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Psychiatric research has entered the age of ‘Big Data’. Datasets now routinely involve thousands of heterogeneous vari-

ables, including clinical, neuroimaging, genomic, proteomic, transcriptomic and other ‘omic’ measures. The analysis of
these datasets is challenging, especially when the number of measurements exceeds the number of individuals, and may
be further complicated by missing data for some subjects and variables that are highly correlated. Statistical learning-
based models are a natural extension of classical statistical approaches but provide more effective methods to analyse
very large datasets. In addition, the predictive capability of such models promises to be useful in developing decision
support systems. That is, methods that can be introduced to clinical settings and guide, for example, diagnosis classifica-
tion or personalized treatment. In this review, we aim to outline the potential benefits of statistical learning methods in
clinical research. We first introduce the concept of Big Data in different environments. We then describe how modern
statistical learning models can be used in practice on Big Datasets to extract relevant information. Finally, we discuss
the strengths of using statistical learning in psychiatric studies, from both research and practical clinical points of view.
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The “data explosion’ in psychiatry

Once the problem of psychiatric research was that
there were not enough data. Now, with the pace of
technological advances that have occurred in the pre-
sent century in neuroimaging, genomics, transcrip-
tomics, proteomics and all the other ‘omics’, we are
in danger of being overwhelmed by a volume of data
that the human brain, aided only by ‘traditional’ statis-
tical methods, cannot assimilate and integrate. For ex-
ample, genome-wide association studies (GWAS) now
typically and routinely generate millions of data points
on tens of thousands of subjects. This has led to some
breath-taking advances, notably the finding, based on
data from 37 000 patients, that over 100 different genet-
ic loci have a role in schizophrenia (Schizophrenia
Working Group of the Psychiatric Genomics, 2014).
Similar large-scale studies are underway for other com-
mon disorders and, in the UK alone, plans are in place
to sequence the entire genomes of 100000 subjects
(http://www.genomicsengland.co.uk). The standard
statistical analyses of GWAS are, in principle, straight-
forward involving y* tests comparing genetic marker
frequencies in cases and controls and applying a
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stringent correction for multiple testing. However
GWAS findings tend to throw up many other problems
that will not be solved by such simple analyses. For ex-
ample, none of the hundred-plus genome-wide
significant loci is necessary or sufficient to cause schizo-
phrenia, so this poses a series of new questions. What
combinations of loci in interplay with what environ-
mental insults might be useful in predicting who
becomes affected in at-risk groups? What combina-
tions of loci relate to what symptom patterns, courses’
outcomes or responses to treatment? What combina-
tions of genetic loci influence structural or functional
brain-imaging characteristics? (This is a particularly
thorny problem since imaging studies typically gener-
ate many more data points even than genomics.) We
suggest that a set of solutions to 21st century psychia-
try’s information overload problems is offered by ma-
chine learning (ML) and in particular from a branch
that is now often called statistical learning (SL).

A world of Big Datasets and the role of SL

Although many of us are probably unaware of it, SL is
happening all around us. Social media developers,
committed to retaining their users and encouraging
their online activity are constantly storing information
about users and their daily actions in huge datasets,
and employ specific methods of analysis designed to
deduce what users might ‘like’ next (e.g. new people
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to incorporate as ‘friends” or pages that might be of
interest). In a similar way, commercial websites such
as Amazon aim to predict what product we would
next like to buy by thoroughly collecting our history
of shopping baskets in databases and investigating
our pattern of shopping and comparing it with persons
of similar shopping patterns. Another and more indi-
vidual example is that many of us now use voice recog-
nition software as an alternative to manual typing.
Such software not only learns to interpret what we
say into printed word but also learns our personal vo-
cabulary, idioms and patterns of expression.

The datasets involved in such processes have three
main aspects in common: they occupy vast amounts
of computer memory, measured in Terabytes (trillions
of bytes), they are heterogeneous containing informa-
tion coming from a variety of sources, for example a
combination of text messages, images and videos,
and they are constantly and quickly being updated
with new information. These three aspects have been
proposed by some authors as the main characteristics
of Big Datasets and summarized as the three Vs-—
volume, variety and velocity (Laney, 2001).

Large-scale datasets from clinical trials and cohort
studies, electronic health records or national health
registries are becoming increasingly available in bio-
medical research. They are becoming the focus of re-
search studies that aim to better understand
genotype—phenotype relationships, find factors that
can predict disease risk, discover profiles of patients
that are better responders to a treatment and discover
or define disease categories. In general, these datasets
meet the three Vs definition, so we can state that bio-
medical research has definitely entered the Big Data
world.

The urgent need of methods that can help to under-
stand such complex Big Datasets has led to a revolu-
tion in statistical sciences. Whereas statistics has
focused primarily on what conclusions can be inferred
from data, Big Datasets have raised other questions
about what computational architectures and algor-
ithms can be more efficient to extract maximum infor-
mation from data in a computationally tractable way
(Mitchell, 2006). ML (Soler Artigas et al. 2011) refers
to a discipline that offers a set of tools built within
the intersection of computer sciences and statistics
that are capable of coping with the requirements of
the Big Data world. These ‘statistical-computational’
systems improve their performance at particular tasks
by experience (Mitchell, 1997, 2006; Soler Artigas
et al. 2011), which is they are capable of learning
from data.

Other terms commonly used in the area of ML, but
showing slight conceptual differences include artificial
intelligence, which encompasses natural language
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processing, knowledge representation and automated
reasoning (Barr et al. 1981; Ripley, 1996; Russell &
Norvig, 2010), deep learning, a new type of ML algor-
ithm based on neural networks with the aim of dis-
cerning higher level features from data (LeCun et al.
2015). Other approaches include pattern recognition,
a branch of ML focused on the recognition of patterns
and regularities in data (Bishop, 2006) and data min-
ing, the process of exploring data in search of consist-
ent patterns and/or systematic relationships between
variables (Hand et al. 2001).

SL is a fairly recently coined term (Hastie et al. 2009)
that refers to a vast set of statistical and computational
methods to understand complex data. These are based
on a range of approaches, from classical concepts
belonging to the first half of the 20th century such as
linear regression modelling and discriminant analysis,
to the latest advanced computational-based approaches
including modern ML. Hence SL is a broad term that
emphasizes the essential role of statistics within ML in
the context of Big Data analysis.

Learning from data

The methods that underlie SL learn from data, i.e. they
are able to explore and retain significant structure
from data that is replicable across different samples
extracted from the same population. Broadly there
are three categories of learning from data. The first con-
cerns ‘supervised’ learning (Hastie et al. 2009), which
typically involves building an algorithm that uses as
input a dataset of candidate predictors known as fea-
tures or attributes (e.g. age, cancer staging, hospital
admissions) and is able to estimate a specific outcome
(e.g. 6-month survival for cancer patients). Super-
vised learning includes classification and regression
problems. In a classification problem the aim is to de-
termine what category something belongs to, after see-
ing a number of examples of things from the relevant
categories.

The second major category concerns ‘unsupervised’
learning (Ghahramani, 2003) when there is no pre-
defined outcome to be predicted. The task here is de-
riving an algorithm able to explore data patterns and
to discover structure, for example groups of patients
who share similar clinical or test result profiles. The
two cornerstones of unsupervised learning are cluster-
ing (Everitt et al. 2010), and dimensionality reduction
(Lu et al. 2013) which includes principal components
analysis and factor analysis. These methods have
found important applications in medical research, par-
ticularly in psychiatric studies (Ochoa et al. 2013;
Brodersen et al. 2014).

A third category, known as ‘semisupervised” learn-
ing (Zhu & Goldberg, 2009) combines insights from
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Problem definition and selection of study
design

+ Formulate a research question
+ Define goals
«  Select study design

\4

Data collection

+ Define predictors of interest
+ Define exclusion/inclusion criteria
« Find/create databases

Y

Data preprocessing

+ Clean data (e.g. missing data treatment)
+ Reduce data (e.g. feature selection)
« Transform data (e.g. scaling)

v

Train the model

« Train one (or several) learning algorithms in the
training dataset

+ Tune the model parameters to get optimal
values

« Select the best model

v

Validation of the model

+ Use the model to predict outcomes for cases in
a test dataset

« Compute accuracy of prediction

v

Introduction of the generated knowledge to the
specific environment

+ Generation of decision support systems

Fig. 1. Main steps of the learning process.

supervised and unsupervised methods by exploring
observations where the outcome (or label) is known
only for a small amount of data (e.g. the study of the
profile of patients that response positively or negative-
ly to a drug, combined with the study of patients with
unknown treatment outcome).

In the remainder of this review we will focus on
supervised learning problems. Here the outcome is a
variable taking either a number of levels that are
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often called ‘classes’ or ‘labels’ (e.g. relapsing or non-
relapsing of a condition), or a quantitative value (e.g.
response to treatment as measured by a rating scale).
Thus when we talk about ‘labelled data” we refer to a
set of observations for which the outcome is known.

The main stages of the learning process are given
below (see Fig. 1).

Definition of the problem and selection of study
design

The problem we aim to solve needs to be precisely
defined and well understood. As with all research
the starting point is critical review of the previous
knowledge in the area, formulation of a research ques-
tion and choice of appropriate study design (Katz,
2006). For example, a longitudinal collection of
patients’ data may allow investigation of the risk of
an occurrence or relapse concerning a disease over
time. Designs such as the case-control that collect
data of disease and healthy individuals at just one
point in time, will be appropriate to test the ability of
a set of factors in predicting a diagnosis.

Data collection and pre-processing

Ideally, quality data will include a well-defined selec-
tion of patients, and a rigorous collection of relevant
predictors and outcomes. Before analysis, the main
steps of data pre-processing include data cleaning,
data reduction and data transformation.

Cleaning refers to the treatment of missing data, a
common problem in psychiatric research, and this is
important as inadequate missing data treatment may
lead to an overestimation of prediction accuracy
(Batista & Monard, 2002). Discarding individuals or
variables with missing values (‘the complete-case ana-
lysis’) may bias analysis if the units with missing
values differ systematically from the completely
observed cases, especially if percentage of missingness
is high. A preferable approach may be to estimate or
‘impute’ missing values using either classical statistics
or SL. SL methods (e.g. tree-based methods; Ding et al.
2010) (Table 1) are free of assumptions and have been
found to outperform classical statistical methods of im-
putation. For example, the methods based on SL tech-
niques were the most suited for the imputation of
missing values in a study aiming to predict cancer re-
currence, and led to a significant enhancement of prog-
nosis accuracy compared to imputation methods based
on statistical procedures (Jerez et al. 2010).

Data reduction involves obtaining a reduced represen-
tation of the data volume that can achieve the same (or
almost the same) analytical results. By creating new fea-
tures as a result of the aggregation or eliminating fea-
tures that are not meaningful for prediction (‘feature
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Table 1. Main properties of a set of selected statistical learning algorithms

Machine learning

algorithm Details

General linear ¢ A very simple approach based on specifying a linear combination of predictors to predict a dependent
regression models  variable (Hastie et al. 2009)
(GLM) ¢ Coefficients of the model are a measure of the strength of effect of each predictor on the outcome
¢ Include linear and logistic regression models (Hosmer et al. 2013)
¢ Can present overfitting and multicollinearity in high-dimensional problems
Elastic net models e Extension of general linear regression models (Zou, 2005)
* Explore a large number of predictors to keep the best set of variables in predicting the outcome. This is an
internal feature selection method that avoids too complex models and thus prevents of overfitting
e Strongly correlated predictors are selected (or discarded) together (what is known as a ‘grouping effect’).
This is especially interesting in an exploratory research where the full list of predictors to explore can result
equally relevant and meaningful
¢ Coefficients can be interpreted as in a general linear model
* Lasso and ridge regression are particular cases (Tibshirani, 1994)
Naive Bayes ¢ Family of simple classifiers based on applying the Bayes” Theorem (Russell & Norvig, 2010) (see Fig. 2)
e Assumes (a) the value of a particular feature is independent of the value of any other feature and (b) a
probability density for numeric predictors
¢ Gives the probability of taking a specific outcome value for unseen cases
Classification and @ A tree is a flowchart like structure (Breiman, 1984), built by repeatedly splitting data into subsets based on a
Regression Trees feature value test (see Fig. 2). Each terminal node (‘leaf’) holds a label
(CART) ¢ Allows modeling complex nonlinear relationships
* Relatively fast to construct and produce interpretable models
® Performs internal feature selection as an integral part of the procedure
Random forest e Offers a rule to combine individual decision trees (Breiman, 2001b)
* Multiple tree models are built using different randomly selected subsamples of the full dataset and different
initial variables. Then they are aggregated and the most popular outcome value is voted
* Good to control overfitting and improve stability and inaccuracy
Support vector ¢ Classifier method that constructs hyperplanes in a multidimensional space that separates cases of different
machines (SVM) outcome values (Cortes & Vapnik, 1995; Scholkopf et al. 2003) (see Fig. 2)
* A new case is classified depending on his relative position to the decision boundary
¢ Allows modeling complex non-linear relationships. A set of transformations called ‘kernels’ is used to map
data and make them linearly separable
* Understanding the contribution of each predictor to outcome prediction is not straightforward and must be
explored using specific methods (Altmann et al. 2010)
Artificial neural * A computer system that simulates the essential features of neurons and their interconnections with the aim
networks (ANN) of processing information the same way as real networks of neurons do (Ripley, 1996) (see Fig. 2)
® A neuron receives inputs from other neurons through dendrites, processes them, and delivers an outcome
through axon. Connections between neurons are weighted during training. Input nodes are features,
output nodes are outcomes. Between them there are hidden layers that are formed of a set of nodes
¢ Allow modelling complex nonlinear relationships
® Less likely to be used in medical research due to the lack of interpretability of (a) the equations that ANNs
generate and (b) the transformation of the original dataset into numerical values that ANNs apply

All methods listed above can be used for classification (categorical outcome) and for regression (quantitative outcomes)
problems. All of them can handle multiple continuous and categorical predictors.

selection’) tasks can be made more computationally
tractable. Reducing the number of features also makes
models more easily interpretable. This point is critical
for the success of a predictive algorithm, especially if
there are thousands of features at the outset (Guyon,
2003; Witten & Tibshirani, 2010). Feature reduction
can be performed as a part of pre-processing or during
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the modelling step using algorithms that perform an
internal feature selection (elastic net regression; Zou
& Hastie, 2005) or Classification and Regression
Tree (CART) algorithms (Rokach & Maimon, 2008)
(Table 1). The latter will usually improve reliability
and increase confidence in selected features (Caruana
& Niculescu-Mizil, 2006; Krstajic et al. 2014).
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(@) Data (b) Naive-Bayes classifier (¢) Support Vector Machine Classifier
Severity |Remission 2 60 - *no
. | Age at| Depression|at the end — 5} remission
Subject [ nset| Baseline | of follow- re;n\:{sglso " 0% o mremission
score up 5 40 Show cass
1 15 46 YES # 30 -
feb]
2 17 40 YES § 20 -
3 21 27 YES 10 4
4 22 32 YES P(age onset| P(severity| 0 fodo
remission =YES) | |remission =YES) 0 20 40 60
5 25 50 YES Age at onset
6 3 28 NO
(d) Decision tree (e) Artificial neural network
T 33 20 NO
| :
5 ™ = NG nput Hlddeﬂ%ayer Output
9 37 8 NO
10 41 9 NO
11 | 39 18 NO <29 =20
12 32 25 NO
13 27 46 ie YES NO

Fig. 2. (a) Data simulated from a follow-up study of major depression patients. Age of depression onset (years) and the
MADRS score at baseline ranging from 0 to 60 (0-6, normal; 7-19, mild depression; 20-34, moderate depression; >34, severe
depression) are the predictor variables. The outcome is remission status at the end of the follow-up (YES or NO). (b) The
Naive Bayes classifier is often represented as this type of graph. The direction of the arrows states that each class causes
certain features, with a certain probability. (c) A hyper plane (a line, in dimension 2) is built at a maximal distance to every
dashed line (called margin). A new case (point) will be classified as remission or non-remission depending on his relative
position to the line (aka decision boundary). (d) A simple decision tree suggesting that patients with age of onset lower than
29 are more likely to reach a remission. (¢) Each node represents an artificial neuron and each arrow a connection from the

output of one neuron to the input of another.

Data transformation methods depend on the specific
SL algorithm to be used (Kotsiantis et al. 2006). Three
common data transformations are scaling, decomposi-
tions and aggregations. Many SL methods (e.g. the
elastic net regression; Zou & Hastie, 2005) require all
predictors to have the same scale such as between 0
and 1. Decomposition may be applied to features
that represent a complex concept, as they may be
more useful to a ML method when split into their con-
stituent parts (e.g. a date can be split into day, month
and year). Aggregation is appropriate when there are
features that are more meaningful to the problem
when combined into a single feature.

Training and validation of the model

The data used to run a learning algorithm are called
training data. In supervised ML the program is told
what the output should look like, for example what
subjects belong to what category label. A second set
of data is called the test dataset. Here the labels are
again known to the researcher but in this run the pro-
gram is only given the input data and the task is to
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correctly assign the outputs or labels. Ideally the test
data and the training set should be completely inde-
pendent but in practice researchers very often random-
ly split datasets of labelled data in two parts and
arbitrarily define one part as the learning data and
the other as the test set. If the algorithm is able to esti-
mate correct labels in this new set of cases, i.e. the
called prediction error is small (e.g. the number of false-
ly classified cases is much smaller than chance classifi-
cation), the classifier may be considered to be “valid” to
be used in estimating outcomes for cases with unknown
outcomes. As elsewhere in classification problems a var-
iety of measures are used to assess prediction accuracy
(Steyerberg et al. 2010), for example sensitivity (the pro-
portion of correctly classified recovered cases) and spe-
cificity (the proportion of correctly not recovered cases)
for binary classifications.

Wolpert & Macready (1997) consider that there is un-
likely to be a single technique that will always do best
for all learning problems. Hand (2006) advocated that
we should base our selection on a compromise between
the accuracy of the model in predicting outcomes for
new cases and the interpretability of the result.
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Table 2. Glossary of statistical/machine learning terms used in this paper

Term Definition
Feature/attribute/ A numerical (e.g. subset of real values) or categorical (i.e. a finite number of discrete values) value used
predictor as input to a learning algorithm

Outcome/response/label
Labelled data

Training set

Test set

Supervised learning

Unsupervised learning

Model

Accuracy

High-dimensional

A numerical or categorical value to predict from features

A set of features and labels for an observation

A collection of data used to train a learning algorithm

A collection of labelled data

Techniques used to learn the relationship between independent attributes and a designated dependent
attribute (the label)

Learning techniques that group observations without a pre-specified dependent attribute. Clustering
algorithms are usually unsupervised

A structure and corresponding interpretation that summarizes or partially summarizes a set of data,
for description or prediction. Most learning algorithms generate models that can then be used in a
decision-making process

The rate of correct predictions made by the model over a dataset. Accuracy is usually estimated by
using an independent test set that was not used at any time during the learning process. More
complex accuracy estimation techniques, such as cross-validation and the bootstrap, are commonly
used, especially with datasets containing a small number of observations

Problems in which the number of features p is much larger than the number of observations N, often
written p > N. Such problems have become of increasing importance, especially in genomics and other

A modelling error that occurs when the model is too closely fit to a limited set of data points. As data

being studied often has some degree of error or random noise, an overfitted model is poor in

problem
areas of computational biology
Overfitting
predicting new cases
Multicollinearity

Correlation between features, i.e. the situation where if the value of a feature change, values for the rest

of features also change at some degree. When there is multicollinearity between variables in a

regression model, its coefficients can become poorly determined and exhibit high variance

K-fold cross-validation

A method for estimating the accuracy (or error) of a learning algorithm by dividing the data into K

mutually exclusive subsets (the ‘folds’) of approximately equal size. K models are trained and tested.
Each time a model is trained on the data set minus a fold and tested on that fold. The accuracy
estimate is the average accuracy for the K folds

Specific ML terminologies that have been adopted by
the SL community are introduced in Table 2. A more
detailed set of definitions can be found in (Kohavi,
1998).

Table 1 summarizes seven popular SL algorithms.
More detailed information about specific learning
algorithms can be found elsewhere (Mitchell, 1997,
2006; Vapnik, 1998; Scholkopf et al. 2003; Malley
et al. 2011).

A common scheme to train different classifiers and se-
lect one based on ability to predict outcomes is the K-fold
cross-validation (CV). This is a procedure where the ori-
ginal training sample is randomly divided in K subsam-
ples, K-1 samples are used as a new training set and
one is left out as an occasional ‘test’ set in K iterations
(Fig. 3). The prediction error is then computed across
test samples. Minimizing the prediction error from the
CV loop is used to select the best algorithm and the
best predictive model produced by the same algorithm.
CV provides a nearly unbiased prediction error on new
observations from the same population (Kohavi, 1995).
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Introducing a generated predictive knowledge to a
practical setting

A nice example is provided by the work of Perlis and
colleagues (Perlis, 2013) who ran a prospective investi-
gation to identify clinical predictors of antidepressant
treatment resistance. The authors selected 15 easy-to-
obtain features for patients with known response and
adopted a SL approach. Based on the best model
obtained, the team developed a web-based clinical de-
cision support system that given the values for the 15
variables for a particular patient suffering from major
depression could aid in predicting the risk of being
resistant to an antidepressant treatment.

How statistical learning renders Big Data problems
tractable in psychiatric research?

Dealing with heterogeneous sources of information

Data from different sources (e.g. large longitudinal
clinical trials or cohort studies, electronic health
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l Total data I

Training

data data
Fig. 3. Example of a 5-fold cross-validation. Data are
randomly split in 5-fold of equal size. At every step, one
fold is selected as test dataset and the remaining four are
used as training data. This procedure is repeated five times,
selecting in every step a different fold as test data.

records, national health registries) has a greater poten-
tial for establishing novel useful ways of categorizing
patients” groups (patient stratification) and for reveal-
ing unknown disease correlations compared to learn-
ing from each source independently (Shi et al. 2012).
Specific SL algorithms have demonstrated impressive
empirical performance on a wide variety of classifica-
tion tasks involving heterogeneous Big Datasets (e.g.
decision-tree approaches; Breiman, 1984), regularized
regression models (Zou & Hastie, 2005), as well as sup-
port vector machines (Lewis et al. 2006) (Table 1).
Integrating such data is a challenge that may include
the problem that data are stored in many different for-
mats. However, the handling of Big Data from a var-
iety of sources is becoming ever more feasible and
affordable, with many institutions employing their
own local clusters of computers (banks of many micro-
computers hooked up in parallel and providing huge
computational power). ‘Cloud” computing is another
increasingly available option. This refers to using the
Internet to access the vast computational resources
that are offered commercially by companies such as
Amazon, Google and Microsoft.

The IMAGEN study (Whelan et al. 2014) is a good
example where researchers integrated data from very
heterogeneous domains and applied a SL approach
of analysis. Domains included brain structure and
function, individual personality and cognitive differ-
ences, environmental factors, life experiences, and can-
didate genes. They applied elastic net regularized
regression (Zou & Hastie, 2005) to generate models
to predict current and future adolescent alcohol misuse
based on such holistic characterization. This ‘regular-
ized” approach automatically dropped out features
that were not contributing to the class predictions.
Thus the final model incorporated a subset of the
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most relevant variables for prediction selected from
all of the explored families of predictors. The favoured
models pointed to life experiences, neurobiological dif-
ferences and personality as important antecedents of
binge drinking, suggesting possible targets for preven-
tion. The authors reported specific predictors in their
models along with their regression coefficient as a
standard and interpretable measure of strength be-
tween each predictor and the outcome. The approach
correctly predicted alcohol misuse for individuals not
in the original dataset, emphasizing the model’s cap-
ability to generalize to novel data.

The search for meaningful predictors of a psychiatric
outcome in high-dimensional datasets

Big Datasets in psychiatry research can be ‘Big’ regard-
ing volume and number of features but involving a
relative smaller sample size. For example, even though
GWAS typically now contain tens of thousands of sub-
jects, there may be many millions of data points.
Increasingly large-scale case-control studies also in-
clude gene expression, genome sequencing and epi-
genetics, proteomics or metabolomics inflating the
data to research subject ratio even more. This is often
called the high-dimensional data problem, or the ‘p>N’
problem (where p is the number of features and N
the number of observations). Such data are commonly
represented in a matrix, with more columns than rows.
The classical approach of comparing thousands of sin-
gle association tests and then ranking features by their
statistical significance is not an optimal solution. The
first concern is that multiple testing increases the risk
of spurious findings due to chance. The application
of stringent methods to correct this can lead to the de-
tection of strong contributors to outcome at the ex-
pense of overlooking smaller contributors. This poses
a problem in complex traits and disorders that, by
their nature are multifactorial. Another related weak-
ness is that independent analysis variable by variable
does not permit inferences about combinations of vari-
ables. Generalized linear regression models (Hosmer
et al. 2013) are problematic in estimating the effect of
such combinations. This kind of model is in danger
of explaining mainly noise instead of the relationships
between variables (and so models are poor in general-
izing to new datasets). This problem is known as
overfitting (Table 2). A second problem for generalized
linear regression is correlation between features, i.e. the
situation where if one feature changes, so do one or
more other features, an effect known as multicollinear-
ity (Table 2). An example is genetic variation. Due to
the fact that most of our genetic information is inher-
ited in “blocks’ from our parents, the information at dif-
ferent positions of our genome is expected to be highly
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correlated within families. Blocks, albeit smaller ones,
also occur within genetically homogenous popula-
tions. Multicollinearity can seriously distort the inter-
pretation of a model, making it less accurate by
introducing bias within the coefficients of the model
(Maddala & Lahiri, 2009) and increasing uncertainty,
as reflected in inflated standard errors (Glantz &
Slinker, 2000; Miles & Shevlin, 2001).

Supervised SL models offer a means to overcome
these problems and to maximize the predictive
power, hence providing exciting opportunities for indi-
vidualized risk prediction based on personal profiles
(Ashley et al. 2010; Manolio, 2013). SL models such as
the multivariate adaptive regression splines (MARS)
procedure (Friedman, 1991), the CART (Breiman,
1984), elastic net regularized regression (Tibshirani,
1994; Zou & Hastie, 2005; Friedman et al. 2010) and
support vector machines (Cortes & Vapnik, 1995)
(Table 1) perform especially well in the high-
dimensional scenario and in the presence of correlation
between predictors (Libbrecht & Noble, 2015). They
also allow to efficient identification of informative pat-
terns of interactions between clinical and biomarker
variables, which are known to play an important role
in the development and treatment of many complex
diseases (Lehner, 2007; Ashworth et al. 2011), but are
often missed by single association tests (Cordell, 2009).

Models in practice: the case of stratified and
personalized medicine

In recent years stratified and personalized medicine be-
came of interest in mental health research which uti-
lizes molecular biomarkers (Kapur et al. 2012),
demographic and clinical information, including
patients’ health records, to identify subgroups of
patients who are likely to respond similarly to treat-
ment using SL methods. Major depressive disorder is
a prime example of a common disorder where there
are many available drugs but where there is no
straightforward way of deciding which treatment is
likely to work for a given individual (Simon & Perlis,
2010). The Genome-based Therapeutic Drugs for
Depression (GENDEP Investigators et al. 2013) project
is a study aiming to test clinical and genetic data as
predictors of treatment response to two antidepressant
drugs (Uher et al. 2009, 2010). The need for prediction
at individual level involving hundreds of thousands of
variables prompted the use of SL methods (Iniesta et al.
2016). The challenge was the integration of clinical
with biological markers and deriving optimal models
with minimal risk of overfitting. Demographic, clinical
and genetic predictors were combined in a model to
predict the change in severity symptoms after a
12-week period in a sample of patients randomly
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treated with one of the two drugs. A linear regularized
elastic net model (Zou & Hastie, 2005) looked for the
best combination of variables in predicting symptoms
course. Interestingly, the feature selection approach of
elastic net allowed building drug-specific models that
were able to predict treatment outcome with accuracy
above a clinical significance threshold. The results sug-
gested a potential for individualized indications for
antidepressant drugs. The benefits of using the elastic
net were several: first, the elastic net provided an
efficient internal method of search and selection of pre-
dictors from a large set of variables available. Second,
the iterative CV procedure used allowed the selection
of predictors based on their ability in predicting out-
come for unseen cases, which was the aim of this re-
search. Third, this flexible approach reported distinct
and specific models to each outcome and drug sample.
Fourth, the elastic net allowed estimation of the com-
bined predictive ability of a high number of variables
while preventing the models from overfitting.

The hoped for impact of this type of research is the
introduction of a predictive model (last box in Fig. 1)
as a clinical decision support system. For a model to
be useful in the practical scenario there is a list of chal-
lenges we need to overcome. First, the model should
have been externally validated in a test dataset. Very
often the validation of models built in sample of
patients with very specific characteristics (e.g. those
coming from randomized clinical trials) is difficult be-
cause it is hard to find another similar sample that can
work as a “test’ dataset. Second, as a consequence, such
models tend to poorly generalize to other populations.
For example, if a model was built for a homogeneous
ethnical population of white Caucasian patients and
ethnicity has an effect on outcome, there is no guaran-
tee that such model will predict well for an individual
of different ethnicity. Thus some authors argue match-
ing treatments to individuals is a too ambitious aim,
as given any model, there can always be a
relevant-to-outcome patient characteristic that was
not included nor validated. However, it is not all bad
news; several studies in cancer were able to find almost
perfect biomarkers for treatment selection, specifically
for chemotherapy treatment and some progress to-
wards stratified medicine is appearing feasible in
psychiatry (Perlis, 2013; Iniesta et al. 2016). A third
challenge is the generation of easy-to-use tools in the
clinical setting. Ideally models should involve a rea-
sonable number of easy-to-obtain variables and be
implemented through tools that allow a quick intro-
duction of patients’ data and a simple and clear dis-
play of model outputs.

We can conclude that Big Data are becoming a major
challenge for statistical analysts in mental health re-
search and a paradigm shift in methods is needed.
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Statistical learning provides a set of tools that can suc-
cessfully help in the understanding of such complex
datasets. Such methods can be useful as an alternative
or in addition to ‘classical statistical inference methods
based solely on hypothesis testing which has been cri-
ticized by many statisticians for many years (Breiman,
2001a; Nuzzo, 2014). Big Data analysis and the deriv-
ation of predictive SL models for stratified medicine
in psychiatry is an emerging and hot area, and such
tools have the potential to facilitate a better targeting
of interventions and diagnosis of patients.
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