 2.9 item (1). It

follows that if [ϕ] is non-standard, then it has both an ≺∏
C L-immediate successor

and an ≺∏
C L-immediate predecessor in

∏
C L, which completes the proof. �

We can calculate the order-types of the cohesive powers of many other computable
presentations of linear orders by combining Theorems 2.20, 3.6, 4.5, and the fact
that

∏
C Q ∼= �.

Example 4.6. Let C be a cohesive set. Let N, Z, and Q denote the usual
presentations of �, � , and �.

(1)
∏
C N∗ ∼= �� + �∗. This is because∏

C
N∗ ∼=

(∏
C
N
)∗ ∼= (� + ��)∗ ∼= �� + �∗.

(2)
∏
C Z ∼= ��. This is because Z is computably isomorphic to N∗ + N, so∏

C
Z ∼=

∏
C

(N∗ + N) ∼=
∏
C
N∗ +

∏
C
N

∼= (�� + �∗) + (� + ��) ∼= �� + � + �� ∼= ��.

(3)
∏
C (ZQ) ∼= ��. This is because∏

C
(ZQ) ∼=

(∏
C
Z
) (∏

C
Q
)
∼= (��)� ∼= ��.

(4)
∏
C (N + ZQ) ∼= � + ��. This is because∏

C
(N + ZQ) ∼=

∏
C
N +

∏
C

(ZQ) ∼= (� + ��) + �� ∼= � + ��.

Recall that, by Proposition 3.4, an ultrahomogeneous computable structure for a
finite relational language, like the computable linear order Q, is isomorphic to each
of its cohesive powers. Notice, however, that the computable linear orders ZQ and
N + ZQ are not ultrahomogeneous, yet nevertheless are isomorphic to each of their
respective cohesive powers. Thus it is also possible for a non-ultrahomogeneous
computable structure to be isomorphic to each of its cohesive powers.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

978 RUMEN DIMITROV ET AL.

Notice also that
∏
C N and

∏
C (N + ZQ) both have order-type � + ��. Similarly,∏

C Z and
∏
C (ZQ) both have order-type ��. Thus it is possible for non-isomorphic

linear orders to have isomorphic cohesive powers. In Section 5, we give an example
of a pair of non-elementarily equivalent linear orders with isomorphic cohesive
powers.

Now we give an example of a computable copy of � that is not computably
isomorphic to the usual presentation, yet still has all its cohesive powers isomorphic
to � + ��.

Theorem 4.7. There is a computable copy L of � such that:

• L is not computably isomorphic to the usual presentation of �, yet
• for every cohesive set C, the cohesive power

∏
C L has order-type � + ��.

Proof. We use a classic example of a computable copy of � with a non-
computable immediate successor relation. Fix any non-computable c.e. set A, and
let f : N→ A be a computable bijection. Let L = (N,≺L) be the linear order
obtained by ordering the even numbers according to their usual order and by setting
2a ≺L 2k + 1 ≺L 2a + 2 if and only if f(k) = a. Specifically, define:

2c ≺L 2d ⇔ 2c < 2d,

2c ≺L 2k + 1 ⇔ c ≤ f(k),

2k + 1 ≺L 2c ⇔ f(k) < c,

2k + 1 ≺L 2� + 1 ⇔ f(k) < f(�).

Then L is a computable linear order of type �. Let SL denote the immediate
successor relation ofL. ThenA ≤T S

L (in fact,A ≡T S
L) because a ∈ A if and only

if ¬SL(2a, 2a + 2). Thus SL is not computable, so L is not computably isomorphic
to the usual presentation of �.

Let C be cohesive. We show that
∏
C L ∼= � + ��. To do this, expand the language

to {≺, E,R}, where E is a unary relation symbol and R is a binary relation symbol.
Expand L by interpreting E as the evens and by interpreting R as the immediate
successor relation among the evens:

EL(a) ⇔ a = 2n for some n,

RL(a, b) ⇔ a = 2n and b = 2n + 2 for some n.

Now consider the substructure B of L with domain {a ∈ |L| : EL(a)} and the
substructure D of

∏
C L with domain

{
[ϕ] ∈ |

∏
C L| : E

∏
C L([ϕ])

}
. As a linear

order, B is computably isomorphic to the usual presentation of �. Therefore D ∼=∏
C B ∼= � + �� as linear orders by Proposition 2.12 and Theorem 4.5.
In L, if z is not in the substructure B, then z is the unique element ≺L-between

two consecutive elements of B. That is, L satisfies the following Π2 sentences:

L |= ∀z [¬E(z) → ∃x∃y (R(x, y) ∧ x ≺ z ≺ y)],

L |= ∀x∀y∀z0∀z1 [(R(x, y) ∧ x ≺ z0 ≺ y ∧ x ≺ z1 ≺ y) → z0 = z1].

By Theorem 2.9 item (2),
∏
C L also satisfies these sentences. Thus in

∏
C L, if some

[ϕ] is not in the substructure D, then [ϕ] is the unique element ≺∏
C L-between two

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 979

consecutive elements of D. As D ∼= � + ��, we may conclude that
∏
C L ∼= � + ��

as well. �

Now we show that for every cohesive set C, there is a computable copy L of
� such that

∏
C L is not isomorphic, indeed, not elementarily equivalent, to � +

��. The strategy is to arrange for the element [id] of
∏
C L represented by the

identity function id : N→ N to have no≺∏
C L-immediate successor. This exhibits an

elementary difference between
∏
C L and � + �� because every element of � + ��

has an immediate successor. This also shows that Theorem 2.9 item (3) is tight:
“every element has an immediate successor” is a Π3 sentence that is true of L but
not of

∏
C L.

Theorem 4.8. Let C be any cohesive set. Then there is a computable copy L of �
for which

∏
C L is not elementarily equivalent (and hence not isomorphic) to � + ��.

Proof. Let (ϕe)e∈N denote the usual effective list of all partial computable
functions, and recall that ϕe,s(n) denotes the result of running ϕe on input n for s
computational steps. We compute a linear order L = (N,≺L) of type � such that
for every ϕe :

(∀∞n ∈ C)
[
ϕe(n)↓ ⇒ (ϕe(n) is not the ≺L -immediate successor of n)

]
. (∗)

By Lemma 3.7, achieving (∗) for ϕe ensures that [ϕe] is not the≺∏
C L-immediate

successor of [id] in
∏
C L. Therefore, achieving (∗) for every ϕe ensures that [id] has

no ≺∏
C L-immediate successor in

∏
C L. Thus

∏
C L is not elementarily equivalent

to � + �� because every element of � + �� has an immediate successor, which is a
Π3 property.

Fix an infinite computable setR ⊆ C . Such an R may be obtained, for example, by
partitioning N into the even numbers R0 and the odd numbers R1. By cohesiveness,
C ⊆∗ Ri for either i = 0 or i = 1, in which case R1–i ⊆∗ C . Thus we may take R to
be an appropriate tail of R1–i .

Define ≺L in stages. By the end of stage s, ≺L will have been defined on Xs × Xs
for some finite Xs ⊇ {0, 1, ... , s}. As the construction progresses, at some stage we
may notice an e and n such that ϕe(n) = a looks like the ≺L-immediate successor
of n, where n may or may not be in C. In this case, we want to add an m to the
order and set n ≺L m ≺L a to help achieve (∗) for ϕe . If we choose an m that may
be in C, then at some later stage there may be an i for which ϕi(m) = a looks like
the ≺L-immediate successor of m, and then we would want to add another element
≺L-below a. If this happens infinitely often, then we would add infinitely many
elements ≺L-below a, in which case L would not be a copy of �. We avoid this
problem by choosing m from R, which is safe because R ⊆ C . Since we know that
m /∈ C , we do not need to worry about it when trying to achieve (∗).

At stage 0, set X0 = {0} and define 0 ⊀L 0. At stage s > 0, start with Xs = Xs–1,
and update Xs and ≺L according to the following procedure.

(1) If≺L has not yet been defined on s (i.e., if s /∈ Xs), then updateXs toXs ∪ {s}
and extend ≺L to make s the ≺L-greatest element of Xs .

(2) Consider each 〈e, n〉 < s in order. For each 〈e, n〉 < s , if:
(a) ϕe,s(n)↓ ∈ Xs ,
(b) ϕe(n) is currently the ≺L-immediate successor of n in Xs ,

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

980 RUMEN DIMITROV ET AL.

(c) n /∈ R, and
(d) n is not "L-below any of 0, 1, ... , e,
then let m be the <-least element of R \ Xs , update Xs to Xs ∪ {m}, and
extend ≺L so that n ≺L m ≺L ϕe(n).

This completes the construction.
We claim that for every k, there are only finitely many elements ≺L-below k. It

follows thatL has order-type�. Say thatϕe acts for n and adds m when≺L is defined
on an m ∈ R to make n ≺L m ≺L ϕe(n) as in (2). Let s0 be a stage with k ∈ Xs0 .
Suppose at some stage s > s0, an m is added to Xs and m ≺L k is defined. This can
only be due to a ϕe acting for an n /∈ R and adding m at stage s. Thus at stage s, it
must be that n ≺L k because n ≺L m ≺L k. Therefore it must also be that e < k, for
otherwise k would be among 0, 1, ... , e, and condition (d) would prevent the action
of ϕe . Furthermore, m is chosen from R, so only elements of R are added≺L-below
k after stage s0. All together, this means that an m can only be added ≺L-below k
after stage s0 when a ϕe with e < k acts for an n ≺L k with n /∈ R. Each ϕe acts at
most once for each n, and no new n /∈ R appears ≺L-below k after stage s0. Thus
after stage s0, only finitely many m are ever added ≺L-below k.

Finally, we claim that (∗) is satisfied for every ϕe . Given e, let � be the ≺L-
maximum element of {0, 1, ... , e}. Observe that almost every n ∈ N satisfies n $L �
because L ∼= �. So suppose that n $L � and n ∈ C . If ϕe(n)↓, let s be large enough
so that 〈e, n〉 < s , ϕe,s(n)↓, n ∈ Xs , and ϕe(n) ∈ Xs . Then either ϕe(n) is already
not the ≺L-immediate successor of n at stage s + 1, or at stage s + 1 the conditions
of (2) are satisfied for 〈e, n〉, and an m is added such that n ≺L m ≺L ϕe(n). This
completes the proof. �

Corollary 4.9. Theorem 2.9 item (3) cannot be improved in general: there is a
computable linear order L, a cohesive set C, and a Π3 sentence Φ such that L |= Φ,
but
∏
C L �|= Φ.

Proof. Let C be any cohesive set, and let L be a computable copy of � as in
Theorem 4.8 for C. Let Φ be a Π3 sentence in the language of linear orders expressing
that every element has an immediate successor. Then L |= Φ, but

∏
C L �|= Φ. �

Corollary 4.9 may also be deduced from Lerman’s proof of Feferman, Scott, and
Tennenbaum’s theorem that no cohesive power of the standard model of arithmetic
is a model of Peano arithmetic (see [16, Theorem 2.1]). Lerman uses Kleene’s T
predicate to give a somewhat technical example of a Π3 sentence that holds in
the standard model of arithmetic but fails in every cohesive power. Our proof of
Corollary 4.9 is more satisfying because it witnesses the optimality of Theorem 2.9
item (3) with a natural Π3 sentence in the simple language of linear orders. In the
next section, we enhance the construction of Theorem 4.8 to compute a copy L of
� with

∏
C L ∼= � + � under the additional assumption that the given cohesive set

C is co-c.e.
Finally, we show that Theorem 2.7 concerning cohesive products is also tight by

uniformly computing a sequence of finite linear orders (Ln : n ∈ N) such that for
every cohesive set C, the cohesive product

∏
C Ln is a linear order with no maximum

element. Thus the Σ2 sentence “there is a maximum element” is true in Ln for each n
(because each Ln is finite), whereas the Π2 sentence “there is no maximum element”

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 981

is true in
∏
C Ln for every cohesive set C. Although each linear order Ln has a

maximum element, the sequence of maximum elements is not computable.

Proposition 4.10. There is a uniformly computable sequence of finite linear orders
(Ln : n ∈ N) such that for every cohesive set C, the cohesive product

∏
C Ln is a linear

order with no maximum element. Therefore Theorem 2.7 cannot be improved in general.

Proof. For each n, let Ln = (Ln,≺) be the linear order with domain

Ln = {0} ∪ {t : (∃e < n)(∃s < t)(t = s + ϕe,s (n) + 1, where s is least such that ϕe,s (n)↓)}

that is ordered by the usual order by taking≺ equal to< onLn. To compute whether
a given t > 0 is in Ln, first run ϕe(n) for t steps for each e < n. Then for each such
ϕe(n) that halts within t steps, find the s such that ϕe(n) halts in exactly s steps,
and compute the number s + ϕe(n) + 1. If any of these numbers is t, then t ∈ Ln.
Otherwise t /∈ Ln. Notice that each e < n contributes at most one element t to Ln,
so Ln has at most 1 + n elements.

Let C be cohesive, and consider an element [ϕe] of
∏
C Ln. We show that [ϕe] is

not the≺∏
C Ln -greatest element of

∏
C Ln and therefore that

∏
C Ln has no≺∏

C Ln -
greatest element. If n > e is a sufficiently large member of C, then ϕe(n)↓ ∈ Ln. This
means that there is a least s such thatϕe,s(n)↓ and therefore that there is a t ∈ Ln with
ϕe(n) ≺ t. Thus (∀∞n ∈ C)(Ln |= ∃x (ϕe(n) ≺ x)), so

∏
C Ln |= ∃x([ϕe] ≺ x) by

Theorem 2.7 item (3). That is, [ϕe] is not the≺∏
C Ln -greatest element of

∏
C Ln. �

§5. A computable copy of � with a cohesive power of order-type � + �. Given
a co-c.e. cohesive set, we compute a copy L of � for which

∏
C L has order-type

� + �. In order to help shuffle various linear orders into cohesive powers in Section
6, we in fact compute a linear order L = (L,≺L) along with a coloring function
F : L→ N that colors the elements of L with countably many colors so as to induce
a coloring with a certain density property on

∏
C L.

Definition 5.1. A colored linear order is a structure O = (L,N,≺L, F), where
L = (L,≺L) is a linear order and F is (the graph of) a function F : L→ N, thought
of as a coloring of L. Here the language includes unary relation symbols for L and
N and a binary relation symbol for F in addition to the binary relation symbol ≺.

Let O = (L,N,≺L, F) be a colored linear order, and let L = (L,≺L). We may
think of O as the disjoint union L � N expanded to include F. Thus if O is a
computable colored linear order and C is a cohesive set, then the cohesive power∏
C O consists of a linear order

∏
C L, a set

∏
C N thought of as a collection of

colors, and a (graph of a) function F
∏
C O : |

∏
C L| → |

∏
C N| thought of as a

coloring of
∏
C L. This is by Proposition 2.14 and by Theorem 2.9 item (2), as F

being the graph of a function from the substructure given by L into the substructure
given by N can be expressed by a Π2 sentence. In

∏
C O, we denote elements of

∏
C L

by [ϕ] and elements of
∏
C N by ���. Call a color ��� ∈ |

∏
C N| a solid color if � is

eventually constant on C (i.e., if ��� is in the range of the canonical embedding of
N into

∏
C N). Otherwise, call ��� a striped color. Finally, call a colored linear order

O = (L,N,≺L, F) a colored copy of� if L ∼= �.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

982 RUMEN DIMITROV ET AL.

Definition 5.2. Let O = (L,N,≺L, F) be a computable colored copy of �, and
letL denote (L,≺L). Let C be a cohesive set. Call the cohesive power

∏
C O colorful

if the following items hold.

• For every pair of non-standard elements [ϕ], [�] ∈ |
∏
C L|with [�] ≺∏

C L [ϕ]
and every solid color ��� ∈ |

∏
C N|, there is a [] ∈ |

∏
C L| with [�] ≺∏

C L
[] ≺∏

C L [ϕ] and F
∏
C O([]) = ���.

• For every pair of non-standard elements [ϕ], [�] ∈ |
∏
C L|with [�] ≺∏

C L [ϕ],

there is a [] ∈ |
∏
C L| with [�] ≺∏

C L [] ≺∏
C L [ϕ] where F

∏
C O([]) is a

striped color.

Thus if O = (L,N,≺L, F) is a computable colored copy of � and C is cohesive,
then

∏
C O being colorful means that the solid colors occur densely in the non-

standard part of
∏
C L and also that between any two elements of the non-standard

part of
∏
C L there is an element with a striped color. Notice that we do not require

any individual striped color to occur densely in the non-standard part of
∏
C L. If C

is a co-c.e. cohesive set, then the first bullet of Definition 5.2 implies the second. This
can be seen by a saturation argument, if one generalizes Lemma 2.17 to allow types
over

∏
C O with an infinite sequence of parameters ([i] : i ∈ N) represented by a

uniformly partial computable sequence (i : i ∈ N). Here the relevant parameters
would be the non-standard elements [ϕ] and [�] and the sequence of solid colors.
The type would then describe an element between [ϕ] and [�] whose color is not
among the solid colors.

In Section 6, we show that replacing each point of L by some finite linear order
depending on its color has the effect of shuffling these finite orders into the non-
standard part of

∏
C L.

Theorem 5.3. Let C be a co-c.e. cohesive set. Then there is a computable colored
copy O of � such that

∏
C O is colorful.

Proof. We construct a computable copy L = (L,≺L) of � with L = N and a
function F : L→ N so that O = (L,N,≺L, F) is a computable colored copy of �
for which

∏
C O is colorful. We are working with a co-c.e. cohesive set, so recall that

in this situation every element [ϕ] of
∏
C L has a total computable representative by

the discussion following Definition 2.2. Recall also that an element [ϕ] of
∏
C L is

non-standard if and only if limn∈C ϕ(n) = ∞ by Lemma 4.2.
The goal of the construction is to arrange, for every pair of total computable

functions ϕ and � with limn∈C ϕ(n) = limn∈C �(n) = ∞, that

(∀∞n ∈ C)
(
�(n)↓ ≺L ϕ(n)↓ (∗)

⇒
(
∀d ≤ max<{ϕ(n), �(n)}

)(
∃k
)[

(�(n) ≺L k ≺L ϕ(n)) ∧ (F (k) = d)
])
.

Suppose we achieve (∗) for ϕ and �, where limn∈C ϕ(n) = limn∈C �(n) = ∞ and
(∀∞n ∈ C)(�(n)↓ ≺L ϕ(n)↓). Fix any color d, and let � be the constant function
with value d. Partially compute a function 	(n) by searching for a k with �(n) ≺L
k ≺L ϕ(n) and F (k) = d . If there is such a k, let 	(n) be the first such k. Property
(∗) and the assumption limn∈C ϕ(n) = limn∈C �(n) = ∞ ensure that there is such
a k for almost every n ∈ C . Therefore C ⊆∗ dom(), [�] ≺∏

C L [] ≺∏
C L [ϕ], and

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 983

F
∏
C O([]) = ���. Likewise, we could instead define 	(n) to search for a k with

�(n) ≺L k ≺L ϕ(n) and F (k) = ϕ(n) and let 	(n) be the first (if any) such k
found. In this case we would have [�] ≺∏

C L [] ≺∏
C L [ϕ] and F

∏
C O([]) = �ϕ�,

which is a striped color because limn∈C ϕ(n) = ∞. Notice that ϕ represents both
an element [ϕ] of the linear order

∏
C L and a color �ϕ� from

∏
C N. As a color,

F
∏
C O([]) = �ϕ� because (∀∞n ∈ C)(F ((n)) = ϕ(n)). Thus between [�] and [ϕ]

there are elements of
∏
C L of every solid color and also at least one element of a

striped color. Therefore achieving (∗) suffices to prove the theorem, provided we
also arrange L ∼= �.

Let W denote the c.e. set C , and let (Ws)s∈N be a computable ⊆-increasing
enumeration of W. Let (Ai,0, Ai,1)i∈N be a uniformly computable sequence of pairs
of sets such that:

• for each i, Ai,0 and Ai,1 partition N into two pieces (i.e., Ai,1 = Ai,0) and
• (∀n)(∀� ∈ {0, 1}n)

(⋂
i<n A

i,�(i) is infinite
)
.

This can be accomplished by partitioning N into successive pieces of size 2i , letting
Ai,0 consist of every other piece, and letting Ai,1 = Ai,0.

In this proof, denote the projection functions associated with the pairing function
〈·, ·〉 by � and r, for left and right, instead of by �0 and �1. So �(〈x, y〉) = x and
r(〈x, y〉) = y.

The tension in the construction is between achieving (∗) and ensuring that
for every z, there are only finitely many x with x ≺L z. Think of a p ∈ N
as coding a pair (ϕ�(p), ϕr(p)) of partial computable functions for which we
would like to achieve (∗), with ϕ�(p) playing the role of � and ϕr(p) playing
the role of ϕ. We assign the partition (A2p,0, A2p,1) to ϕ�(p) and the partition
(A2p+1,0, A2p+1,1) to ϕr(p). The sets {n : ϕ�(p)(n) ∈ A2p,0} and {n : ϕ�(p)(n) ∈ A2p,1}
are both c.e., so if C ⊆∗ dom(ϕ�(p)), then either (∀∞n ∈ C)(ϕ�(p)(n) ∈ A2p,0) or
(∀∞n ∈ C)(ϕ�(p)(n) ∈ A2p,1); and similarly for ϕr(p) and (A2p+1,0, A2p+1,1). As the
construction proceeds, we consider each p paired with larger and larger guesses
N of a threshold by which the cohesive behavior of ϕ�(p) and ϕr(p) begins with
respect to the partitions (A2p,0, A2p,1) and (A2p+1,0, A2p+1,1). The pair 〈p,N 〉
means we guess that there is an (a, b) ∈ {0, 1} × {0, 1} such that ϕ�(p)(n) ∈ A2p,a

and ϕr(p)(n) ∈ A2p+1,b whenever n ≥ N and n ∈ C . For each fixed p, the pairs
〈p, 0〉, 〈p, 1〉, 〈p, 2〉, ... all try to achieve (∗) forϕ�(p) andϕr(p). If N is too small, then
pair 〈p,N 〉 eventually stops acting. If N is big enough, then pair 〈p,N 〉 eventually
settles on the correct sides (a, b) of the partitions (A2p,0, A2p,1) and (A2p+1,0, A2p+1,1).

To help satisfy (∗), eventually pair 〈p,N 〉 will want to add an element k0 between
some ϕ�(p)(n) and ϕr(p)(n) for an n that looks like it may be in C. However, later
some pair 〈q,M 〉 (possibly even with q = p) may want to add an element k1 between
some ϕ�(q)(m) and ϕr(q)(m) for an m that looks like it may be in C, and it may also
so happen that ϕr(q)(m) = k0. In this case, 〈q,M 〉 would add k1 ≺L k0. If this
behavior were to continue, then it would lead to a descending sequence k0 $L
k1 $L k2 $L ··· , which means that L would not have order-type �. To avoid these
descending sequences, pair 〈p,N 〉 tries to choose the k that it adds to avoid the
images ϕ�(q)(C) and ϕr(q)(C) for all q corresponding to higher-or-equal priority
pairs 〈q,M 〉 ≤ 〈p,N 〉. To do this, first, for each such q, pair 〈p,N 〉 looks up the most

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

984 RUMEN DIMITROV ET AL.

recent guess (aq, bq) of sides such that ϕ�(q)(C) ⊆∗ A2q,aq and ϕr(q)(C) ⊆∗ A2q+1,bq

made by any of the 〈q,M 〉 ≤ 〈p,N 〉 for this q. Then pair 〈p,N 〉 chooses

k ∈
⋂

〈q,M〉≤〈p,N〉
A2q,1–aq ∩ A2q+1,1–bq

from the opposite sides of all these partitions in an attempt to avoid ϕ�(q)(C) and
ϕr(q)(C) for every 〈q,M 〉 ≤ 〈p,N 〉. The staggering of the partitions ensures that
there are infinitely many such k to choose among.

We now give the construction. Define ≺L and F in stages. By the end of stage s,
≺L will have been defined on Xs × Xs , and F will have been defined on Xs for some
finite Xs ⊇ {0, 1, ... , s}.

At stage 0, set X0 = {0} with 0 ⊀L 0 and F (0) = 0. At stage s > 0, initially set
Xs = Xs–1. If s /∈ Xs , then add s to Xs , define it to be the ≺L-maximum element of
Xs , and define F (s) = 0. Then proceed as follows.

Consider each pair 〈p,N 〉 < s in order. Think of 〈p,N 〉 as coding a pair
(ϕ�(p), ϕr(p)) of partial computable functions and a guess N of a threshold
by which the cohesive behavior of ϕ�(p) and ϕr(p) begins with respect to the
partitions (A2p,0, A2p,1) and (A2p+1,0, A2p+1,1) as described above. The pair 〈p,N 〉
demands action if there is an (a, b, n) ∈ {0, 1} × {0, 1} × {N,N + 1, ... , s} meeting
the following conditions:

(1) For all m ≤ n, ϕ�(p),s(m)↓ and ϕr(p),s(m)↓.
(2) Both ϕ�(p)(n) ∈ A2p,a and ϕr(p)(n) ∈ A2p+1,b .
(3) For all m with N ≤ m ≤ n:

• ϕ�(p)(m) ∈ A2p,1–a ⇒ m ∈Ws , and
• ϕr(p)(m) ∈ A2p+1,1–b ⇒ m ∈Ws .

(4) We have that ϕ�(p)(n), ϕr(p)(n) ∈ Xs and ϕ�(p)(n) ≺L ϕr(p)(n), but currently
there is a d ≤ max<{ϕ�(p)(n), ϕr(p)(n)} for which there is no k ∈ Xs with
ϕ�(p)(n) ≺L k ≺L ϕr(p)(n) and F (k) = d .

(5) The element ϕ�(p)(n) is not "L-below any of 0, 1, ... , 〈p,N 〉.
If 〈p,N 〉 demands action, let (ap, bp, n) ∈ {0, 1} × {0, 1} × {N,N + 1, ... , s} be

the lexicographically least witness to this, call (ap, bp, n) the action witness for 〈p,N 〉,
call the first two coordinates (ap, bp) of the action witness the action sides for 〈p,N 〉,
and call the last coordinate n of the action witness the action input for 〈p,N 〉.

Let r be the<-greatest number for which there is an M with 〈r,M 〉 ≤ 〈p,N 〉. For
each q ≤ r, let (aq, bq) be the most recently used action sides by any pair of the form
〈q,M 〉 with 〈q,M 〉 ≤ 〈p,N 〉. If no 〈q,M 〉 ≤ 〈p,N 〉 has yet demanded action, then
let (aq, bq) = (0, 0). Let c = max<{ϕ�(p)(n), ϕr(p)(n)}, and let k0 < k1 < ··· < kc be
the c + 1 least members of⋂

q≤r

(
A2q,1–aq ∩ A2q+1,1–bq

)
\ Xs, (
)

which exist because the intersection is infinite and Xs is finite. Add k0, ... , kc to Xs .
Let x ∈ Xs be the current ≺L-greatest element of the interval (ϕ�(p)(n), ϕr(p)(n))L
(or x = ϕ�(p)(n) if the interval is empty), and set

ϕ�(p)(n) "L x ≺L k0 ≺L ··· ≺L kc ≺L ϕr(p)(n).

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 985

Also set F (ki) = i for each i ≤ c, and say that 〈p,N 〉 has acted and added k’s. This
completes the construction.

The constructed L is a computable linear order. We show that L ∼= � by showing
that for each z, there are only finitely many elements≺L-below z. So fix z. Note that
z appears in Xs at stage s = z at the latest, so we consider the development of the
construction at stages s > z.

Consider the actions of a pair 〈p,N 〉. If 〈p,N 〉 ≥ z and 〈p,N 〉 acts at stage
s > z with action input n, then, by condition (5), it must be that z ≺L ϕ�(p)(n) ≺L
ϕr(p)(n). In this case, the action adds elements to Xs and places them ≺L-between
ϕ�(p)(n) and ϕr(p)(n) and hence places them≺L-above z. Therefore, only the actions
of 〈p,N 〉 with 〈p,N 〉 < z can add elements ≺L-below z at stages s > z.

We show that each 〈p,N 〉 < z only ever acts to add finitely many elements k ≺L
z. It follows that there are only finitely many elements ≺L-below z because the
〈p,N 〉 ≥ z add no elements ≺L-below z after stage z, and each 〈p,N 〉 < z adds
only finitely many elements ≺L-below z. So let 〈p,N 〉 < z, and assume inductively
that there is a stage s0 > z such that no pair 〈q,M 〉 < 〈p,N 〉 acts to add elements
k ≺L z after stage s0.

Notice that a given n can be the action input for 〈p,N 〉 at most once. If 〈p,N 〉
demands action with action input n at stage s, it adds elements of every color ≤
max<{ϕ�(p)(n), ϕr(p)(n)} to Xs and places them ≺L-between ϕ�(p)(n) and ϕr(p)(n).
Thus condition (4) is never again satisfied for 〈p,N 〉with action input n at any stage
t > s .

Suppose that either ϕ�(p)(m)↑ or ϕr(p)(m)↑ for some m. Then no n ≥ m can be
an action input for 〈p,N 〉 because condition (1) always fails when n ≥ m. Thus
only finitely many numbers n can be action inputs for 〈p,N 〉. Because each of these
n can be an action input for 〈p,N 〉 at most once, the pair 〈p,N 〉 demands action
only finitely many times. Thus in this case, 〈p,N 〉 adds only finitely many elements
≺L-below z.

We now focus on the case in which both ϕ�(p) and ϕr(p) are total. By cohesiveness,
let (a, b) ∈ {0, 1} × {0, 1} be such that (∀∞n ∈ C)(ϕ�(p)(n) ∈ A2p,a) and (∀∞n ∈
C)(ϕr(p)(n) ∈ A2p+1,b). The following Claims 1–3 establish that 〈p,N 〉 adds only
finitely many elements ≺L-below z.

First, consider all pairs 〈p,M 〉 < z with this fixed p.

Claim 1. There is a stage s1 ≥ s0 such that for every M with 〈p,M 〉 < z, whenever
〈p,M 〉 demands action at a stage s ≥ s1, it always has action sides (a, b).

Proof of Claim 1. There are only finitely many 〈p,M 〉 < z, so it suffices to show
that for each 〈p,M 〉 < z, there is a stage t such that 〈p,M 〉 has action sides (a, b)
whenever it demands action (if it ever demands action) after stage t.

Let m be the least member of C with m ≥M , ϕ�(p)(m) ∈ A2p,a , and ϕr(p)(m) ∈
A2p+1,b . Then whenever 〈p,M 〉 demands action and the action witness (ap, bp, n)
has n ≥ m, it must be that (ap, bp) = (a, b) because otherwise condition (3) would
fail. Suppose, for example, that 〈p,M 〉 demands action at stage s with action witness
(ap, bp, n) where n ≥ m and ap = 1 – a. ThenM ≤ m ≤ n and ϕ�(p)(m) ∈ A2p,1–ap ,
but m /∈Ws because m ∈ C . Thus condition (3) fails, so 〈p,M 〉 could not have
demanded action with action witness (ap, bp, n). The assumption bp = 1 – b in
place of ap = 1 – a leads to the same contradiction. On the other hand, each n < m

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

986 RUMEN DIMITROV ET AL.

can be the action input for 〈p,M 〉 at most once. Therefore, there is a stage t ≥ s0
such that whenever 〈p,M 〉 demands action at a later stage s ≥ t, the action witness
must have action input n ≥ m and therefore must have action sides (a, b). �

Assume that 〈p,N 〉 demands action infinitely often because otherwise we can
immediately conclude that it adds only finitely many elements ≺L-below z. Let s1
be as in Claim 1, let t > s1 be a stage at which 〈p,N 〉 demands action, and let
s2 = t + 1. Then 〈p,N 〉 has action sides (a, b) at stage t < s2, and whenever some
〈p,M 〉 < z demands action at a stage s ≥ s2 > s1, it also has action sides (a, b).
Thus at every stage s ≥ s2, the most recently used action sides by a 〈p,M 〉 < z is
always (a, b).

Claim 2. Suppose that an element k is added to Xs and k ≺L z is defined at some
stage s ≥ s2. Then k ∈ A2p,1–a ∩ A2p+1,1–b .

Proof of Claim 2. We already know that if 〈q,M 〉 ≥ z, then 〈q,M 〉 does not add
elements k ≺L z after stage s2. Thus we need only consider pairs 〈q,M 〉 < z. For
these pairs, we have assumed inductively that if 〈q,M 〉 < 〈p,N 〉, then 〈q,M 〉 does
not add elements k ≺L z after stage s2. Thus we need only consider pairs 〈q,M 〉
with 〈p,N 〉 ≤ 〈q,M 〉 < z. Suppose such a 〈q,M 〉 acts after stage s2. When 〈q,M 〉
chooses the k’s to add, it uses an r ≥ p in the intersection (
) because 〈p,N 〉 ≤
〈q,M 〉. The action of pair 〈q,M 〉 must use (ap, bp) = (a, b). This is because after
stage s2, (a, b) is always the most recently used action sides by the pairs of the
form 〈p,K〉 with 〈p,K〉 < z. Because 〈p,N 〉 ≤ 〈q,M 〉 < z, it is thus also the case
that (a, b) is always the most recently used action sides by the pairs of the form
〈p,K〉 ≤ 〈q,M 〉 at every stage after s2. Thus when 〈q,M 〉 acts at some stage s ≥
s2, it uses (ap, bp) = (a, b), and therefore the k’s it adds to Xs are chosen from
A2p,1–a ∩ A2p+1,1–b , as claimed. �

We can now show that 〈p,N 〉 adds only finitely many elements k ≺L z.

Claim 3. The pair 〈p,N 〉 adds only finitely many elements k ≺L z.

Proof of Claim 3. Suppose that 〈p,N 〉 acts at some stage s ≥ s2, adds an
element k to Xs , and defines k ≺L z. Then at stage s, the action witness for 〈p,N 〉
must be (a, b, n) for some n, where ϕ�(p)(n) = x for some x ∈ A2p,a , ϕr(p)(n) = y
for some y ∈ A2p+1,b , and x ≺L y "L z. The action then places k’s of each color
d ≤ max<{x, y} in the interval (x, y)L. If 〈p,N 〉 acts again at some later stage t > s
with some action input m, then again ϕ�(p)(m) ∈ A2p,a and ϕr(p)(m) ∈ A2p+1,b .
However, it cannot again be that ϕ�(p)(m) = x and ϕr(p)(m) = y because condition
(4) would fail in this situation. Thus when adding a number k ≺L z, the action input
n used by 〈p,N 〉 specifies a pair (x, y) = (ϕ�(p)(n), ϕr(p)(n)) ∈ A2p,a × A2p+1,b with
x ≺L y "L z, and each such pair can be specified by 〈p,N 〉 at most once. By Claim
2, every element added ≺L-below z after stage s2 is in A2p,1–a ∩ A2p+1,1–b . Therefore
there are only finitely many pairs (x, y) ∈ A2p,a × A2p+1,b with x ≺L y "L z, and
therefore 〈p,N 〉 can only add finitely many elements k ≺L z. �

We have shown that for every z, no 〈p,N 〉 ≥ z adds an element ≺L-below z after
stage z and that each 〈p,N 〉 < z adds only finitely many elements≺L-below z. Thus
for every z, only finitely many elements are ever added≺L-below z. ThereforeL ∼= �.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 987

Now let ϕ and � be total computable functions with limn∈C ϕ(n) =
limn∈C �(n) = ∞. We complete the proof by showing that (∗) is satisfied for ϕ and
�. Assume that (∀∞n ∈ C)(�(n) ≺L ϕ(n)), for otherwise (∗) vacuously holds. Let
p be such that ϕ�(p) = � and ϕr(p) = ϕ. By cohesiveness, let (a, b) ∈ {0, 1} × {0, 1}
and N ∈ N be such that, for all n ∈ C with n > N , ϕ�(p)(n) ∈ A2p,a and
ϕr(p)(n) ∈ A2p+1,b . Let n0 ≥ N be large enough so that for all n ∈ C with n ≥ n0,
ϕ�(p)(n) is not "L-below any of 0, 1, ... , 〈p,N 〉. To choose n0, notice that the set Z
of elements that are "L-below any of 0, 1, ... , 〈p,N 〉 is finite because L ∼= �. Then
(∀∞n ∈ C)(ϕ�(p)(n) /∈ Z) because limn∈C ϕ�(p)(n) = ∞.

Suppose that n ∈ C and n ≥ n0, and furthermore suppose for a contradiction
that there is a d < max<{ϕ�(p)(n), ϕr(p)(n)} such that there is no k with ϕ�(p)(n) ≺L
k ≺L ϕr(p)(n) and F (k) = d . Then conditions (1)–(5) are satisfied by (a, b, n) at all
sufficiently large stages s. Condition (1) is satisfied because ϕ�(p) and ϕr(p) are total.
Condition (2) is satisfied because n ≥ N and n ∈ C . Condition (3) is satisfied by
the choice of N. Condition (4) is satisfied by the assumption that there is no k with
ϕ�(p)(n) ≺L k ≺L ϕr(p)(n) and F (k) = d and hence there is no such k at every stage
s at which both ϕ�(p)(n) and ϕr(p)(n) are present in Xs . Condition (5) is satisfied by
the choice of n0. Each m < n can be the action input for 〈p,N 〉 at most once, and,
at sufficiently large stages, (a, b) is the only possible action sides for 〈p,N 〉. Thus at
some stage the pair 〈p,N 〉 eventually demands action with action witness (a, b, n).
The action of 〈p,N 〉 defines ϕ�(p)(n) ≺L k ≺L ϕr(p)(n) and F (k) = d for some k,
which contradicts that there is no such k. This shows that (∗) holds for ϕ = ϕr(p)
and � = ϕ�(p), which completes the proof. �

Let C be a co-c.e. cohesive set, and, by Theorem 5.3, let O = (L,N,≺L, F) be a
computable colored copy of � for which

∏
C O is colorful. Then L = (L,≺L) is an

example of a computable copy of � with
∏
C L ∼= � + �.

Corollary 5.4. Let C be a co-c.e. cohesive set. Then there is a computable copy L
of � where the cohesive power

∏
C L has order-type � + �.

Proof. Let C be co-c.e. and cohesive. Let O = (L,N,≺L, F) be the computable
colored copy of � from Theorem 5.3 for C. Let L denote the computable copy
L = (L,≺L) of �. The cohesive power

∏
C L has an initial segment of order-type �

by Lemma 4.1. There is neither a least nor greatest non-standard element of
∏
C L

by Lemma 4.3. Theorem 5.3 implies that the non-standard elements of
∏
C L are

dense. So
∏
C L consists of a standard part of order-type� and a non-standard part

that forms a countable dense linear order without endpoints. So
∏
C L ∼= � + �. �

Example 5.5. Let C be a co-c.e. cohesive set, and let L be a computable copy of
� with

∏
C L ∼= � + � as in Corollary 5.4.

(1) There is a countable collection of computable copies of � whose cohesive
powers over C are pairwise non-elementarily equivalent. Let k ≥ 1, and let k
denote the k-element linear order 0 < 1 < ··· < k – 1 as well as its order-type.
Then kL has order-type� because L has order-type�, and

∏
C k

∼= k by the
discussion following Definition 2.2. Using Theorem 3.6, we calculate∏

C
(kL) ∼=

(∏
C
k
)(∏

C
L
) ∼= k(� + �) ∼= � + k�.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

988 RUMEN DIMITROV ET AL.

The linear orders � + k� for k ≥ 1 are pairwise non-elementarily equivalent.
The sentence “there are x0 ≺ ··· ≺ xk–1 such that every other y satisfies either
y ≺ x0 or xk–1 ≺ y; if y ≺ x0, then there is a z with y ≺ z ≺ x0; and if
xk–1 ≺ y, then there is a z with xk–1 ≺ z ≺ y” expressing that there is a
maximal block of size k is true of � + k�, but not of � +m� ifm �= k. Thus
1L, 2L, ... is a sequence of computable copies of � whose cohesive powers∏
C (kL) are pairwise non-elementarily equivalent.

(2) It is possible for non-elementarily equivalent computable linear orders to
have isomorphic cohesive powers. Consider the computable linear orders L
and L+ Q. They are not elementarily equivalent because the sentence “every
element has an immediate successor” is true of L but not of L+ Q. However,
using Theorem 3.6 and the fact that

∏
C Q ∼= �, we calculate∏

C
(L+ Q) ∼=

∏
C
L+

∏
C
Q ∼= (� + �) + � ∼= � + � ∼=

∏
C
L.

Thus the cohesive powers
∏
C L and

∏
C (L+ Q) of L and L+ Q are

isomorphic.

§6. Shuffling finite linear orders into cohesive powers of�. The goal of this section
is to prove that if X ⊆ N \ {0} is a Boolean combination of Σ2 sets, thought of as a
set of finite order-types, and C is a co-c.e. cohesive set, then there is a computable
copy L of � for which

∏
C L has order-type � + �(X ∪ {� + �� + �∗}). Here �

denotes the shuffle operation (see Definition 6.2). We prove this in a modular way by
abstracting the cohesive set away from the computable copy of� being constructed.
The key technical step is Lemma 6.9, which states that from a computable colored
copyO of� and a Boolean combination of Σ2 setsX ⊆ N \ {0}, we can construct a
computable copy L of � such that

∏
C L ∼= � + �(X ∪ {� + �� + �∗}) whenever

C is a cohesive set for which
∏
C O is colorful. Combining Lemma 6.9 with Theorem

5.3 then gives the desired result.
Given a linear order L and a sequence of linear orders (M� : � ∈ |L|) indexed

by |L|, the generalized sum of (M� : � ∈ |L|) over L is obtained by replacing each
element � of L by a copy ofM� .

Definition 6.1 (See [21, Definition 1.38]). Let L be a linear order, and let
(M� : � ∈ |L|) be a sequence of linear orders indexed by |L|. The generalized sum∑
�∈|L|M� of (M� : � ∈ |L|) over L is the linear order S = (S,≺S) defined as

follows. Write L = (L,≺L), and write M� = (M�,≺M�
) for each � ∈ L. Define

S = {(�,m) : � ∈ L ∧ m ∈M�}, and define

(�0, m0) ≺S (�1, m1) if and only if (�0 ≺L �1) ∨ (�0 = �1 ∧ m0 ≺M�0
m1).

Let S =
∑
�∈|L|M� be the generalized sum of a sequence of linear orders

(M� : � ∈ |L|) over a linear order L as in Definition 6.1. Each M� for � ∈ |L|
corresponds to an interval of S, which naturally gives rise to the sum condensation
of S. For (�,m) ∈ |S|, let cΣ((�,m)) = {(x, y) ∈ |S| : � = x}. The sum condensation
cΣ(S) is the condensation obtained from the partition {cΣ((�,m)) : (�,m) ∈ |S|}.
Observe that cΣ((�,m)) ∼= M� for each � ∈ |L| and that cΣ(S) ∼= L.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 989

Generalized sums generalize both the sum and product constructions of
Definition 3.1. View the ordinary sum L0 + L1 as the generalized sum

∑
�∈|2| L�

of L0 and L1 over the 2-element linear order 2 = ({0, 1}, <); and view the product
L0L1 as the generalized sum

∑
�∈|L1| L0 of copies of L0 over L1. We may also use

generalized sums to define shuffles.
The shuffle �(X) of an at-most-countable non-empty collection X of linear orders

is obtained by densely coloring Q with colors from X and then replacing each q ∈ Q
by its color.

Definition 6.2 (See [21, Definition 7.14]). Let X be a non-empty collection of
linear orders with |X | ≤ ℵ0. Letf : Q→ X be a function such thatf–1(M) is dense
inQ for each linear orderM∈ X . LetS =

∑
q∈Q f(q) be the generalized sum of the

sequence (f(q) : q ∈ Q) over Q. By density, the order-type of S does not depend on
the particular choice of f. Therefore S is called the shuffle of X and is denoted �(X).

We usually think of X in a shuffle �(X) as a collection of order-types instead of
as a collection of concrete linear orders.

Let L be a computable linear order, and let (M� : � ∈ |L|) be a uniformly
computable sequence of linear orders. Then one may use the pairing function to
compute a copy of

∑
�∈|L|M� . Likewise, if (Mn : n ∈ N) is a uniformly computable

sequence of linear orders, then one may compute a function f : Q→ N such that
f–1(n) is dense inQ for each n ∈ N and thereby compute a copy of�({Mn : n ∈ N}).

Let C be co-c.e. and cohesive, let L be the linear order from Corollary 5.4 for C,
and consider the linear order 2L from Example 5.5 item (1). We can think of 2L as
being obtained fromL by replacing each element ofL by a copy of 2. This operation
of replacing each element by a copy of 2 is reflected in the cohesive power, and we
have that

∏
C (2L) ∼= � + 2�.

Again let C be co-c.e. and cohesive, and now consider the computable colored
copy O = (R,N,≺R, F) of � from Theorem 5.3. Let R denote (R,≺R). Collapse
F into a coloring G : R→ {0, 1}, where G(r) = 0 if F (r) = 0 and G(r) = 1 if
F (r) ≥ 1. Then the coloring G

∏
C O of

∏
C R induced by G uses exactly two colors:

�0� represented by the constant function with value 0, and �1� represented by the
constant function with value 1. Both of these colors occur densely in the non-
standard part of

∏
C R. Compute a linear order L by starting with R, replacing

each r ∈ R with G(r) = 0 by a copy of 2, and replacing each r ∈ R with G(r) = 1
by a copy of 3. The cohesive power

∏
C L reflects this construction, and we get the

linear order obtained from
∏
C R by replacing each point of G

∏
C O-color �0� by

a copy of 2 and replacing each point of G
∏
C O-color �1� by a copy of 3. Thus we

have a computable copy L of � with
∏
C L ∼= � + �({2, 3}). Using this strategy,

we can shuffle any finite collection of finite linear orders into a cohesive power of a
computable copy of �.

To make the above argument precise and to generalize it to more complicated
shuffles, we first show that cohesive powers of linear orders respect generalized
sums. Let L be a computable linear order, and let (M� : � ∈ |L|) be a uniformly
computable sequence of linear orders indexed by |L|. We wish to show that for any
cohesive set C,

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

990 RUMEN DIMITROV ET AL.∏
C

∑
�∈|L|

M�
∼=

∑
[]∈|∏C L|

∏
C
M	(n).

To do this, we must first explain what we mean by the structure
∏
CM	(n).

Intuitively,
∏
CM	(n) is the cohesive product of the sequence of structures

M	(0),M	(1),M	(2), ... over C, whereM	(n) is undefined if 	(n)↑.
Formally, let L be a computable language, and let (An : n ∈ I) be a uniformly

computable sequence of L-structures indexed by a computable set I ⊆ N. Let C
be a cohesive set, and let 	 : N→ I be a partial computable function with C ⊆∗

dom(). Then
∏
C A	(n) is defined as in Definition 2.2, except one now considers

the =C -equivalence classes of partial computable functions ϕ such that dom(ϕ) ⊆
dom(), ∀n (ϕ(n)↓ → ϕ(n) ∈ |A	(n)|), and C ⊆∗ dom(ϕ). The results of Section
2 hold for these generalized cohesive products of the form

∏
C A	(n) with minor

modifications to the proofs. For example, one must now consider sets of the form
{
n :

A	(n) |= Φ(ϕ0(n), ... , ϕm–1(n))
}

for various L-formulas Φ and partial computable
functionsϕ0, ... , ϕm–1, whereA	(n) appears in place ofAn. If Φ is uniformly decidable
in (An : n ∈ I), then the preceding set remains c.e.

If 	0, 	1 : N→ I are two partial computable functions with C ⊆∗ dom(0),
C ⊆∗ dom(1), and 	0 =C 	1, then it is straightforward to show that

∏
C A	0(n)

∼=∏
C A	1(n). In fact, we are even justified in writing

∏
C A	0(n) =

∏
C A	1(n)

because every element of either structure can be represented by a partial
computable ϕ with C ⊆∗ dom(ϕ) ⊆ dom(0) ∩ dom(1). In particular, the
structure

∑
[]∈|∏C L|

∏
CM	(n) above is well-defined.

Lastly, we point out that if C is a co-c.e. cohesive set with C ⊆∗ dom(), then
the generalized cohesive product

∏
C A	(n) can be realized as a cohesive product

of the form
∏
C Bn. The argument is similar to the argument that every element of

a cohesive product by a co-c.e. cohesive set has a total computable representative.
Fix any computable L-structure D. Let N be such that (∀n > N)(n ∈ C → 	(n)↓).
Define the uniformly computable sequence of L-structures (Bn : n ∈ N) by

Bn =

{
A	(n), if n > N and 	(n)↓ before n is enumerated into C,
D, otherwise.

Then
∏
C Bn ∼=

∏
C A	(n). Again, we may even write

∏
C Bn =

∏
C A	(n) because

every element of either structure can be represented by a partial computable ϕ with
C ⊆∗ dom(ϕ) ⊆ dom().

We are now prepared to show that the cohesive power of a generalized sum is a
generalized sum of cohesive products in the way indicated above. The method of
Theorem 3.6 becomes unwieldy in this situation because of the infinite sequence of
structures to juggle, so we opt for a more hands-on proof.

Theorem 6.3. Let L be a computable linear order, and let (M� : � ∈ |L|) be a
uniformly computable sequence of linear orders indexed by |L|. Let C be a cohesive
set. Then ∏

C

∑
�∈|L|

M�
∼=

∑
[]∈|∏C L|

∏
C
M	(n).

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 991

Proof. To ease notation, let

M =
∑
�∈|L|

M� ,

X =
∏
C
L,

Y[]X =
∏
C
M	(n) for each []X ∈ |X |,

A =
∏
C
M,

B =
∑

[]X∈|X|
Y[]X .

The goal is to show that A ∼= B. The elements of A are of the form [ϕ]A for partial
computable functions ϕ with ∀n (ϕ(n)↓ → ϕ(n) ∈ |M|) and C ⊆∗ dom(ϕ). The
elements of B are of the form

(
[]X , [
]Y[]X

)
for partial computable functions 	 and

 with ∀n ((n)↓ → 	(n) ∈ |L|), C ⊆∗ dom(), dom(
) ⊆ dom(), ∀n (
(n)↓ →

(n) ∈ |M	(n)|), and C ⊆∗ dom(
).

Define a function F : |A| → |B| as follows. For [ϕ]A ∈ |A|, we have that ϕ(n) ∈
|M| and therefore that ϕ(n) = 〈�,m〉 for some � ∈ |L| and m ∈ |M� | whenever
ϕ(n)↓. Let 	 = �0 ◦ ϕ, and let
 = �1 ◦ ϕ. Then []X ∈ |X | and [
]Y[]X

∈ Y[]X . Set

F ([ϕ]A) =
(
[]X , [
]Y[]X

)
. To see that F is well-defined, observe that if ϕ =C �,

then also �0 ◦ ϕ =C �0 ◦ � and �1 ◦ ϕ =C �1 ◦ �.
To show that F is an isomorphism, it suffices to show that F is surjective and

order-preserving by Lemma 3.5.
For surjectivity, consider an element

(
[]X , [
]Y[]X

)
of B. Define a partial

computable ϕ by ϕ(n) � 〈	(n),
(n)〉. Then ϕ(n) ∈ |M| whenever ϕ(n)↓, and
C ⊆∗ dom(ϕ) because C ⊆∗ dom() ∩ dom(
). It follows that [ϕ]A ∈ |A| and
F ([ϕ]A) =

(
[]X , [
]Y[]X

)
.

For order-preserving, suppose that [ϕ]A and [�]A are members ofAwith [ϕ]A ≺A
[�]A. Then (∀∞n ∈ C)(ϕ(n) ≺M �(n)). Write 	 = �0 ◦ ϕ,
 = �1 ◦ ϕ, α = �0 ◦ �,
and � = �1 ◦ �. By the definition ofM,

(∀∞n ∈ C)
((
	(n) ≺L α(n)

)
∨
(
	(n) = α(n) ∧
(n) ≺M	(n)

�(n)
))
.

Thus by cohesiveness, either:

• (∀∞n ∈ C)
(
	(n) ≺L α(n)

)
or

• (∀∞n ∈ C)
(
	(n) = α(n) ∧
(n) ≺M	(n)

�(n)
)
.

In the first case, []X ≺X [α]X . In the second case, []X = [α]X and [
]Y[]X
≺Y[]X

[�]Y[]X
. Thus in either case,

F ([ϕ]A) =
(
[]X , [
]Y[]X

)
≺B

(
[α]X , [�]Y[α]X

)
= F ([�]A),

as desired. �

Notice that Theorem 3.6 items (1) and (2) follow from Theorem 6.3 by viewing
ordinary sums and products of linear orders as generalized sums of linear orders.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

992 RUMEN DIMITROV ET AL.

We now show how to shuffle finitely many finite order-types into the cohesive
power of a computable copy of �.

Lemma 6.4. Let (Mn : n ∈ I) be a uniformly computable sequence of linear orders
indexed by a computable I ⊆ N, and let Mn denote the domain of Mn for each
n ∈ I . Let C be a cohesive set. Let 	 : N→ I be a partial computable function with
C ⊆∗ dom(). Suppose that there is a k > 0 such that (∀∞n ∈ C)(|M	(n)| = k). Then∏
CM	(n)

∼= k.

Proof. As explained at the beginning of Section 2, the property “there are exactly
k distinct elements” can be expressed by a Δ2 sentence Φ. We have that C ⊆∗ {n :
M	(n) |= Φ} by assumption. Therefore

∏
CM	(n) |= Φ by Theorem 2.7 item (3).

Thus
∏
CM	(n) is a linear order with exactly k elements. So

∏
CM	(n)

∼= k. �

Lemma 6.5. Let k0, ... , kN be non-zero natural numbers, and letO be a computable
colored copy of �. There is a computable copy L of � (constructed from O) such
that for every cohesive set C, if

∏
C O is colorful, then

∏
C L has order-type � +

�({k0, ... ,kN}).

Proof. Let O = (R,N,≺R, F) be a computable colored copy of �, and let
R denote (R,≺R). For k > 0, let k = ({0, 1, ... , k – 1}, <) denote the usual
presentation of the k-element linear order. Let (Mr : r ∈ R) be the uniformly
computable sequence of linear orders whereMr = kF (r) if F (r) < N andMr = kN
if F (r) ≥ N . Let L be the generalized sum L =

∑
r∈RMr . The linear order L is

obtained from the copy R of � by replacing each element of R by a finite linear
order. Thus L is infinite, and every element has only finitely many predecessors. So
L is a computable copy of �.

Let C be a cohesive set for which
∏
C O is colorful. We need to show that

∏
C L

has order-type � + �({k0, ... ,kN}).
By Theorem 6.3,∏

C
L =

∏
C

∑
r∈R

Mr
∼=

∑
[]∈|∏C R|

∏
C
M	(n).

To ease notation, letZ denote the linear order
∑

[]∈|∏C R|
∏
CM	(n). Let |

∏
C R|std

and |
∏
C R|nonstd denote the standard and non-standard parts of

∏
C R, respectively.

Then let

Zstd =
∑

[]∈|∏C R|std

∏
C
M	(n),

Znonstd =
∑

[]∈|∏C R|nonstd

∏
C
M	(n),

so that Z ∼= Zstd + Znonstd. Consider the sum condensation cΣ(Z) of Z. We show
that the order-type of the block

∏
CM	(n) of the sum condensation corresponding

to [] ∈ |
∏
C R| is determined by the color F

∏
C O([]) of [] in

∏
C O.

Claim 1. If [] ∈ |
∏
C R| and F

∏
C O([]) is solid color �i� for an i < N , then∏

CM	(n)
∼= ki .

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 993

Proof of Claim 1. That F
∏
C O([]) = �i� means that (∀∞n ∈ C)(F ((n)) =

i). Therefore M	(n) = kF ((n)) = ki for almost every n ∈ C because i < N . Thus∏
CM	(n)

∼= ki by Lemma 6.4. �

Claim 2. If [] ∈ |
∏
C R| and either F

∏
C O([]) is solid color �i� for an i ≥ N or

F
∏
C O([]) is a striped color, then

∏
CM	(n)

∼= kN .

Proof of Claim 2. If F
∏
C O([]) is a striped color, then limn∈C F ((n)) = ∞.

Therefore (∀∞n ∈ C)(F ((n)) ≥ N) in both cases, soM	(n) = kN for almost every
n ∈ C . Thus

∏
CM	(n)

∼= kN by Lemma 6.4. �

Notice that block
∏
CM	(n) is a finite linear order for every [] ∈ |

∏
C R|. Thus

Zstd is a generalized sum of finite linear orders over the copy |
∏
C R|std of �, so

Zstd
∼= �.

Think of the sum condensation cΣ(Znonstd) as being colored by F
∏
C O, where the

block
∏
CM	(n) corresponding to [] ∈ |

∏
C R|nonstd gets color F

∏
C O([]). The

product
∏
C O is colorful, which means that cΣ(Znonstd) ∼= |

∏
C R|nonstd

∼= � and
that each solid color occurs densely. By Claims 1 and 2, the order-type of block∏
CM	(n) for [] ∈ |

∏
C R|nonstd is:

• ki if [] has solid color �i� for an i < N .
• kN if [] has either solid color �i� for an i ≥ N or a striped color.

Therefore Znonstd
∼= �({k0, ... ,kN}). Thus∏

C
L ∼= Z ∼= Zstd + Znonstd

∼= � + �({k0, ... ,kN}),

as desired. �

To handle more complicated patterns of shuffles, we consider sequences of finite
linear orders in which we know the successor relation, we know the least element,
we do not necessarily know the greatest element, but we do know that there are
at most three elements that the greatest element could be. Expand the language of
linear orders to O = {≺, S, B, T0, T1, T2}, where S is a binary relation symbol and
B, T0, T1, and T2 are unary relation symbols. Our intent is to describe finite linear
orders with immediate successor relation S, least element given by B, and greatest
element given by either T0, T1, or T2. Thus S stands for “successor,” B stands for
“bottom,” and T stands for “top.”

Let Γ be the set of O-sentences consisting of the linear order axioms from the
beginning of Section 3 along with the following sentences.

• ∀x∀y (S(x, y) ↔ y is the ≺ -immediate successor of x)
I.e., S(x, y) describes the immediate successor relation.

• ∀x (∃y (x ≺ y) → ∃y S(x, y))
I.e., every element except the last element has an immediate successor.

• ∀x (∃y (y ≺ x) → ∃y S(y, x))
I.e., every element except the first element has an immediate predecessor.

• ∃x B(x)
I.e., B(x) holds for some x.

• ∀x∀y (B(x) → x " y)
I.e., if B(x) holds, then x is least.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

994 RUMEN DIMITROV ET AL.

• ∃x T0(x)
I.e., T0(x) holds for some x.

• ∃x T2(x) → ∃x T1(x)
I.e., if T2(x) holds for some x, then T1(x) holds for some x.

• For each i ≤ 2, ¬∃≥2x Ti (x)
I.e., for each i ≤ 2, there is at most one x for which Ti (x) holds.

• ∀x∀y (T2(x) → y " x)
I.e., if T2(x) holds for x, then x is greatest.

• ¬∃x T2(x) → ∀x∀y (T1(x) → y " x)
I.e., if T2(x) does not hold for any element but T1(x) holds for x, then x is
greatest.

• ¬∃x T1(x) → ∀x∀y (T0(x) → y " x)
I.e., if T1(x) does not hold for any element but T0(x) holds for x, then x is
greatest.

Notice that from Γ it can be deduced that there is a unique element satisfyingB(x)
and a unique element satisfying T0(x). So we could have used constant symbols in
place of B and T0. We prefer the symmetry of a relational language. Also notice that
from Γ it can be deduced that there is a ≺-least element and a ≺-greatest element.
Finally, notice that every sentence in Γ is equivalent to a Π2 sentence.

When shuffling infinite collections of finite linear orders into a cohesive power of
a computable copy of �, we start with a computable colored copy of � and replace
its elements by arbitrarily large finite linear orders. If the finite linear orders can
be uniformly computably expanded to models of Γ, then this replacement process
naturally shuffles the linear order� + �� + �∗ into the cohesive power. Lemma 6.7,
which implies that � + �({� + �� + �∗}) can be achieved as the order-type of a
cohesive power of a computable copy of �, serves as an example explaining this
phenomenon.

Lemma 6.6. Let (Mn : n ∈ I) be a uniformly computable sequence of O-structures
that are all finite models of Γ, indexed by a computable I ⊆ N. Let Mn denote the
domain of Mn for each n ∈ I . Let C be a cohesive set. Let 	 : N→ I be a partial
computable function with C ⊆∗ dom(). Suppose that limn∈C |M	(n)| = ∞. Then, as
a linear order,

∏
CM	(n) has order-type � + �� + �∗.

Proof. We have that Mn |= Γ for each n ∈ I by assumption and that each
sentence of Γ is equivalent to a Π2 sentence. Therefore

∏
CM	(n) |= Γ by Theorem

2.7 item (2). Thus
∏
CM	(n) has a≺∏

C M	(n)
-least element and a≺∏

C M	(n)
-greatest

element (as these facts can be deduced from Γ), every element that is not≺∏
C M	(n)

-least has a≺∏
C M	(n)

-immediate successor, and every element that is not≺∏
C M	(n)

-greatest has a≺∏
C M	(n)

-immediate predecessor. Furthermore,
∏
CM	(n) is infinite

because limn∈C |M	(n)| = ∞. Thus as a linear order,
∏
CM	(n) must consist of an

initial block of order-type�, a final block of order-type�∗, and intermediate blocks
of order-type � . We show that the blocks of

∏
CM	(n) are dense.

If C were co-c.e. or the sequence (Mn : n ∈ I) were uniformly 1-decidable, then
we could use a saturation argument to conclude that the blocks of

∏
CM	(n) are

dense. However, C is not necessarily co-c.e., and, although each individual structure

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 995

Mn is finite and hence decidable, the sequence (Mn : n ∈ I) need not be uniformly
1-decidable. We therefore resort to an ad hoc argument.

Let [ϕ], [�] ∈ |
∏
CM	(n)| be such that [�] Î∏

C M	(n)
[ϕ]. Then limn∈C |(�(n),

ϕ(n))M	(n)
| = ∞ by Lemma 3.8. If 	(n)↓, ϕ(n)↓, �(n)↓, and �(n) ≺M	(n)

ϕ(n),
then we can effectively determine the size of the interval (�(n), ϕ(n))M	(n)

as

follows. Search for x0, ... , xk–1 ∈M	(n) such that SM	(n) (�(n), x0) holds, such that
SM	(n) (xi , xi+1) holds for each i < k – 1, and such that SM	(n) (xk–1, ϕ(n)) holds.
Then |(�(n), ϕ(n))M	(n)

| = k. Such a sequence x0, ... , xk–1 exists because M	(n) is

finite and SM	(n) is the ≺M	(n)
-immediate successor relation onM	(n).

Define a partial computable function � as follows. Given n, if 	(n)↓,ϕ(n)↓,�(n)↓,
and �(n) ≺M	(n)

ϕ(n), then determine the size k of the interval (�(n), ϕ(n))M	(n)

according to the procedure described above. If k > 0, then locate the %k/2&th ≺M	(n)

-least element x of (�(n), ϕ(n))M	(n)
, and output �(n) = x. Otherwise �(n)↑. As

limn∈C |(�(n), ϕ(n))M	(n)
| = ∞, it follows that both limn∈C |(�(n), �(n))M	(n)

| =
∞ and limn∈C |(�(n), ϕ(n))M	(n)

| = ∞. Thus [�] Î∏
C M	(n)

[�] Î∏
C M	(n)

[ϕ]
again by Lemma 3.8. Therefore the blocks of

∏
CM	(n) are dense.

As a linear order,
∏
CM	(n) is countably infinite, has a least block of order-type

�, has a greatest block of order-type �∗, has intermediate blocks of order-type � ,
and the blocks are dense. Thus

∏
CM	(n) has order-type � + �� + �∗ as a linear

order. �

In Lemma 6.6, it is necessary that the structures (Mn : n ∈ I) satisfy additional
assumptions (such as being models of Γ) beyond merely being finite linear orders.
For example, recall from Proposition 4.10 that a cohesive product of finite linear
orders need not have a maximum element.

Lemma 6.7. LetO be a computable colored copy of �. There is a computable copy
L of � (constructed from O) such that for every cohesive set C, if

∏
C O is colorful,

then
∏
C L has order-type � + (� + �� + �∗)�, which is the same as � + �({� +

�� + �∗}).

Proof. Let O = (R,N,≺R, F) be a computable colored copy of �, and let
R denote (R,≺R). Let (Mr : r ∈ R) be the uniformly computable sequence of
linear orders where Mr = r + 1 for each r ∈ R. Let L be the generalized sum
L =

∑
r∈RMr . Then L is a computable copy of �.

Let C be a cohesive set for which
∏
C O is colorful. We need to show that

∏
C L

has order-type � + (� + �� + �∗)�.
By Theorem 6.3,∏

C
L =

∏
C

∑
r∈R

Mr
∼=

∑
[]∈|∏C R|

∏
C
M	(n).

As in the proof of Lemma 6.5, let Z denote
∑

[]∈|∏C R|
∏
CM	(n); let |

∏
C R|std

and |
∏
C R|nonstd denote the standard and non-standard parts of

∏
C R; and let

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

996 RUMEN DIMITROV ET AL.

Zstd =
∑

[]∈|∏C R|std

∏
C
M	(n),

Znonstd =
∑

[]∈|∏C R|nonstd

∏
C
M	(n),

so that Z ∼= Zstd + Znonstd. The fact that
∏
C O is colorful implies that

|
∏
C R|nonstd

∼= �.
If [] ∈ |

∏
C R|std, then there is an r ∈ R such that (∀∞n ∈ C)((n) = r).

Therefore (∀∞n ∈ C)(M	(n) = r + 1), so
∏
CM	(n)

∼= r + 1 by Lemma 6.4.
This means that Zstd is a generalized sum of finite linear orders over a copy of
�, so Zstd

∼= �.
If [] ∈ |

∏
C R|nonstd, then limn∈C 	(n) = ∞ by Lemma 4.2. Letting Mr denote

the domain {0, 1, ... , r} of Mr for each r ∈ R, we have that limn∈C |M	(n)| = ∞.
Then

∏
CM	(n)

∼= � + �� + �∗ by Lemma 6.6. To see that Lemma 6.6 applies in
this simplified situation, note that we can uniformly computably expand the linear
orders (Mr : r ∈ R) to O-structures that are models of Γ. For Mr = r + 1, define
S to be the usual immediate successor relation, define B(x) to hold exactly when
x = 0, define T0(x) to hold exactly when x = r, and define T1(x) and T2(x) to hold
of no element.

We just showed that
∏
CM	(n)

∼= � + �� + �∗ for each [] ∈ |
∏
C R|nonstd.

Therefore Znonstd
∼= � + (� + �� + �∗)� ∼= � + �({� + �� + �∗}). Thus∏

C
L ∼= Z ∼= Zstd + Znonstd

∼= � + (� + �� + �∗)�

∼= � + �({� + �� + �∗}),
as desired. �

We are finally ready to handle shuffles of the form �(X ∪ {� + �� + �∗}), where
X ⊆ N \ {0} is a Boolean combination of Σ2 sets thought of as a set of finite
order-types. We proceed in two steps. Lemma 6.8 handles the case where X is the
intersection of a Σ2 set and a Π2 set, and Lemma 6.9 extends the method to finite
unions of such sets.

Lemma 6.8. Let X ⊆ N \ {0} be the intersection of a Σ2 set and a Π2 set, thought
of as a set of finite order-types. Let O be a computable colored copy of �. There is a
computable copy L of � (constructed from O) such that for every cohesive set C, if∏
C O is colorful, then

∏
C L has order-type � + �(X ∪ {� + �� + �∗}).

Proof. The X = ∅ case is Lemma 6.7, so we may assume that X �= ∅. Let k0 be
the least element of X. Let P and Q be computable predicates for which

X = {k : ∃a ∀b P(k, a, b)} ∩ {k : ∀a ∃b Q(k, a, b)}.
Let O = (R,N,≺R, F) be a computable colored copy of �, and let R denote
(R,≺R). We define a uniformly computable sequence (Mr : r ∈ R) of O-structures
that are finite models of Γ and have the following properties. Let Mr denote the
domain ofMr for each r ∈ R.

(1) If k ∈ X , then (∀∞r ∈ R)(F (r) = k → |Mr | = k).
(2) If k < k0, then (∀∞r ∈ R)(F (r) = k → |Mr | = r + 1).

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 997

(3) If k > k0 and k /∈ X , then either (∀∞r ∈ R)(F (r) = k → |Mr | = k0) or
(∀∞r ∈ R)(F (r) = k → |Mr | = r + 1).

We then take L to be the generalized sum
∑
r∈R(Mr�≺) of the sequence (Mr : r ∈

R), viewed as a sequence of finite linear orders, over the linear orderR.
To compute Mr = (Mr,≺, S, B, T0, T1, T2), first initialize Mr on {0, ... , k0 – 1}

as follows:

• {0, ... , k0 – 1} ⊆Mr .
• ≺ agrees with the usual order < on {0, ... , k0 – 1}.
• S is the usual successor relation on {0, ... , k0 – 1}.
• B(x) holds if and only if x = 0.
• T0(x) holds if and only if x = k0 – 1.
• Neither T1(x) nor T2(x) hold of any x ∈ {0, ... , k0 – 1}.

If F (r) = k0, or if F (r) < k0 and r < k0, then define x /∈Mr for all x ≥ k0. In this
case, Mr is the usual presentation of the linear order k0 expanded by S, B, T0, T1,
and T2 as described above. It is straightforward to check thatMr |= Γ.

If F (r) < k0 and r ≥ k0, then add k0, ... , r toMr so thatMr = {0, ... , r}. Extend
≺ to agree with the usual order on {0, ... , r}, and extend S to be the corresponding
successor relation. Define T1(x) to hold if and only if x = r, and define T2(x)
to hold of no x ∈Mr . Define x /∈Mr for all x > r. In this case, Mr is the usual
presentation of the linear order r + 1 expanded by S, B,T0,T1, andT2, whereT0(x)
holds only of k0 – 1, T1(x) holds only of r, and T2(x) holds of no element. It is
again straightforward to check thatMr |= Γ.

IfF (r) > k0, then computeMr in stages. At all stages s, we maintain thatMr |= Γ
and that ≺ agrees with the usual order < on the elements of Mr . For every x, we
decide whether or not x ∈Mr at stage x at the latest. The initialization of Mr on
{0, ... , k0 – 1} described above counts as stage 0, so Mr |= Γ at the end of stage 0.
Proceed as follows at stage s > 0. If it has not yet been decided whether s ∈Mr by
the beginning of stage s, then define s /∈Mr . Then act according to the following
cases.

Case 1: Mr is still {0, ... , k0 – 1} at the beginning of stage s, (∃a < r)(∀b <
s)P(F (r), a, b) holds, and (∀a < r)(∃b < s)Q(F (r), a, b) holds. In
this case, let s < x0 < x1 < ··· < xF (r)–k0–1 be the F (r) – k0 least
numbers x > s for which it has not yet been decided whether
x ∈Mr . Add x0, ... , xF (r)–k0–1 to Mr so that Mr = {0, ... , k0 –
1, x0, ... , xF (r)–k0–1}. Extend ≺ to agree with the usual order on
{0, ... , k0 – 1, x0, ... , xF (r)–k0–1}, and extend S to be the corresponding
successor relation. So S(k0 – 1, x0) holds, and S(xi , xi+1) holds for
all i < F (r) – k0 – 1. Finally, define T1(x) to hold if and only if
x = xF (r)–k0–1, and define T2(x) to hold of no x ∈Mr . Go on to
stage s + 1. Observe that |Mr | = F (r) at the end of stage s.

To see that Mr |= Γ at the end of stage s, observe that no elements
were added toMr between its initialization and the start of stage s. Thus
at the start of stage s, T0(x) holds of one element, and T1(x) and T2(x)
hold of no element. During stage s, a new greatest element xF (r)–k0–1 is
added, and T1(x) is defined to hold of exactly this element. Also, T2(x)

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

998 RUMEN DIMITROV ET AL.

still holds of no element at the end of stage s. One may now check that
Mr |= Γ.

Case 2: (∀a < r)(∃b < s)¬P(F (r), a, b) holds and |Mr | ≤ r at the beginning
of stage s. In this case, let m = |Mr |, and let �0 ≺ �1 ≺ ··· ≺ �m–1 be
the elements of Mr listed in ≺-increasing order. Recall that ≺ and <
agree onMr , so also �0 < �1 < ··· < �m–1. Let s < x0 < x1 < ··· < xr–m
be the r + 1 – m least numbers x > s for which it has not yet been
decided whetherx ∈Mr . Notice thatx0 > �m–1 as well, as otherwise �m–1
would not have been least when it was added to Mr . Add x0, ... , xr–m
toMr so thatMr = {�0, ... , �m–1, x0, ... , xr–m}. Extend ≺ to agree with
the usual order on {�0, ... , �m–1, x0, ... , xr–m}, and extend S to be the
corresponding successor relation. So S(�m–1, x0) holds, and S(xi , xi+1)
holds for all i < r – m. If there is no x for which T1(x) holds, then define
T1(x) to hold if and only if x = xr–m and define T2(x) to hold of no
x ∈Mr . If there is already an x for which T1(x) holds, then define T2(x)
to hold if and only if x = xr–m. Go on to stage s + 1. Observe that
|Mr | = r + 1 at the end of stage s.

Notice that Case 1 and Case 2 can occur at most one time each. After
Case 1 occurs,Mr is never again {0, ... , k0 – 1}, so Case 1 never occurs
again. After Case 2 occurs, we never again have |Mr | ≤ r, so Case 2 never
occurs again. Thus prior to stage s, Case 2 cannot have occurred (as it is
occurring now at stage s), and Case 1 can have occurred at most once. If
Case 1 did not occur before stage s, then no elements were added toMr

between its initialization and the start of stage s. The situation is then
analogous to that of Case 1. We define T1(x) to hold of exactly the new
greatest element xr–m that is added at stage s, and we define T2(x) to
hold of no element. If instead Case 1 did occur before stage s, then at the
start of stage s, T0(x) and T1(x) hold of exactly one element each, and
T2(x) holds of no element. During stage s, a new greatest element xr–m
is added, and T2(x) is defined to hold of exactly this element. In either
situation, one may check thatMr |= Γ.

Case 3: If neither Case 1 nor Case 2 applies, then do nothing more at stage s
and go on to stage s + 1. Then Mr |= Γ at the end of stage s because
Mr |= Γ at the start of stage s.

This concludes the construction of (Mr : r ∈ R). In the computation of Mr for
a given r ∈ R, Case 1 and Case 2 can occur at most once each, as observed in the
discussion of Case 2 above. Therefore elements are added toMr at most twice, so it
is finite. It also follows thatMr |= Γ at the end of the construction becauseMr |= Γ
at every stage.

We show that the above items (1)–(3) hold.
For item (1), consider a k ∈ X . If k = k0, then |Mr | = k whenever r ∈ R and

F (r) = k. Suppose instead that k > k0. Both ∃a ∀b P(k, a, b) and ∀a ∃b Q(k, a, b)
hold because k ∈ X . Suppose that r ∈ R has F (r) = k and is large enough so that
(∃a < r)(∀b)P(k, a, b). Then Case 2 never occurs in the computation ofMr because
(∀a < r)(∃b < s)¬P(F (r), a, b) always fails. On the other hand, Case 1 occurs at

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 999

the first stage s such that (∀a < r)(∃b < s)Q(F (r), a, b). Therefore |Mr | = k. This
shows that (∀∞r ∈ R)(F (r) = k → |Mr | = k).

For item (2), consider a k < k0. Then |Mr | = r + 1 whenever r ∈ R, r ≥ k0, and
F (r) = k. Thus (∀∞r ∈ R)(F (r) = k → |Mr | = r + 1).

For item (3), consider a k > k0 with k /∈ X . Then either ∀a ∃b ¬P(k, a, b) or
∃a ∀b ¬Q(k, a, b). First suppose that∀a ∃b ¬P(k, a, b) holds. Let r ∈ R haveF (r) =
k and r ≥ k. Let s be the first stage at which (∀a < r)(∃b < s)¬P(F (r), a, b) in the
computation ofMr . Then |Mr | ≤ r at the beginning of stage s. This is because Case
2 cannot have occurred before stage s by the choice of s, so either |Mr | = k0 < r
(if Case 1 has not occurred by stage s) or |Mr | = k ≤ r (if Case 1 has occurred by
stage s). Thus Case 2 occurs at stage s, so |Mr | = r + 1 at the end of stage s. Neither
Case 1 nor Case 2 occurs after stage s because Case 2 occurs at most once and Case
1 cannot occur after Case 2. Thus |Mr | = r + 1 at the end of the construction. This
shows that (∀∞r ∈ R)(F (r) = k → |Mr | = r + 1).

Finally, suppose that ∃a ∀b ¬Q(k, a, b) holds but ∀a ∃b ¬P(k, a, b) fails.
Thus both ∃a ∀b P(k, a, b) and ∃a ∀b ¬Q(k, a, b) hold. Suppose that r ∈ R
has F (r) = k and is large enough so that (∃a < r)(∀b)P(F (r), a, b) and
(∃a < r)(∀b)¬Q(F (r), a, b). Then neither Case 1 nor Case 2 occur at any stage in
the computation ofMr . Thus |Mr | = k0. This shows that (∀∞r ∈ R)(F (r) = k →
|Mr | = k0) and completes the argument that item (3) holds.

LetL be the generalized sum
∑
r∈R(Mr�≺) of the sequence (Mr : r ∈ R), viewed

as a sequence of finite linear orders, over the linear orderR as indicated above. Then
L is a computable copy of �. Let C be a cohesive set for which

∏
C O is colorful.

We need to show that
∏
C L has order-type � + �(X ∪ {� + �� + �∗}).

Theorem 6.3 gives us that, as linear orders,∏
C
L =

∏
C

∑
r∈R

Mr
∼=

∑
[]∈|∏C R|

∏
C
M	(n).

As in the proofs of Lemmas 6.5 and 6.7, let Z denote the linear order∑
[]∈|∏C R|

∏
CM	(n); let |

∏
C R|std and |

∏
C R|nonstd denote the standard and

non-standard parts of
∏
C R; and let

Zstd =
∑

[]∈|∏C R|std

∏
C
M	(n),

Znonstd =
∑

[]∈|∏C R|nonstd

∏
C
M	(n),

so that Z ∼= Zstd + Znonstd. We show that the order-type of the block
∏
CM	(n)

of cΣ(Znonstd) corresponding to [] ∈ |
∏
C R|nonstd is determined by the color

F
∏
C O([]) of [] in

∏
C O.

Claim 1. If [] ∈ |
∏
C R|nonstd and F

∏
C O([]) is solid color �k� for a k ∈ X , then∏

CM	(n)
∼= k as a linear order.

Proof of Claim 1. We have that limn∈C 	(n) = ∞ by Lemma 4.2 and that
(∀∞n ∈ C)(F ((n)) = k) by definition. Furthermore, k ∈ X implies that (∀∞r ∈

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

1000 RUMEN DIMITROV ET AL.

R)(F (r) = k → |Mr | = k) by item (1). Therefore (∀∞n ∈ C)(|M	(n)| = k). Thus∏
CM	(n)

∼= k by Lemma 6.4. �

Claim 2. If [] ∈ |
∏
C R|nonstd and F

∏
C O([]) is solid color �k� with k < k0, then∏

CM	(n)
∼= � + �� + �∗ as a linear order.

Proof of Claim 2. Again, limn∈C 	(n) = ∞ by Lemma 4.2 and (∀∞n ∈
C)(F ((n)) = k) by definition. Furthermore, k < k0 implies that (∀∞r ∈
R)(F (r) = k → |Mr | = r + 1) by item (2). Therefore limn∈C |M	(n)| = ∞, so∏
CM	(n)

∼= � + �� + �∗ by Lemma 6.6. �

Claim 3. If [] ∈ |
∏
C R|nonstd and F

∏
C O([]) is solid color �k� for a k > k0 with

k /∈ X , then, as a linear order,
∏
CM	(n) either has type k0 or type � + �� + �∗.

Proof of Claim 3. Again, limn∈C 	(n) = ∞ by Lemma 4.2 and (∀∞n ∈
C)(F ((n)) = k) by definition. As k > k0 and k /∈ X , either (∀∞r ∈ R)(F (r) =
k → |Mr | = k0) or (∀∞r ∈ R)(F (r) = k → |Mr | = r + 1) by item (3). The first
alternative yields that (∀∞n ∈ C)(|M	(n)| = k0) and hence that

∏
CM	(n)

∼= k0 by
Lemma 6.4. The second alternative yields that limn∈C |M	(n)| = ∞ and hence that∏
CM	(n)

∼= � + �� + �∗ by Lemma 6.6. �

Claim 4. If [] ∈ |
∏
C R|nonstd and F

∏
C O([]) is a striped color, then, as a linear

order,
∏
CM	(n) has either type k0 or type � + �� + �∗.

Proof of Claim 4. We have that limn∈C 	(n) = ∞ by Lemma 4.2 and that
limn∈C F ((n)) = ∞ because F

∏
C O([]) is a striped color. By inspecting the

construction, we see that for r ∈ R, either |Mr | = k0, |Mr | = F (r), or |Mr | =
r + 1. By cohesiveness, either (∀∞n ∈ C)(|M	(n)| ≤ k0) or (∀∞n ∈ C)(|M	(n)| >
k0). If (∀∞n ∈ C)(|M	(n)| ≤ k0), then in fact (∀∞n ∈ C)(|M	(n)| = k0) because
limn∈C F ((n)) = ∞. In this case, we have that

∏
CM	(n)

∼= k0 by Lemma 6.4. If
instead (∀∞n ∈ C)(|M	(n)| > k0), then it must be that limn∈C |M	(n)| = ∞. This
is because |M	(n)| is either F ((n)) or 	(n) + 1 for almost every n ∈ C , and both
limn∈C F ((n)) = ∞ and limn∈C 	(n) = ∞. Therefore

∏
CM	(n)

∼= � + �� + �∗

by Lemma 6.6. �

If [] ∈ |
∏
C R|std, then there is an r ∈ R such that (∀∞n ∈ C)((n) = r).

Therefore there is a k > 0 such that (∀∞n ∈ C)(|M	(n)| = k), in which case∏
CM	(n)

∼= k by Lemma 6.4. This means that Zstd is a generalized sum of finite
linear orders over the copy |

∏
C R|std of �, so Zstd

∼= �.
Think of the sum condensation cΣ(Znonstd) as being colored by F

∏
C O, where

the block
∏
CM	(n) corresponding to [] ∈ |

∏
C R|nonstd gets color F

∏
C O([]).

The product
∏
C O is colorful, which means that cΣ(Znonstd) ∼= |

∏
C R|nonstd

∼= �
and that each solid color occurs densely. By Claims 1–4 the order-type of block∏
CM	(n) for [] ∈ |

∏
C R|nonstd is:

• k if [] has solid color �k� with k ∈ X .
• � + �� + �∗ if [] has solid color �k� with k < k0 (which includes k = 0

because k0 > 0).
• Either k0 or � + �� + �∗ if [] has solid color �k� with k > k0 and k /∈ X .
• Either k0 or � + �� + �∗ if [] has a striped color.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 1001

Therefore Znonstd
∼= �(X ∪ {� + �� + �∗}). Thus∏

C
L ∼= Z ∼= Zstd + Znonstd

∼= � + �(X ∪ {� + �� + �∗}),

as desired. �

Lemma 6.9. Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets, thought of
as a set of finite order-types. Let O be a computable colored copy of �. There is a
computable copy L of � (constructed from O) such that for every cohesive set C, if∏
C O is colorful, then

∏
C L has order-type � + �(X ∪ {� + �� + �∗}).

Proof. The X = ∅ case is Lemma 6.7, so we may assume that X �= ∅. Let k0 be
the least element of X. By putting X in disjunctive normal form and noticing that
finite intersections of Σ2 sets are Σ2 and that finite intersections of Π2 sets are Π2,
we may write X as a finite union X =

⋃
i<N Xi , where each Xi is the intersection of

a Σ2 set and a Π2 set. It is convenient to further assume that k0 ∈ Xi for each i < N .
Let O = (R,N,≺R, G) be a computable colored copy of �, and let R denote

(R,≺R). We define a uniformly computable sequence (Mr : r ∈ R) of O-structures
that are finite models of Γ. Let 〈·, ·〉 : {0, ... , N – 1} × N→ N be a computable
bijection with computable projections �0 and �1. Compute eachMr as in the proof
of Lemma 6.8, but for set X�0(G(r)) and color F (r) = �1(G(r)).

Let L be the generalized sum
∑
r∈RMr , as in the proof of Lemma 6.8. Then L

is a computable copy of �. Let C be a cohesive set for which
∏
C O is colorful.

Then again
∏
C L ∼= Zstd + Znonstd, where |

∏
C R|std and |

∏
C R|nonstd denote the

standard and non-standard parts of
∏
C R,

Zstd =
∑

[]∈|∏C R|std

∏
C
M	(n),

Znonstd =
∑

[]∈|∏C R|nonstd

∏
C
M	(n),

and Zstd
∼= �.

Again, think of cΣ(Znonstd) as being colored byG
∏
C O, where the block

∏
CM	(n)

corresponding to [] ∈ |
∏
C R|nonstd gets color G

∏
C O([]). The product

∏
C O is

colorful, which means that cΣ(Znonstd) ∼= |
∏
C R|nonstd

∼= � and that each solid color
occurs densely. The order-type of block

∏
CM	(n) for each [] ∈ |

∏
C R|nonstd can

be determined as in the proof of Lemma 6.8.

• If G
∏
C O([]) is solid color �〈i, k〉� where k ∈ Xi , then

∏
CM	(n)

∼= k.

• IfG
∏
C O([]) is solid color �〈i, k〉� where k < k0, then

∏
CM	(n)

∼= � + �� +
�∗.

• If G
∏
C O([]) is solid color �〈i, k〉� where k > k0 and k /∈ Xi , then

∏
CM	(n)

either has order-type k0 or order-type � + �� + �∗.
• Suppose that G

∏
C O([]) is a striped color. As �0(G(r)) < N for every

r ∈ R, the cohesiveness of C implies that there is an i < N such that
(∀∞n ∈ C)(�0(G((n))) = i). Therefore limn∈C �1(G((n))) = ∞ because
G
∏
C O([]) is striped, and so

∏
CM	(n) either has order-type k0 or order-

type � + �� + �∗ as in the proof of Lemma 6.8.

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

1002 RUMEN DIMITROV ET AL.

Therefore Znonstd
∼= �(

⋃
i<N Xi ∪ {� + �� + �∗}) = �(X ∪ {� + �� + �∗}).

Thus
∏
C L ∼= � + �(X ∪ {� + �� + �∗}) as desired. �

We end with the main result of this section by combining Theorem 5.3 with
Lemmas 6.5 and 6.9.

Theorem 6.10. Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets, thought of
as a set of finite order-types. Let C be a co-c.e. cohesive set. Then there is a computable
copy L of � where the cohesive power

∏
C L has order-type � + �(X ∪ {� + �� +

�∗}). Moreover, if X is finite and non-empty, then there is also a computable copy L
of � where the cohesive power

∏
C L has order-type � + �(X).

Proof. Let C be a co-c.e. cohesive set. By Theorem 5.3, let O be a computable
colored copy of � such that

∏
C O is colorful. Let X ⊆ N \ {0} be a Boolean

combination of Σ2 sets. Let L be the computable copy of � constructed from O for
X as provided by Lemma 6.9. Then

∏
C L ∼= � + �(X ∪ {� + �� + �∗}). If X is

finite and non-empty, then we may alternatively apply Lemma 6.5 instead of Lemma
6.9 to obtain a computable copy L of � with

∏
C L ∼= � + �(X). �

Acknowledgment. We thank our anonymous reviewers for their many thoughtful
suggestions of generalizations and alternative proofs that greatly improved the
cohesiveness of this work.

Funding. This project was partially supported by the John Templeton Foundation
Grant ID 60842 (Shafer); EPSRC Grant EP/T031476/1 (Shafer); the University of
Leeds School of Mathematics Research Visitors’ Centre (Dimitrov and Shafer);
the FWO Pegasus program (Shafer); FWO/BAS project VS09816 (Shafer and
Soskova); BNSF, KP-06-Austria-04/19 (Soskova and Vatev); SU, FNI Grant
#80-10-128/16.04.2020 (Soskova and Vatev); NSF FRG Grant DMS-2152095
(Harizanov); Simons Foundation Grant #581896 (Harizanov); Simons Foundation
Grant #853762 (Harizanov); and NSF Grant DMS-1600625 (Dimitrov, Harizanov,
Morozov, Soskova, and Vatev). The opinions expressed in this work are those of the
authors and do not necessarily reflect the views of the John Templeton Foundation.

REFERENCES

[1] C. J. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Studies in
Logic and the Foundations of Mathematics, vol. 144, North-Holland, Amsterdam, 2000.

[2] C. C. Chang and H. J. Keisler, Model Theory, third ed., Studies in Logic and the Foundations
of Mathematics, vol. 73, North-Holland, Amsterdam, 1990.

[3] R. Dimitrov,A class of�0
3 modular lattices embeddable as principal filters in L∗ (V∞). Archive for

Mathematical Logic, vol. 47 (2008), no. 2, 111–132.
[4] ———, Cohesive powers of computable structures. Godishnik na Sofiı̌skiya Universitet “Sv. Kliment

Ohridski”. Fakultet po Matematika i Informatika. Annuaire de l’Université de Sofia “St. Kliment Ohridski”.
Faculté de Mathématiques et Informatique, vol. 99 (2009), 193–201.

[5] R. Dimitrov and V. Harizanov, Orbits of maximal vector spaces. Algebra and Logic, vol. 54
(2016), no. 6, 440–477.

[6] ———, Countable nonstandard models: Following Skolem’s approach, Handbook of the History
and Philosophy of Mathematical Practice (B. Sriraman, editor), Springer, Cham, 2020, pp. 1–21.

[7] ———, Effective Ultrapowers and Applications, Aspects of Computation (N. Greenberg, S. Jain,
K. M. Ng, S. Schewe, F. Stephan, G. Wu, and Y. Yang, editors), Lecture Notes Series, Institute for

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.14

ON COHESIVE POWERS OF LINEAR ORDERS 1003

Mathematical Sciences, National University of Singapore, vol. 42, World Scientific, Hackensack, NJ, to
appear.

[8] R. Dimitrov, V. Harizanov, R. Miller, and K. J. Mourad, Isomorphisms on non-standard fields
and Ash’s conjecture, Language, Life, Limits (A. Beckmann, E. Csuhaj-Varjú, and K. Meer, editors),
Lecture Notes in Computer Science, vol. 8493, Springer, Cham, 2014, pp. 143–152.

[9] R. Dimitrov, V. Harizanov, A. Morozov, P. Shafer, A. Soskova, and S. Vatev, Cohesive
Powers of Linear Orders, Computing with Foresight and Industry (F. Manea, B. Martin, D. Paulusma, and
G. Primiero, editors), Lecture Notes in Computer Science, vol. 11558, Springer, Cham, 2019, pp. 168–180.

[10] S. Feferman, D. S. Scott, and S. Tennenbaum, Models of arithmetic through function rings.
Notices of the American Mathematical Society, vol. 6 (1959), no. 2, 173–174.

[11] E. B. Fokina, V. Harizanov, and A. Melnikov, Computable model theory, Turing’s Legacy:
Developments from Turing’s Ideas in Logic (R. Downey, editor), Cambridge University Press, Cambridge,
2014, pp. 124–194.

[12] Y. Hirschfeld, Models of arithmetic and recursive functions. Israel Journal of Mathematics,
vol. 20 (1975), no. 2, 111–126.

[13] Y. Hirschfeld and W. H. Wheeler, Forcing, Arithmetic, Division Rings, Lecture Notes in
Mathematics, vol. 454, Springer, Berlin and New York, 1975.

[14] W. Hodges, A Shorter Model Theory, Cambridge University Press, Cambridge, 1997.
[15] R. Kaye, Models of Peano Arithmetic, Oxford Logic Guides, vol. 15, Oxford University Press,

New York, 1991.
[16] M. Lerman, Recursive functions modulo co-r-maximal sets. Transactions of the American

Mathematical Society, vol. 148 (1970), 429–444.
[17] ———, Degrees of Unsolvability: Local and Global Theory, Perspectives in Mathematical Logic,

Springer, Berlin, 1983.
[18] A. Montalbán, Computable Structure Theory—Within the Arithmetic, Perspectives in Logic,

Cambridge University Press, Cambridge, 2021.
[19] M. Moses, Recursive linear orders with recursive successivities. Annals of Pure and Applied Logic,

vol. 27 (1984), no. 3, 253–264.
[20] G. C. Nelson, Constructive ultraproducts and isomorphisms of recursively saturated ultrapowers.

Notre Dame Journal of Formal Logic, vol. 33 (1992), no. 3, 433–441.
[21] J. G. Rosenstein, Linear Orderings, Pure and Applied Mathematics, vol. 98, Academic Press,

New York, 1982.
[22] T. Skolem, Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar

unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae, vol. 23 (1934),
no. 1, 150–161.

[23] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic,
Springer, Berlin, 1987.

[24] ———, Turing Computability, Springer, Berlin, 2016.

DEPARTMENT OF MATHEMATICS AND PHILOSOPHY
WESTERN ILLINOIS UNIVERSITY

476 MORGAN HALL, 1 UNIVERSITY CIRCLE
MACOMB, IL 61455, USA

E-mail: rd-dimitrov@wiu.edu
URL: http://www.wiu.edu/users/rdd104/

DEPARTMENT OF MATHEMATICS,
THE GEORGE WASHINGTON UNIVERSITY

PHILLIPS HALL, 801 22ND STREET, NW
WASHINGTON, DC 20052, USA

E-mail: harizanv@gwu.edu
URL: https://home.gwu.edu/∼harizanv/

SOBOLEV INSTITUTE OF MATHEMATICS
4 ACADEMICIAN KOPTYUG AVENUE

630090 NOVOSIBIRSK, RUSSIA
E-mail: morozov@math.nsc.ru
URL: http://www.math.nsc.ru/∼asm256/

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

mailto:rd-dimitrov@wiu.edu
http://www.wiu.edu/users/rdd104/
mailto:harizanv@gwu.edu
https://home.gwu.edu/~harizanv/
mailto:morozov@math.nsc.ru
http://www.math.nsc.ru/~asm256/
https://doi.org/10.1017/jsl.2023.14

1004 RUMEN DIMITROV ET AL.

SCHOOL OF MATHEMATICS
UNIVERSITY OF LEEDS

LEEDS, LS2 9JT, UK
E-mail: p.e.shafer@leeds.ac.uk
URL: http://www1.maths.leeds.ac.uk/∼matpsh/

DEPARTMENT OF MATHEMATICAL LOGIC
AND APPLICATIONS FACULTY OF MATHEMATICS AND INFORMATICS
SOFIA UNIVERSITY

5 JAMES BOURCHIER BOULEVARD
SOFIA 1164, BULGARIA

E-mail: asoskova@fmi.uni-sofia.bg
E-mail: stefanv@fmi.uni-sofia.bg
URL: https://store.fmi.uni-sofia.bg/fmi/logic/asoskova/index.html
URL: https://store.fmi.uni-sofia.bg/fmi/logic/stefanv/

https://doi.org/10.1017/jsl.2023.14 Published online by Cambridge University Press

mailto:p.e.shafer@leeds.ac.uk
http://www1.maths.leeds.ac.uk/~matpsh/
mailto:asoskova@fmi.uni-sofia.bg
mailto:stefanv@fmi.uni-sofia.bg
https://store.fmi.uni-sofia.bg/fmi/logic/asoskova/index.html
https://store.fmi.uni-sofia.bg/fmi/logic/stefanv/
https://doi.org/10.1017/jsl.2023.14

	1 Introduction
	2 Cohesive products and powers of computable structures
	2.1 Cohesive products and cohesive powers
	2.2 Analogs of Łoś's theorem
	2.3 Reducts, substructures, and disjoint unions
	2.4 Saturation
	2.5 Isomorphisms

	3 Linear orders and their cohesive powers
	4 Cohesive powers of computable copies of ω
	5 A computable copy of ω with a cohesive power of order-type ω+ η
	6 Shuffling finite linear orders into cohesive powers of ω

