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Abstract

The diffusion-generator approximation technique developed by De Iorio and Griffiths
(2004a) is a very useful method of constructing importance-sampling proposal distri-
butions. Being based on general mathematical principles, the method can be applied
to various models in population genetics. In this paper we extend the technique to the
neutral coalescent model with recombination, thus obtaining novel sampling distributions
for the two-locus model. We consider the case with subdivided population structure, as
well as the classic case with only a single population. In the latter case we also consider
the importance-sampling proposal distributions suggested by Fearnhead and Donnelly
(2001), and show that their two-locus distributions generally differ from ours. In the case
of the infinitely-many-alleles model, our approximate sampling distributions are shown
to be generally closer to the true distributions than are Fearnhead and Donnelly’s.
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1. Introduction

Estimating model parameters and making ancestral inference are an important part of
molecular population genetics. At the core of these studies is the problem of computing the
likelihood of the type configuration of sample sequences. In the context of the coalescent model
and its various extensions, closed-form formulae are generally not known for such likelihoods
and, therefore, several computationally intensive statistical methods have been proposed for
approximating them. Most of these statistical approaches fall into one of two categories:
one based on Markov chain Monte Carlo methods—for examples, see Kuhner et al. (1995),
(2000), Wilson and Balding (1998), and Beaumont (1999)—and the other based on importance-
sampling (IS) methods, some notable examples being Griffiths and Tavaré (1994a), (1994b),
(1994c), Griffiths and Marjoram (1996), Stephens and Donnelly (2000), and Fearnhead and
Donnelly (2001).

On the importance-sampling side, new impetus was given when Stephens and Donnelly
(2000) constructed a very efficient IS scheme for the neutral coalescent model for a single
population. Recently, De Iorio and Griffiths (2004a) developed a general method of constructing
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IS proposal distributions from a diffusion-process generator and showed that their proposal
distributions coincide with that of Stephens and Donnelly (2000) in the case of the neutral
coalescent model for a single population. A particularly appealing property of the technique
developed by De Iorio and Griffiths is that the construction of the proposal distributions in that
approach is based on general mathematical principles. The technique is systematic and can be
applied to various settings. For instance, De Iorio and Griffiths (2004b) applied their technique
to the neutral coalescent model with subdivided population structure, obtaining significant
improvement over previous IS schemes.

The goal of the present paper is to extend the method of De Iorio and Griffiths (2004a),
(2004b) to the neutral coalescent model with recombination. We consider the case with
subdivided population structure, as well as that with only a single population. We focus on the
two-locus model in this paper and defer addressing the general case to a later paper; for now, we
just mention that much of what we discuss here can be carried over to multilocus models as well.
Throughout this paper, two specific models—namely, diallelic models and parent-independent
mutation (PIM) models—are examined in detail, thus illustrating how our method works. For
these models, we obtain explicit formulae for conditional sampling distributions, which can be
used to devise an IS scheme.

Of all hitherto suggested IS schemes for the coalescent model with recombination in the
case of a single population, that proposed by Fearnhead and Donnelly (2001) seems most
efficient. In a recent study of the fine-scale variation of recombination rates in the human
genome (see McVean et al. (2004), Myers et al. (2005), and Fearnhead and Smith (2005)),
Fearnhead and Donnelly’s IS scheme was employed to compute two-locus likelihoods, which
were then combined using Hudson’s (2001) composite likelihood idea. In this paper we con-
struct novel conditional sampling distributions and compare them with that used in Fearnhead
and Donnelly’s IS scheme. In the case of the two-locus model we show that our sampling
distributions are generally different from that of Fearnhead and Donnelly’s. Furthermore,
for the infinitely-many-alleles model, in which case we can numerically compute the true
sampling distributions for a small sample size, we show that our sampling distributions are
generally closer to the true distributions than are Fearnhead and Donnelly’s. Note that IS
for the neutral coalescent model with both recombination and subdivided population structure
has not been studied before; our sampling distribution for that case is therefore the first of
its kind.

The organization of this paper is as follows. In Section 2 we review the one-locus case studied
by De Iorio and Griffiths (2004a) and describe their general diffusion-generator approximation
technique. Our two-locus sampling distributions for a single population are discussed in Sec-
tion 3, whereas Fearnhead and Donnelly’s (2001) corresponding distributions are examined in
Section 4. In Section 5 the aforementioned comparison of the approximate sampling dis-
tributions with the true distributions is carried out in the case of the infinitely-many-alleles
model. The two-locus model with subdivided population structure is discussed in Section 6.
In Section 7 we conclude with a brief discussion on future directions.

2. A brief review of the one-locus case in a single population

We first consider the one-locus case in a single population. In addition to serving as a simple
example that clearly illustrates the general idea behind our approach, the one-locus case will
resurface in an important way when we discuss the two-locus case.
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2.1. Diffusion approximation

We denote the type space for alleles by E = {1, 2, . . . , d} and the population allele
frequencies by X = (Xi)i∈E . The generator for the diffusion process of allele frequencies
in the space � := {x = (xi)i∈E | xi ≥ 0 for all i ∈ E and

∑
i∈E xi = 1} is given by

L = 1

2

∑
i,j∈E

xi(δij − xj )
∂2

∂xi∂xj
+
∑
i∈E

∑
j∈E

(−xiαij + xjαji)
∂

∂xi
,

whereαij are mutation parameters. If mutation events occur according to a Poisson process with
rate θ/2 and type changes are governed by a Markov chain with transition matrix P = (Pij ),
then αij = (θ/2)Pij and

∑
j∈E αij = θ/2, in which case the diffusion process generator

becomes

L = 1

2

∑
i,j∈E

xi(δij − xj )
∂2

∂xi∂xj
+ θ

2

∑
i∈E

∑
j∈E

xj (Pji − δji)
∂

∂xi
.

Note that this generator can be written as

L =
∑
i∈E

Li
∂

∂xi
, where Li = 1

2

∑
j∈E

xi(δij − xj )
∂

∂xj
+ θ

2

∑
j∈E

xj (Pji − δji).

With E denoting the expectation with respect to the stationary distribution of the diffusion
process, the sampling distribution of an unordered type configuration n = (n1, n2, . . . , nd)

is given by p(n) = (
n
n

)
E(
∏
k∈E X

nk
k ), where n = ∑d

k=1 nk and
(
n
n

)
denotes the multinomial

coefficient
(

n
n1,...,nd

)
. An important fact is that this sampling distribution satisfies the exchange-

ability condition,

π(i | n− ej )p(n− ej ) = ni + 1 − δij

n
p(n− ej + ei ), (1)

where ej denotes the unit vector with a 1 in the j th component and π(i | n) denotes the
conditional sampling probability of an additionally sampled allele being of type i, given that
the current unordered sample configuration is n. Conditional probabilities are normalized so
that

∑
i∈E π(i | n) = 1. Another important point to note is that

E

(
L
∏
k∈E

X
nk
k

)
= E

(∑
i∈E

Li
∂

∂xi

∏
k∈E

X
nk
k

)
= 0, (2)

which follows from the fact that E(Lf (X)) = 0 for any bounded continuous function f with
well-defined second derivatives. The key to the technique developed by De Iorio and Griffiths
(2004a) is to assume that there exists a distribution with expectation operator Ê such that the
vanishing of (2) holds componentwise; that is, for all i ∈ E,

Ê

(
Li

∂

∂xi

∏
k∈E

X
nk
k

)
= 0. (3)

Furthermore, assuming that the exchangeability condition shown in (1) holds for the sampling
probabilities p̂(n) = (

n
n

)
Ê(
∏
k∈E X

nk
k ) and the corresponding π̂(i | n), a system of equations

satisfied by π̂(i | n) can be found (see De Iorio and Griffiths (2004a)). A key observation
is that these conditional sampling probabilities can be used to construct efficient IS proposal
distributions.
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Table 1: Proposal distribution and importance weights for a neutral coalescent model of a single locus.

Hk−1 p̂(Hk−1 | Hk) IS weight

n− ej
nj − 1

n+ θ − 1

nj

n

1

π̂(j | n− ej )

n

nj
π̂(j | n− ej )

n+ ei − ej
θPij

n+ θ − 1

nj

n

π̂(i | n− ej )

π̂(j | n− ej )

ni + 1 − δij

nj

π̂(j | n− ej )

π̂(i | n− ej )

2.2. Using π̂(i | n) for importance sampling

The likelihood of a configuration can be calculated by sequential IS on coalescent histories
which begin at a configuration H0 of sample genes, and move through states H−1, . . . , H−m
back in time. Changes of state occur when a coalescence, mutation, migration (in the case of a
subdivided population structure), or recombination (in the case of more than one locus) takes
place. The most recent common ancestor (MRCA) is reached at H−m.

The forward transition probabilities p(Hk | Hk−1) from the MRCA to the sample are
known from the coalescent process, whilst the reverse transition probabilities p(Hk−1 | Hk)
are unknown and replaced by an IS proposal p̂(Hk−1 | Hk). The IS weight in a transition from
Hk to Hk−1 is then p(Hk | Hk−1)/p̂(Hk−1 | Hk). Using Bayes’ rule and (1) applied to p̂(n)
and π̂(i | n), the proposal distribution and IS weights can be expressed in terms of π̂ . The
simplest one-locus case is illustrated in Table 1. We briefly mention that approaches other than
IS can be made to exploit the sampling distribution π̂(i | n). For example, Li and Stephens
(2003) constructed an efficient way to estimate the likelihood by introducing the product of
approximate conditionals (PAC), defined as p̂(n) = π̂(i1)π̂(i2 | i1) · · · π̂(in | i1, . . . , in−1),
where (i1, . . . , in) denotes a random permutation of the ordered configuration (a1, . . . , an)

of genes corresponding to the unordered configuration n. For the stepwise mutation model,
Cornuet and Beaumont (2007) provided a comparison of a PAC scheme with an IS approach,
when π̂(i | n) is derived using the method of the preceding subsection.

2.3. A general solution to the sampling distribution π̂(i | n)
The system of equations for π̂(i | n) that we can obtain using (1) and (3) is

(n+ θ)π̂(i | n) = ni + θ
∑
k∈E

π̂(k | n)Pki . (4)

(See De Iorio and Griffiths (2004a) for the details of the computation.) This system of
equations can easily be solved using matrix inversion. More precisely, π̂(i | n) is the ith
component of the row vector cn(I − c θP )−1, where c = 1/(n + θ) and I is the d × d

identity matrix. As discussed in De Iorio and Griffiths (2004a), this solution is exactly what
Stephens and Donnelly (2000) also obtained using a different approach. Furthermore, note
that, as n → ∞ and ni/n → xi , with xi being the population frequency of the allele type i,
π̂(i | n) → xi .

The sampling distributions π̂(i | n) depend on θ andP only through the rate matrix θ(P−I ).
The proposal distribution and IS weights in Table 1 can be modified to depend only on the rate
matrix by considering the proposal distribution conditional on state changes by mutation j → i,
where i �= j .
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2.4. π̂(i | n) for a diallelic locus

When there are only two alleles at each locus, i.e.E = {1, 2}, the expression c n(I−c θP )−1

described in the previous subsection takes on a simple form. More explicitly, the conditional
sampling distributions are given by

π̂(1 | n) = n1 + θP21

n+ θ(P12 + P21)
and π̂(2 | n) = n2 + θP12

n+ θ(P12 + P21)
.

2.5. π̂(i | n) for PIM models

For PIM models, the transition probability satisfies Pki = Pi and, therefore, it follows
from

∑
k∈E π̂(k | n) = 1 that θ

∑
k∈E π̂(k | n)Pki = θPi . Hence, the sampling distribution

π̂(i | n) for i ∈ E has the following simple form for PIM models:

π̂(i | n) = ni + θPi

n+ θ
. (5)

The two-allele and PIM models are seen to be equivalent by choosing θ and P such that

θPIM = θtwo-allele(P12 + P21),

P1 = P21

P12 + P21
,

P2 = P12

P12 + P21
.

3. The two-locus model in a single population

In this section we apply the diffusion approximation technique to the two-locus model in
a single population. As we elaborate presently, there exists an intricate link between the one-
locus and the two-locus models. This property allows us to obtain closed-form formulae for
sampling distributions for certain models.

3.1. Notation

We first define some useful notation to be used in the remaining part of this paper.

1. The first locus is denoted by A and the second locus by B.

2. LetEA andEB denote the allele type spaces for the first and the second loci, respectively.

3. We use ‘·’ to denote that an index has been summed over. For example, ni· = ∑
j∈EB nij

and n·j = ∑
i∈EA nij .

4. Given a rank-2 tensor n = (nij )(i,j)∈EA×EB , we define two vectors nA = (ni·)i∈EA and
nB = (n·j )j∈EB by summing over one of the indices.

5. A scalar n is defined as n = ∑
(i,j)∈EA×EB nij .

6. We use ei to denote the unit vector whose ith component is 1 while all other components
are 0. Similarly, eij denotes a rank-2 tensor whose (i, j) component is 1 while all other
components are 0.
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3.2. The neutral two-locus diffusion model

The state space of the neutral two-locus diffusion model is

� =
{
x = (xij )(i,j)∈EA×EB

∣∣∣∣ xij ≥ 0 for all (i, j) ∈ EA × EB and
∑

(i,j)∈EA×EB
xij = 1

}
,

and the generator for the diffusion process is

L =
∑

(i,j)∈EA×EB
Lij

∂

∂xij
,

where

Lij = 1

2

∑
(k,l)∈EA×EB

xij (δikδjl − xkl)
∂

∂xkl
+ bij (x)+ 1

2
ρ(xi·x·j − xij ).

In the infinitesimal mean part of the generator, ρ is the population-scaled recombination rate
and bij (x) is

bij (x) = θA

2

∑
k∈EA

xkj (P
A
ki − δki)+ θB

2

∑
l∈EB

xil(P
B
lj − δlj ),

where θα and Pαij are the population-scaled mutation rate and entries of the transition matrix
for locus α ∈ {A,B}. For clarity of discussion, we keep the parameters of the two loci
distinguished.

Consider the multinomial probability

Q(x,n) =
(

n!∏
(i,j)∈EA×EB nij !

) ∏
(k,l)∈EA×EB

(xkl)
nkl . (6)

The sampling distribution p(n) of the unordered sample configuration n is defined as p(n) =
E(Q(X,n)), where the expectation operator E is defined with respect to the stationary distri-
bution of the diffusion process. Let π((i, j) | n) denote the conditional probability that the
(n+1)th sampled allele is of type (i, j) ∈ EA × EB , given that the first n alleles have multiplic-
ity configuration n. These probabilities are normalized so that

∑
(i,j)∈EA×EB π((i, j) | n) = 1.

The sampling distributions π and p satisfy the exchangeability condition

π((i, j) | n)p(n) = E(XijQ(X,n)) = nij + 1

n+ 1
p(n+ eij ), (7)

which implies the following collection of conditions:

p(n− eij + ekl)

p(n− eij )
= n

nkl + 1 − δikδjl
π((k, l) | n− eij ), (8)

p(n− eij + eil + ekj )

p(n− eij )
= nij

nij + δikδjl

n(n+ 1)

(nkj + 1 − δik)(nil + 1 − δjl)

× π({(i, l), (k, j)} | n− eij ), (9)

where π({(i, l), (k, j)} | n − eij ) = E(XilXkjQ(X,n − eij ))/p(n − eij ). The sampling
distribution π satisfies the symmetry identity

π((k, j) | n+ eil) π((i, l) | n) = π((i, l) | n+ ekj ) π((k, j) | n), (10)
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which implies that

π({(i, l), (k, j)} | n− eij ) = π((k, j) | n− eij + eil)π((i, l) | n− eij )

= π((i, l) | n− eij + ekj )π((k, j) | n− eij ).

3.3. The main recursion for π̂((i, j) | n)
Adopting the idea of De Iorio and Griffiths (2004a), we now assume that there exists a

distribution with expectation operator Ê such that, for all (i, j) ∈ EA × EB ,

Ê

(
Lij

∂

∂xij

∏
(k,l)∈EA×EB

X
nkl
kl

)
= 0. (11)

Proposition 1. Let p̂(n) = Ê(Q(X,n)), where Q(X,n) is the multinomial expression shown
in (6), be an approximate sampling distribution, and let π̂ be the corresponding approximate
conditional sampling distribution that satisfies the exchangeability conditions (7)–(9). Then,

(n+ ρ + θA + θB)π̂((i, j) | n) = nij + θA
∑
k∈EA

π̂((k, j) | n)PAki + θB
∑
l∈EB

π̂((i, l) | n)PBlj

+ ρπ̂({(i, ·), (·, j)} | n), (12)

where π̂({(i, ·), (·, j)} | n) = Ê(Xi·X·jQ(X,n))/p̂(n).

Proof. It is straightforward to show that the componentwise vanishing property (11) implies
the following relation for p̂:

nij ((n− 1)+ ρ + θA + θB)p̂(n)

= n(nij − 1)p̂(n− eij )

+ θA
∑
k∈EA

PAki (nkj + 1 − δik)p̂(n− eij + ekj )

+ θB
∑
l∈EB

PBlj (nil + 1 − δjl)p̂(n− eij + eil)

+ ρ

n+ 1

∑
(k,l)∈EA×EB

(
p̂(n− eij + eil + ekj )

× nij + δikδjl

nij
(nil + 1 − δjl)(nkj + 1 − δik)

)
. (13)

This can also be obtained by assuming in the ancestral recombination graph that the next event
(coalescence, mutation, or recombination) back in time has probability nij /n of occurring to a
gene of type (i, j). Using the exchangeability conditions shown in (7)–(9), the above equation
for p̂ can be written in terms of π̂ , as shown in (12), after setting n → n+ eij .

Note that the approximate conditional distribution π̂ may not satisfy the symmetry identity
(10) satisfied by the true distribution π . Therefore, the formula we obtain for π̂((i, j) | n)may
depend on how π̂({(i, ·), (·, j)} | n) is treated. Motivated by the symmetry identity (10), we
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use the following symmetric form when evaluating π̂({(i, ·), (·, j)} | n):
π̂({(i, ·), (·, j)} | n)

= 1

2

∑
k∈EA

∑
l∈EB

(π̂((i, l) | n) π̂((k, j) | n+ eil)+ π̂((i, l) | n+ ekj ) π̂((k, j) | n)).

(14)

The main difficulty in solving (12) comes from this part. At first sight, it is not obvious how these
terms quadratic in π̂((a, b) | n) should be handled. It turns out that the system of equations
shown in (12) possesses hidden structures that prove very useful. We turn to this property next.

3.4. Marginal distributions

The key observation that allows us to solve for π̂((i, j) | n) in (12) is as follows. If we
sum over the index j in (12) then the terms that contain the mutation parameter θB cancel out
nicely between the left- and right-hand sides. The same holds true for the terms that contain ρ.
Hence, what remains is the following simple system of equations:

(n+ θA)π̂((i, ·) | n) = ni· + θA
∑
k∈EA

π̂((k, ·) | n) PAki . (15)

Note that this system of equations is a marginal system depending only on nA. In fact, it
is precisely what the one-locus conditional distribution for the first locus satisfies; summing
over the index for the second locus has reduced the two-locus equations (12) to the one-locus
equations (4) for the first locus. There exists a unique solution to (15), namely π̂((i, ·) | n) =
π̂A(i | nA), the latter being the one-locus distribution for locus A.

In a similar vein, if we sum over the index i in (12) then we obtain

(n+ θB)π̂((·, j) | n) = n·j + θB
∑
l∈EB

π̂((·, l) | n)PBlj , (16)

which is a marginal system depending only onnB . The unique solution to (16) is π̂((·, j) | n) =
π̂B(j | nB), the latter being the one-locus distribution for locus B.

3.5. π̂((i, j) | n) for diallelic loci

In the case of diallelic loci, i.e. EA = EB = {1, 2}, it becomes particularly clear how the
observation made in the previous subsection can be utilized to obtain π̂((i, j) | n). In what
follows, we define ī = 1 if i = 2 and ī = 2 if i = 1.

Proposition 2. Assume the symmetric form (14) for π̂({(i, ·), (·, j)} | n). Then, for diallelic
loci, a solution to (12) is given by

π̂((i, j) | n)
= 1

N

(
nij + θAP

A

īi
π̂B(j | nB)+ θBP

B

j̄j
π̂A(i | nA)

+ ρ

2

(
n+ θA(P

A
12 + PA21)

n+ 1 + θA(P
A
12 + PA21)

+ n+ θB(P
B
12 + PB21)

n+ 1 + θB(P
B
12 + PB21)

)
π̂A(i | nA)π̂B(j | nB)

)
,

(17)
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where the normalization constant N is defined as

N = n+ θA(P
A
12 + PA21)+ θB(P

B
12 + PB21)

+ ρ

2

(
n+ θA(P

A
12 + PA21)

n+ 1 + θA(P
A
12 + PA21)

+ n+ θB(P
B
12 + PB21)

n+ 1 + θB(P
B
12 + PB21)

)
.

Proof. As in the one-locus case (cf. Section 2.4), (15) and (16) for two-locus marginal
distributions admit simple solutions when there are only two possible alleles at each locus.
More precisely, we have

π̂((i, ·) | n) = π̂A(i | nA) = ni· + θAP
A

īi

n+ θA(P
A
12 + PA21)

, (18)

π̂((·, j) | n) = π̂B(j | nB) =
n·j + θBP

B

j̄j

n+ θB(P
B
12 + PB21)

. (19)

Hence, it follows that

π̂((i, ·) | n+ ekj ) = ni· + δik + θAP
A

īi

n+ 1 + θA(P
A
12 + PA21)

= (n+ θA(P
A
12 + PA21))π̂A(i | nA)+ δik

n+ 1 + θA(P
A
12 + PA21)

,

π̂((·, j) | n+ eil) =
n·j + δjl + θBP

B

j̄j

n+ 1 + θB(P
B
12 + PB21)

= (n+ θB(P
B
12 + PB21))π̂B(j | nB)+ δjl

n+ 1 + θB(P
B
12 + PB21)

,

and, therefore, π̂({(i, ·), (·, j)} | n) can be written as

π̂({(i, ·), (·, j)} | n)
= 1

2

((
1

n+ 1 + θA(P
A
12 + PA21)

+ 1

n+ 1 + θB(P
B
12 + PB21)

)
π̂((i, j) | n)

+
(

n+ θA(P
A
12 + PA21)

n+ 1 + θA(P
A
12 + PA21)

+ n+ θB(P
B
12 + PB21)

n+ 1 + θB(P
B
12 + PB21)

)
π̂A(i | nA)π̂B(j | nB)

)
,

where we have used the symmetric form (14). Using this, along with (18) and (19), we can
easily solve for π̂((i, j) | n) in (12). After some simple algebra, we obtain (17).

Note that everything on the right-hand side of (17) is completely known and that the solution
has a very nice form. In particular, the contribution of recombination to π̂((i, j) | n) is
proportional to a simple product of independent one-locus distributions at the two loci. Similar
to the case of a single locus, as n → ∞ and nij /n → xij , with xij being the population
frequency of the allele type (i, j), π̂((i, j) | n) → xij .

Note that the approximate conditional sampling distribution π̂((i, j) | n) obtained above
satisfies

∑
(i,j)∈EA×EB π̂((i, j) | n) = 1. Also, for ρ = ∞, it satisfies the symmetry condition

(10). For 0 < ρ < ∞, the symmetry condition is not satisfied in general.

3.6. π̂((i, j) | n) for PIM models

We first need to obtain a system of equations relating π̂({(i, ·), (·, j)} | n) to π̂((i, j) | n).
In (15) set n → n+elj , multiply by p̂(n+ elj )(

∏
(r,s)∈E×E(nrs + δrlδsj )!)/(n+ 1)!, and then

sum over the index l. The resulting equations are

(n+ θA + 1)Ê(Xi·X·jXn) = ni·Ê(X·jXn)+ Ê(XijX
n)+ θA

∑
k∈EA

Ê(Xk·X·jXn)PAki ,
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where Xn denotes
∏
(a,b)∈EA×EB X

nab
ab . Then, multiplying by n!/(p̂(n)∏(r,s)∈EA×EB nrs !)

gives the recursion

(n+ θA + 1)π̂({(i, ·), (·, j)} | n) = ni·π̂B(j | nB)+ π̂((i, j) | n)
+ θA

∑
k∈EA

π̂({(k, ·), (·, j)} | n)PAki . (20)

In the PIM model PAki = PAi for all k, i ∈ EA. Hence, (15) reduces to

(n+ θA)π̂A(i | nA) = ni· + θAP
A
i , (21)

and (20) reduces to

(n+ θA + 1)π̂({(i, ·), (·, j)} | n) = (ni· + θAP
A
i )π̂B(j | nB)+ π̂((i, j) | n)

= (n+ θA)π̂A(i | nA)π̂B(j | nB)+ π̂((i, j) | n).

In a similar vein we can show that

(n+ θB)π̂B(j | nB) = n·j + θBP
B
i (22)

and

(n+ θB + 1)π̂({(i, ·), (·, j)} | n) = (n+ θB)π̂A(i | nA)π̂B(j | nB)+ π̂((i, j) | n).

Note that (21) and (22) are analogues of the one-locus distribution (5) for loci A and B,
respectively. Symmetrizing with respect to the two loci thus gives

π̂({(i, ·), (·, j)} | n) = 1

2

(
n+ θA

n+ 1 + θA
+ n+ θB

n+ 1 + θB

)
π̂A(i | nA)π̂B(j | nB)

+ 1

2

(
1

n+ 1 + θA
+ 1

n+ 1 + θB

)
π̂((i, j) | n). (23)

This leads to the following result.

Proposition 3. For the PIM model, a solution to (12) is given by

π̂((i, j) | n) = 1

N ′

(
nij + θAP

A
i π̂B(j | nB)+ θBP

B
j π̂A(i | nA)

+ 1

2
ρ

(
n+ θA

n+ 1 + θA
+ n+ θB

n+ 1 + θB

)
π̂A(i | nA)π̂B(j | nB)

)
, (24)

where

N ′ = n+ θA + θB + 1

2
ρ

(
n+ θA

n+ 1 + θA
+ n+ θB

n+ 1 + θB

)
.

Proof. This follows from substituting (23) into (12) and then solving for π̂((i, j) | n).
Similar to the case of diallelic loci, as n → ∞ and nij /n → xij , π̂((i, j) | n) → xij .

https://doi.org/10.1239/aap/1214950213 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950213


Importance sampling and the two-locus model 483

3.7. Using π̂((i, j) | n) for IS

In a similar manner to the one-locus case, backward transition probabilities can be expressed
in terms of the sampling distribution π̂((i, j) | n). However, it is clear from (13) that each
recombination event increments the size of the sample, resulting in an extremely inefficient
IS scheme that needlessly simulates complete ancestral recombination graphs (ARGs). This
inefficiency can be circumvented by noting that the histories of genes which are not ancestral
to the sample cannot affect the sample configuration, and so there is no gain in tracing them
back in time. We propose a modified IS scheme which simulates coalescent histories only
of genes carrying ancestral material, rather than complete ARGs. The sampling distribution
π̂((i, j) | n) is modified accordingly, as we describe below, and forward transition probabilities
are obtained from the corresponding two-locus recursion. This recursion is related to those
studied in Golding (1984) and Ethier and Griffiths (1990), which differ from this approach in
that they do not assign types to nonancestral loci.

Denote a gene of type (i, j) ∈ EA × EB which is ancestral at locus A only, at locus B only,
and at both loci as (i, j)A, (i, j)B , and (i, j)C , respectively, with corresponding multiplicities
nAij , nBij , and nCij . The state space for genes in this system can then be denoted by (i, j, γ ) ∈
EA×EB×	, where 	 = {A,B,C} and γ indicates at which loci the gene is ancestral (A only,
B only, or both). Define nγ = (n

γ

ij )(i,j)∈EA×EB and nγ = ∑
(i,j)∈EA×EB n

γ

ij for γ ∈ 	, so that
n = (nA,nB,nC) and n = nA + nB + nC . In the reduced scheme only genes ancestral at
both loci, γ = C, can undergo recombination as we trace back in time. When sampling types
(i, j)A, (i, j)B , and (i, j)C , we use

π̂((i, j)A | n) = π̂((i, j)B | n) = π̂((i, j)C | n) = π̂((i, j) | n).
An equation for p(n) under this reduced scheme is

D0p(n) = n
∑

(i,j)∈EA×EB

(∑
γ∈	

(n
γ

ij − 1)p(n− e
γ

ij )+ 2nCij (p(n− eAij )+ p(n− eBij ))

+ 2(nCij + 1)p(n− eAij − eBij + eCij )

+ θA
∑
k∈EA

∑
γ∈	

PAki

n
γ

kj + 1 − δik

n
p(n− e

γ

ij + e
γ

kj )

+ θB
∑
l∈EB

∑
γ∈	

PBlj
n
γ

il + 1 − δjl

n
p(n− e

γ

ij + e
γ

il)

+ ρ
∑

(k,l)∈EA×EB

(nAil + 1)(nBkj + 1)

n(n+ 1)
p(n+ eAil + eBkj − eCij )

)
,

where D0 = n(n− 1)+ nθA + nθB + ρnC ; n− eAij denotes (nA − eij ,nB,nC), and so on.
Let H0, H−1, . . . , H−m denote a sequence of states backwards in time, with the state H0

denoting the input data. Recall that the proposal density for sequential IS is p̂(Hk−1 | Hk) =
p(Hk | Hk−1)p̂(Hk−1)/p̂(Hk), with p(Hk | Hk−1) being the forward transition probability,
and the associated importance weight is p̂(Hk)/p̂(Hk−1). The forward transition probabilities
and the ratio p̂(Hk−1)/p̂(Hk) for the scheme developed above are shown in Table 2, whence
the backward transition probabilities and IS weights can be derived. For sampling distributions
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Table 2: Forward transition probabilities p̂(Hk | Hk−1) and the ratio p̂(Hk−1)/p̂(Hk). The constantD0
is defined as D0 = n(n− 1)+ nθA + nθB + nCρ, and the multiplicity of Hk is n = (nA,nB,nC).

Hk−1 p(Hk | Hk−1) p̂(Hk−1)/p̂(Hk)

Coalescence

n− eAij

n(2nCij + nAij − 1)

D0

nAij

nπ̂((i, j)A | n− eAij )

n− eBij

n(2nCij + nBij − 1)

D0

nBij

nπ̂((i, j)B | n− eBij )

n− eCij

n(nCij − 1)

D0

nCij

nπ̂((i, j)C | n− eCij )

n− eAij − eBij + eCij

2n(nCij + 1)

D0

nAij n
B
ij π̂((i, j)

C | n− eAij − eBij )

n(nCij + 1)π̂({(i, j)A, (i, j)B} | n− eAij − eBij )

Mutation

n− eAij + eAkj

θAP
A
ki (n

A
kj + 1 − δik)

D0

nAij

nAkj + 1 − δik

π̂((k, j)A | n− eAij )

π̂((i, j)A | n− eAij )

n− eBij + eBkj

θAP
A
ki (n

B
kj + 1 − δik)

D0

nBij

nBkj + 1 − δik

π̂((k, j)B | n− eBij )

π̂((i, j)B | n− eBij )

n− eCij + eCkj

θAP
A
ki (n

C
kj + 1 − δik)

D0

nCij

nCkj + 1 − δik

π̂((k, j)C | n− eCij )

π̂((i, j)C | n− eCij )

n− eAij + eAil

θBP
B
lj (n

A
il + 1 − δjl)

D0

nAij

nAil + 1 − δjl

π̂((i, l)A | n− eAij )

π̂((i, j)A | n− eAij )

n− eBij + eBil

θBP
B
lj (n

B
il + 1 − δjl)

D0

nBij

nBil + 1 − δjl

π̂((i, l)B | n− eBij )

π̂((i, j)B | n− eBij )

n− eCij + eCil

θBP
B
lj (n

C
il + 1 − δjl)

D0

nCij

nCil + 1 − δjl

π̂((i, l)C | n− eCij )

π̂((i, j)C | n− eCij )

Recombination

n− eCij + eAil + eBkj

ρ(nAil + 1)(nBkj + 1)

(n+ 1)D0

nCij (n+ 1)π̂({(i, l)A, (k, j)B} | n− eCij )

(nAil + 1)(nBkj + 1)π̂((i, j)C | n− eCij )

involving the sampling of two additional alleles, we propose to use the following symmetrized
definition:

π̂({(i, l)A, (k, j)B} | n− eCij ) = 1
2 (π̂((i, l)

A | n+ eBkj − eCij )π̂((k, j)
B | n− eCij )

+ π̂((k, j)B | n+ eAil − eCij ) π̂((i, l)
A | n− eCij )).
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4. Fearnhead and Donnelly’s (2001) sampling distributions

In this section we describe the sampling distributions suggested by Fearnhead and Donnelly
(2001). It was shown in De Iorio and Griffiths (2004a) that, in the absence of recombination, the
diffusion approximation technique leads to the same sampling distributions as that proposed
by Stephens and Donnelly (2000). It would therefore be of interest to study whether the
diffusion approximation technique can produce novel sampling distributions when recombina-
tion is taken into account. For certain cases of the two-locus model, we obtain closed-form
formulae for Fearnhead and Donnelly’s sampling distributions and show that they differ from
our sampling distributions. How these two different approximate distributions compare with
the true distribution will be considered in Section 5.

4.1. Approximation for ρ = 0

Let H denote a multiset of n alleles. In the absence of recombination, Fearnhead and
Donnelly’s (2001) conditional distribution of the (n + 1)th sampled allele being of type ψ ,
given the type configuration H of the first n samples, is defined as

π̂FD(ψ | H) =
∑
φ∈H

∞∑
m=0

1

n

(
θ

n+ θ

)m(
n

n+ θ

)
[Pm]φψ, (25)

where θ denotes the population-scaled mutation rate for the region being considered and P is
the transition matrix. This distribution was first suggested by Stephens and Donnelly (2000).
It corresponds to summing over all possible ways of choosing an allele fromH at random with
probability 1/n, and then mutating it m number of times according to the mutation transition
matrix P , with m being geometrically distributed with parameter θ/(n+ θ). If there are � loci
so that φ = (φ1, . . . , φ�) and ψ = (ψ1, . . . , ψ�), then [Pm]φψ in (25) needs to be replaced by

∑
m1,...,m�∈Z≥0,
m1+···+m�=m

(
m

m1, . . . , m�

) �∏
α=1

1

�mα
[Pmα ]φαψα .

The multinomial coefficient
(

m
m1,...,m�

)
corresponds to the number of ways of arranging mi ,

i = 1, . . . , �, mutations at locus i, into a sequence of length m = m1 + · · · + m�. (In
this counting, mutations are regarded as being labeled by loci.) Dividing the multinomial by
�m1+···+m� gives the probability of having m1 mutations at locus 1, m2 mutations at locus 2,
and so on. Hence, for the �-locus case, (25) can be written as

π̂FD(ψ | H) =
∑
φ∈H

∞∑
m1=0

· · ·
∞∑

m�=0

1

n+ θ

(
m

m1, . . . , m�

) �∏
α=1

1

�mα

(
θ

n+ θ

)mα
[Pmα ]φαψα .

Note that, since

1

n

∫ ∞

0
e−t

�∏
α=1

(
e−tθ/n� (tθ/n�)mα

mα! [Pmα ]φαψα
)

dt = m!
n+ θ

�∏
α=1

(
θ

n+ θ

)mα [Pmα ]φαψα
�mαmα!

and exp(λ(A− I )) = ∑∞
j=0 e−λ(λj /j !)Aj forA a general k× k matrix and I a k× k identity

matrix, we obtain

π̂FD(ψ | H) =
∑
φ∈H

1

n

∫ ∞

0
e−t

�∏
α=1

[
Mα

(
t

n

)]
φαψα

dt,
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whereMα(t/n) = exp((tθ/n�)(P − I )). More generally, if each locus α has its own mutation
parameter θα and transition matrix P α , then

Mα

(
t

n

)
= exp

(
t

n
θα(P

α − I )

)

should be used.

4.2. Approximation for ρ �= 0

To compare π̂FD(ψ | H)with our results, we assume that every allele inH contains ancestral
material at every locus. Then, for ρ �= 0, Fearnhead and Donnelly’s sampling distribution is
given by π̂FD(ψ | H) = p�

[
ψ
]
, where p�

[
ψ
]

is determined recursively using

pα
[
ψ
] =

∑
φ∈H

1

n

∫ ∞

0
e−tpα

[
ψ

∣∣∣∣ φ, tn
]

dt (26)

and

pα

[
ψ

∣∣∣∣ φ, tn
]

=
(
(1 − qα−1)pα−1

[
ψ

∣∣∣∣ φ, tn
]

+ qα−1pα−1
[
ψ
])[

Mα

(
t

n

)]
φαψα

, (27)

with the initial condition

p1

[
ψ

∣∣∣∣ φ, tn
]

=
[
M1

(
t

n

)]
φ1ψ1

. (28)

Here, qα−1 := ρα−1/(n+ρα−1), whereρα−1 is the recombination rate between the (α−1)th and
the αth loci. The first factor (1 − qα−1)pα−1

[
ψ | φ, t/n] [Mα(t/n)]φαψα in (27) corresponds

to there being no recombination between the (α − 1)th and the αth loci, whereas the second
factor qα−1pα−1

[
ψ
] [Mα(t/n)]φαψα gives the contribution from having a recombination event

between the two loci.

4.3. π̂FD((i, j) | n) for a diallelic two-locus model

We now focus on the two-locus model with two allele types at each locus. Let n denote the
multiplicity configuration of H . As in Section 3, the type spaces for the first and the second
loci are denoted by EA and EB , respectively, and the recombination rate between the two loci
is denoted by ρ. For (i, j) ∈ EA × EB = {1, 2} × {1, 2}, we wish to compute

π̂FD((i, j) | n) = p2 [(i, j)] =
∑

(k,l)∈EA×EB

nkl

n

∫ ∞

0
e−tp2

[
(i, j)

∣∣∣∣ (k, l), tn
]

dt. (29)

Here, p2 [(i, j) | (k, l), t/n] = ((1−q1)[M1(t/n)]ki+q1p1 [(i, j)])[M2(t/n)]lj ,where q1 =
ρ/(n+ρ). In our computation we keep the mutation parameters for the two loci distinguished.
Therefore, for locus α, Mα(t/n) = exp((t/n)θα(P α − I )), where

P α − I =
(−Pα12 Pα12

Pα21 −Pα21

)
.
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From the initial condition (28), we find that

p1 [(i, j)] =
∑

(k,l)∈EA×EB

nkl

n

∫ ∞

0
e−t
[
M1

(
t

n

)]
ki

dt

=
∑
k∈EA

nk·
n

∫ ∞

0
e−t
[
M1

(
t

n

)]
ki

dt

= ni· + θAP
A

īi

n+ θA(P
A
12 + PA21)

,

which is none other than π̂A(i | nA) (cf. (18)). Furthermore, since

∑
(k,l)∈EA×EB

nkl

n

∫ ∞

0
e−t
[
M2

(
t

n

)]
lj

dt =
∑
l∈EB

n·l
n

∫ ∞

0
e−t
[
M2

(
t

n

)]
lj

dt

=
n·j + θBP

B

j̄j

n+ θB(P
B
12 + PB21)

,

which is equal to π̂B(j | nB) (cf. (19)), Fearnhead and Donnelly’s (2001) two-locus distribution
in (29) can be written as

π̂FD((i, j) | n) = n

n+ ρ

∑
(k,l)∈EA×EB

nkl

n

∫ ∞

0
e−t
[
M1

(
t

n

)]
ki

[
M2

(
t

n

)]
lj

dt

+ ρ

n+ ρ
π̂A(i | nA)π̂B(j | nB).

After performing the integral in the above expression, we obtain

π̂FD((i, j) | n)
= 1

NFD

(
nij + θAP

A

īi
π̂B(j | nB)+ θBP

B

j̄j
π̂A(i | nA)

+ ρ

(
n+ θA(P

A
12 + PA21)+ θB(P

B
12 + PB21)

n

)
π̂A(i | nA)π̂B(j | nB)

)
, (30)

where

NFD = n+ θA(P
A
12 + PA21)+ θB(P

B
12 + PB21)

+ ρ

(
n+ θA(P

A
12 + PA21)+ θB(P

B
12 + PB21)

n

)
.

That π̂FD((i, j) | n) may take on this concise form is not obvious a priori. Simply applying
the prescription shown in (26) and the equations thereafter generates complicated expressions,
which are difficult to interpret at first sight. It is only after gathering many terms appropriately
that we are able to write the distribution in such a simple form. In contrast, recall that, because
in our approach we directly utilize the link between the one-locus and the two-locus diffusion
models, our sampling distribution (17) could be obtained without intensive computation.
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Note that the distribution in (30) is, in general, different from our sampling distribution (17).
For ρ = 0 or ρ = ∞, however, the two distributions are equal. More exactly, we have

lim
ρ→0

π̂((i, j) | n) = lim
ρ→0

π̂FD((i, j) | n) =
nij + θAP

A

īi
π̂B(j | nB)+ θBP

B

j̄j
π̂A(i | nA)

n+ θA(P
A
12 + PA21)+ θB(P

B
12 + PB21)

and
lim
ρ→∞ π̂((i, j) | n) = lim

ρ→∞ π̂FD((i, j) | n) = π̂A(i | nA)π̂B(j | nB).

As expected, the two loci become independent as ρ approaches ∞.

4.4. π̂FD((i, j) | n) for two-locus PIM models

For PIM models, the transition matrix P α for locus α ∈ {A,B} satisfies Pαki = Pαi for all
i, k ∈ Eα . This implies that

Mα

(
t

n

)
= exp

(
t

n
θα(P

α − I )

)

reduces to the following:

[
Mα

(
t

n

)]
ki

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

(
− t

n
θα

)((
exp

(
t

n
θα

)
− 1

)
Pαi + 1

)
if k = i,

exp

(
− t

n
θα

)(
exp

(
t

n
θα

)
− 1

)
Pαi if k �= i.

We omit the details of the computation of π̂FD((i, j) | n), as they are similar to that discussed in
the previous subsection. After carrying out the steps outlined in Section 4.2 and then gathering
terms appropriately, we can show that

π̂FD((i, j) | n) = 1

N ′
FD

(
nij + θAP

A
i π̂B(j | nB)+ θBP

B
j π̂A(i | nA)

+ ρ

(
n+ θA + θB

n

)
π̂A(i | nA) π̂B(j | nB)

)
, (31)

where

N ′
FD = n+ θA + θB + ρ

(
n+ θA + θB

n

)
.

Here, π̂A(i | nA) and π̂B(j | nB) are as shown in (21) and (22), respectively. As in the case
of diallelic loci, Fearnhead and Donnelly’s distributions, (31), for PIM models are generally
different from our distributions, (24). However, for ρ = 0 or ρ = ∞, it is easy to see that

lim
ρ→0

π̂((i, j) | n) = lim
ρ→0

π̂FD((i, j) | n) = nij + θAP
A
i π̂B(j | nB)+ θBP

B
j π̂A(i | nA)

n+ θA + θB

and
lim
ρ→∞ π̂((i, j) | n) = lim

ρ→∞ π̂FD((i, j) | n) = π̂A(i | nA)π̂B(j | nB).
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5. The two-locus infinitely-many-alleles model

As discussed in Section 4, our sampling distributions generally differ from that of Fearnhead
and Donnelly’s (2001). Unfortunately, it is in general difficult to know how these approximate
distributions compare with the true distributions, the main reason being that the true distributions
are difficult to obtain. In the case of the infinitely-many-alleles model, however, there exists
a system of recursion relations satisfied by the true distribution (see Golding (1984) and
Ethier and Griffiths (1990)), and it is possible to obtain exact solutions to the system when
the sample size is less than 40 or so.

5.1. Distribution of unordered, unlabeled sample configurations

Let An denote the ordered configuration of n sequentially sampled alleles. Then, the
probability distribution of an unordered, unlabeled sample configuration for the infinitely-
many-alleles model is

p∗(n) = n!∏
(i,j)∈EA×EB nij !

1

σ(n)
p(An),

where the symmetry factor σ(n) is defined as σ(n) = |{g ∈ Z2 × Z2 | g(n) = n}|. The first
Z2 acts on the first index of nij , whereas the second Z2 acts on the second index.

The true conditional distributions π∗((i, j) | n) for an unordered, unlabeled sample config-
uration are defined as

π∗((i, j) | n) = nij + 1

n+ 1

p∗(n+ eij )

p∗(n)
.

One way to obtain the sampling distribution for the infinitely-many-alleles model is to take
a limit in the PIM model. Let pd,d ′(n) denote the probability distribution of a sample con-
figuration n in the two-locus PIM model with allele type spaces EA = {1, 2, . . . , d} and
EB = {1, 2, . . . , d ′}. Suppose that the sample contains kA and kB distinct allele types for loci
A and B, respectively. Then, the probability distribution of an unordered, unlabeled sample
configuration in the infinitely-many-alleles model is given by

p∗(n) = 1

σ(n)
lim
d→∞ lim

d ′→∞
d[kA]d ′[kB ]pd,d ′(n),

where d[k] := d(d − 1) · · · (d − k + 1). The corresponding conditional distributions are

π∗((i, j) | n)

= σ(n)

σ (n+ eij )
×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lim
d→∞ lim

d ′→∞
πd,d ′((i, j) | n) if ni· �= 0 and n·j �= 0,

lim
d→∞ lim

d ′→∞
(d − kA)πd,d ′((i, j) | n) if ni· = 0 and n·j �= 0,

lim
d→∞ lim

d ′→∞
(d ′ − kB)πd,d ′((i, j) | n) if ni· �= 0 and n·j = 0,

lim
d→∞ lim

d ′→∞
(d − kA)(d

′ − kB)πd,d ′((i, j) | n) if ni· = 0 and n·j = 0.

In what follows, we assume that at most two allele types are observed at each locus.
Therefore, given a configuration n = (n11, n12, n21, n22), the symmetry factor σ(n) is as
follows.

σ(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 if n11 = n12 = n21 = n22,

2 if n11 = n12, n21 = n22, and n11 �= n21,

2 if n11 = n21, n12 = n22, and n11 �= n12,

1 otherwise.
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5.2. Our approximation

Following the above prescription, we use our approximate sampling distribution (24) for the
PIM model to obtain the following approximate sampling distributions for the infinitely-many-
alleles model:

π̂∗((i, j) | n)
= σ(n)

σ (n+ eij )

× 1

n+ θA + θB + (ρ/2)((n+ θA)/(n+ 1 + θA)+ (n+ θB)/(n+ 1 + θB))

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nij + ρ

2

(
ni·

n+ 1 + θA

n·j
n+ θB

+ ni·
n+ θA

n·j
n+ 1 + θB

)
if ni· �= 0 and n·j �= 0,

θA
n·j

n+ θB
+ ρ

2

(
θA

n+ 1 + θA

n·j
n+ θB

+ θA

n+ θA

n·j
n+ 1 + θB

)
if ni· = 0 and n·j �= 0,

θB
ni·

n+ θA
+ ρ

2

(
ni·

n+ 1 + θA

θB

n+ θB
+ ni·
n+ θA

θB

n+ 1 + θB

)
if ni· �= 0 and n·j = 0,

θAθB

(
1

n+ θA
+ 1

n+ θB

)
+ ρ

2

(
θA

n+ 1 + θA

θB

n+ θB
+ θA

n+ θA

θB

n+ 1 + θB

)
if ni· = 0 and n·j = 0.

5.3. Fearnhead and Donnelly’s (2001) approximation

Using Fearnhead and Donnelly’s approximate distribution, (31), for the PIM model leads
the following approximate distributions for the infinitely-many-alleles model:

π̂∗
FD((i, j) | n)

= σ(n)

σ (n+ eij )

1

n+ θA + θB + ρ((n+ θA + θB)/n)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nij + ρ
n+ θA + θB

n

ni·
n+ θA

n·j
n+ θB

if ni· �= 0 and n·j �= 0,

θA
n·j

n+ θB
+ ρ

n+ θA + θB

n

θA

n+ θA

n·j
n+ θB

if ni· = 0 and n·j �= 0,

θB
ni·

n+ θA
+ ρ

n+ θA + θB

n

ni·
n+ θA

θB

n+ θB
if ni· �= 0 and n·j = 0,

θAθB

(
1

n+ θA
+ 1

n+ θB

)
+ ρ

n+ θA + θB

n

θA

n+ θA

θB

n+ θB
if ni· = 0 and n·j = 0.
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5.4. Comparison with the true distribution

Forρ = 0, our approximate distributions agree exactly with that of Fearnhead and Donnelly’s
(2001) for all values of ni· and n·j . For ρ = ∞, both

π̂∗((i, j) | n) and π̂∗
FD((i, j) | n)

are equal to the true distribution

lim
ρ→∞π

∗((i, j) | n) = σ(n)

σ (n+ eij )

1

(n+ θA)(n+ θB)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ni·n·j if ni· �= 0 and n·j �= 0,

θAn·j if ni· = 0 and n·j �= 0,

ni·θB if ni· �= 0 and n·j = 0,

θAθB if ni· = 0 and n·j = 0,

which follows from Theorem 2.3 of Ethier and Griffiths (1990).
For comparing the two approximate distributions with the true distribution, we used Richard

Hudson’s C program (available at http://home.uchicago.edu/∼rhudson1/) for solving Golding’s
recursion (see Golding (1984)) numerically. For ease of comparison, we used θA = θB = θ/2.
In what follows, we measure the deviation of an approximate distribution π̂∗

approx((i, j) | n)
(either π̂∗((i, j) | n) or π̂∗

FD((i, j) | n)) from the true distribution π∗((i, j) | n) by

π̂∗
approx((i, j) | n)− π∗((i, j) | n)

π∗((i, j) | n) × 100%.

Shown in Figure 1(a) are the deviations of π̂∗((1, 1) | n) and π̂∗
FD((1, 1) | n) from the true

distribution π∗((1, 1) | n) for n = (4, 3, 2, 3). The case for n = (5, 4, 4, 5) is illustrated in
Figure 1(b). Note that the deviations for n = (5, 4, 4, 5) are generally less than those for n =
(4, 3, 2, 3). Furthermore, both cases indicate that, in general, our distribution π̂∗((1, 1) | n)
is a more accurate approximation of the true distribution than is Fearnhead and Donnelly’s
π̂∗

FD((1, 1) | n).
In contrast to the above case where ni· �= 0 and n·j �= 0, for ni· = 0 or n·j = 0,

both π̂∗((i, j) | n) and π̂∗
FD((i, j) | n) diverge more and more from the true distribution as

n increases. This puzzling behavior is illustrated in Figure 1(c)–(d) for (i, j) = (1, 1), with
n1· = 0 for n·1 �= 0. In Figure 1(c) n = (0, 0, 1, 0), whereas n = (0, 0, 2, 1) in Figure 1(d). In
general, it still seems true that our approximate distribution π̂∗((i, j) | n) is closer to the true
distribution than is π̂∗

FD((i, j) | n).

6. The two-locus model with subdivided population structure

De Iorio and Griffiths (2004a) applied their diffusion approximation technique to the one-
locus model with subdivided population structure and showed that, in the case of the infinitely-
many-sites model, it leads to a significant improvement over previous studies (see Bahlo and
Griffiths (2000)). In this section we apply the diffusion approximation technique to the two-
locus model with subdivided population structure, thus obtaining novel results. Much of what
we discussed in Section 3 carries over nicely to the present case. This example well illustrates
the wide applicability of the diffusion approximation technique.
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Figure 1: Left column: Deviation of Fearnhead and Donnelly’s distribution π̂∗
FD((1, 1) | n) from the

true distribution. Right column: Deviation of our distribution π̂∗((1, 1) | n) from the true distribution.
For all figures, θA = θB = θ/2. (a) n = (4, 3, 2, 3). (b) n = (5, 4, 4, 5). (c) n = (0, 0, 1, 0).

(d) n = (0, 0, 2, 1).

6.1. Diffusion approximation

Subpopulations are labeled by 	 = {1, . . . , g}. The total population size isN = ∑
α∈	 Nα ,

where Nα denotes the size of subpopulation α. We define qα = Nα/N for all α ∈ 	. For
α, β ∈ 	, where α �= β, the scaled backward migration rates are defined as mαβ = 2Ncαβ ,
where cαβ denotes the probability that the parent of an individual in subpopulation α is

https://doi.org/10.1239/aap/1214950213 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950213


Importance sampling and the two-locus model 493

from subpopulation β one generation back in time. The overall scaled migration rate for
subpopulation α is mα = ∑

β �=α mαβ . See De Iorio and Griffiths (2004b) for a detailed
discussion on the coalescent model with migration.

Similar notation as in Section 3 is used in this section. The population gene frequencies
are denoted by X = (Xαij )(α,i,j)∈	×EA×EB . These frequencies are normalized so that, for
each subpopulation α ∈ 	,

∑
(i,j)∈EA×EB Xαij = 1. The diffusion process generator for the

two-locus model with migration is

L =
∑
α∈	

∑
(i,j)∈EA×EB

Lαij
∂

∂xαij
,

where

Lαij = 1

2

∑
(k,l)∈EA×EB

xαij (δikδjl − xαkl)q
−1
α

∂

∂xαkl
+ θA

2

∑
k∈EA

xαkj (P
A
ki − δki)

+ θB

2

∑
l∈EB

xαil(P
B
lj − δlj )+ ρ

2
(xαi·xα·j − xαij )− 1

2
mαxαij + 1

2

∑
β �=α

mαβxβij .

In what follows, define n := (nαij )(α,i,j)∈	×EA×EB , nα := (nαij )(i,j)∈EA×EB , and

QS(x,n) :=
∏
α∈	

(
nα

nα

) ∏
(i,j)∈EA×EB

x
nαij
αij .

Proposition 4. Assume that there exists a probability distribution with expectation operator
Ê such that Ê(LαijQS(X,n)) = 0 for all (α, i, j) ∈ 	 × EA × EB , and define p̂(n) :=
Ê(QS(X,n)) and π̂((i, j) | α,n) = Ê(XαijQS(X,n))p̂(n). Furthermore, assume that
exchangeability conditions analogous to (7)–(9) hold. Then,

(nαq
−1
α + ρ +mα + θA + θB)π̂((i, j) | α,n)
= nαij q

−1
α +

∑
β �=α

mαβπ̂((i, j) | β,n)+ θA
∑
k∈EA

π̂((k, j) | α,n)PAki

+ θB
∑
l∈EB

π̂((i, l) | α,n)PBlj + ρπ̂({(i, ·), (·, j)} | α,n), (32)

where π̂({(i, ·), (·, j)} | α,n) = Ê(Xαi·Xα·jQS(X,n))/p̂(n). (Normalization is such that∑
(i,j)∈EA×EB π̂((i, j) | α,n) = 1 for each α ∈ 	.)

Proof. This follows from a similar set of steps as in the proof of Proposition 1.

As in the case of a single population, the main difficulty in solving equation (32) for
the conditional sampling distribution π̂((i, j) | α,n) comes from the recombination term
π̂({(i, ·), (·, j)} | α,n). As before, our approach is to first obtain a system of equations relating
π̂({(i, ·), (·, j)} | α,n) to π̂((i, j) | α,n); this can be done using techniques similar to the ones
already discussed in Section 3.

https://doi.org/10.1239/aap/1214950213 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950213


494 R. C. GRIFFITHS ET AL.

6.2. Marginal distributions

Summing over the index j in (32) yields

(nαq
−1
α +mα + θA)π̂((i, ·) | α,n) = nαi·q−1

α + θA
∑
k∈EA

π̂((k, ·) | α,n)PAki

+
∑
β �=α

mαβπ̂((i, ·) | β,n), (33)

whereas summing over the index i yields

(nαq
−1
α +mα + θB)π̂((·, j) | α,n) = nα·j q−1

α + θB
∑
l∈EB

π̂((·, l) | α,n)PBlj

+
∑
β �=α

mαβπ̂((·, j) | β,n). (34)

Note that these are marginal systems depending only on nA = (nγ a·)(γ,a)∈	×EA and nB =
(nγ ·b)(γ,b)∈	×EB , respectively. The one-locus distribution discussed in De Iorio and Griffiths
(2004b) satisfies an equation exactly like (33) and (34). There exists a unique solution to
such an equation; in general, it can be obtained via matrix inversion. (See De Iorio and
Griffiths (2004b) for details.) We therefore conclude that π̂((i, ·) | α,n) = π̂A(i | α,nA)
and π̂((·, j) | α,n) = π̂B(j | α,nB), where π̂A(i | α,nA) and π̂B(j | α,nB) are one-locus
distributions for the A and B loci, respectively.

6.3. π̂((i, j) | α, n) for diallelic loci

We first consider the case of diallelic loci; that is, EA = EB = {1, 2}. Recall that we define
ī = 1 if i = 2 and ī = 2 if i = 1.

6.3.1. An arbitrary number of subpopulations. To be concise, we define

F A
α (k) = kq−1

α +mα + θA(P
A
12 + PA21) and F B

α (k) = kq−1
α +mα + θB(P

B
12 + PB21).

Then, (33) and (34) can be respectively written as

F A
α (nα)π̂((i, ·) | α,n) = nαi·q−1

α + θAP
A

īi
+
∑
β �=α

mαβπ̂((i, ·) | β,n),

F B
α (nα)π̂((·, j) | α,n) = nα·j q−1

α + θBP
B

j̄j
+
∑
β �=α

mαβπ̂((·, j) | β,n).

These systems of equations can be solved as follows. Let vAi = (vAiα)α∈	 and vBj = (vBjα)α∈	
denote the g-dimensional column vectors with entries

vAiα = nαi·q−1
α + θAP

A

īi

F A
α (nα)

and vBjα =
nα·j q−1

α + θBP
B

j̄j

F B
α (nα)

, (35)

respectively. Also, let MA = (MA
αβ)(α,β)∈	×	 be the g × g matrix with entries

MA
αβ =

⎧⎨
⎩

mαβ

F A
α (nα)

if α �= β,

0 otherwise.
(36)
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The matrixMB is similarly defined, with F A
α (nα) replaced with F B

α (nα). Then, π̂((i, ·) | α,n)
is the αth component of the g-dimensional vector (I −MA)−1vAi , where I is the g × g

identity matrix. Likewise, π̂((·, j) | α,n) is the αth component of the g-dimensional vector
(I −MB)−1vBj .

Now, from (35) and (36), we see that

π̂((i, ·) | α,n+ eαkj ) = CAα π̂A(i | α,nA)+ DA
α δik, (37)

where CAα and DA
α are some constants that depend on θAPA, nα , qα , andmαβ , where α, β ∈ 	.

Similarly,
π̂((·, j) | α,n+ eαil) = CBα π̂B(j | α,nB)+ DB

α δjl . (38)

Using these facts, (32) can be written as

π̂((i, j) | α,n) = λα
∑
β �=α

mαβ π̂((i, j) | β,n)+ vijα,

where λα = 2{F A
α (nα)+ F B

α (nα)+ ρ((1 − DA
α )+ (1 − DB

α ))}−1 and

vijα := λα

(
nαij q

−1
α + θAP

A

īi
π̂B(j | α,nB)+ θBP

B

j̄j
π̂A(i | α,nA)

+ ρ

2
(CAα + CBα )π̂A(i | α,nA)π̂B(j | α,nB)

)
.

Here, we have used a symmetrized form of π̂({(i, ·), (·, j)} | α,n) similar to that shown in (14).
Define vij := (vijα)α∈	 , a g-dimensional column vector. Note that we have already discussed
how everything that appears in vij can be computed. Hence, defining R = (Rαβ)(α,β)∈	×	 as
the g × g matrix with entries

Rαβ =
{
λαmαβ if α �= β,

0 otherwise,

we can obtain π̂((i, j) | α,n) as the αth component of (I −R)−1vij .

6.3.2. Two subpopulations. When there are only two subpopulations, labeled by 	 = {1, 2},
the method described above reduces to solving a system of two independent equations in
two variables, and we can avoid doing matrix inversion. For instance, the A locus marginal
distributions satisfy π̂A(i | α,nA) = MA

αβ π̂A(i | β,nA)+ vAiα , where constants vAiα and MA
αβ

are as defined in (35) and (36), respectively. Here, α, β ∈ 	 with α �= β. We can easily solve
the above system of equations to obtain

π̂A(i | α,nA) = MA
αβ v

A
iβ + vAiα

1 −MA
αβM

A
βα

.

Solutions to the B locus marginal distributions π̂B(j | α,nB) can be obtained in a similar way.
In terms of the given parameters, these marginal distributions can be written as

π̂A(i | α,nA)=
(
nαi·q−1

α + θAP
A

īi

F A
α (nα)

+ mαβ(nβi·q−1
β + θAP

A

īi
)

F A
α (nα)F

A
β (nβ)

)(
1 − mαβmβα

F A
α (nα)F

A
β (nβ)

)−1

,

π̂B(j | α,nB)=
(nα·j q−1

α + θBP
B

j̄j

F B
α (nα)

+
mαβ(nβ·j q−1

β +θBPBj̄j )
F B
α (nα)F

B
β (nβ)

)(
1− mαβmβα

F B
α (nα)F

B
β (nβ)

)−1

,
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from which we see that the constants CAα and DA
α in (37) are given by

CAα = F A
α (nα)F

A
β (nβ)−mαβmβα

F A
α (nα + 1)F A

β (nβ)−mαβmβα
and DA

α = q−1
α F A

β (nβ)

F A
α (nα)F

A
β (nβ)−mαβmβα

.

The constants CBα and DB
α in (38) are similarly defined. As discussed in Section 6.3.1, these

constants, along with the marginal distributions found above, completely determine Rαβ and
vijα in the system of equations π̂((i, j) | α,n) = Rαβπ̂((i, j) | β,n)+ vijα , where α, β ∈ 	
with α �= β. The two-locus sampling distributions π̂((i, j) | α,n) are thus given by

π̂((i, j) | α,n) = Rαβvijβ + vijα

1 − RαβRβα
.

6.4. π̂((i, j) | α, n) for PIM models

To obtain a system of equations relating π̂({(i, ·), (·, j)} | α,n) and π̂((i, j) | α,n) for PIM
models, we also need

π̂({(i, ·), (·, j)} | {α, β},n) = Ê(Xαi·Xβ·jQS(X,n))

p̂(n)
,

the probability that the marginal types of two genes from subpopulations α and β are i and j
at the A and B loci, respectively. In (33) set n → n+ eαlj and sum over l, after multiplying
by p̂(n+ eαlj )(

∏
(σ,r,s)∈	×EA×EB (nσrs + δσαδrlδsj )!)/(n+ 1)!. The resulting equations after

multiplying again by n!/(p̂(n)∏(σ,r,s)∈	×EA×EB nσrs !) are

((nα + 1)q−1
α +mα + θA)π̂({(i, ·), (·, j)} | α,n)

= q−1
α (nαi·π̂B(j | α,nB)+ π̂((i, j) | α,n))+ θA

∑
k∈E

PAki π̂({(k, ·), (·, j)} | α,n)
+
∑
β �=α

mαβπ̂({(i, ·), (·, j)} | {β, α},n). (39)

In the above computation if we instead set n → n+ eγ lj , where γ �= α, then we obtain

(nαq
−1
α +mα + θA)π̂({(i, ·), (·, j)} | {α, γ },n)
= nαi·q−1

α π̂B(j | γ,nB)+ θA
∑
k∈E

PAki π̂({(k, ·), (·, j)} | {α, γ },n)

+
∑
β �=α

mαβπ̂({(i, ·), (·, j)} | {β, γ },n). (40)

In a similar vein, the following systems of equations can be found using (34):

((nα + 1)q−1
α +mα + θB)π̂({(i, ·), (·, j)} | α,n)

= q−1
α (nα·j π̂A(i | α,nA)+ π̂((i, j) | α,n))+ θB

∑
l∈E

PBlj π̂({(i, ·), (·, l)} | α,n)

+
∑
β �=α

mαβπ̂({(i, ·), (·, j)} | {β, α},n), (41)
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and, for γ �= α,

(nαq
−1
α +mα + θB)π̂({(i, ·), (·, j)} | {α, γ },n)
= nα·j q−1

α π̂A(i | γ,nA)+ θB
∑
l∈E

PBlj π̂({(i, ·), (·, l)} | {α, γ },n)

+
∑
β �=α

mαβπ̂({(i, ·), (·, j)} | {β, γ },n). (42)

6.4.1. An arbitrary number of subpopulations. Henceforward, we let F A
α (k) = kq−1

α +mα+
θA and F B

α (k) = kq−1
α +mα + θB . For PIM models, (33) and (34) reduce to

F A
α (nα) π̂A(i | α,nA) = nαi·q−1

α + θAP
A
i +

∑
β �=α

mαβπ̂A(i | β,nA), (43)

F B
α (nα) π̂B(j | α,nB) = nα·j q−1

α + θBP
B
j +

∑
β �=α

mαβπ̂B(j | β,nB). (44)

These one-locus equations, also considered in De Iorio and Griffiths (2004b), can be solved
using matrix inversion. Moreover, (39) and (41) become

F A
α (nα + 1)π̂({(i, ·), (·, j)} | α,n)

= (nαi·q−1
α + θAP

A
i )π̂B(j | α,nB)+ q−1

α π̂((i, j) | α,n)
+
∑
β �=α

mαβπ̂({(i, ·), (·, j)} | {β, α},n), (45)

F B
α (nα + 1)π̂({(i, ·), (·, j)} | α,n)

= (nα·j q−1
α + θBP

B
j )π̂A(i | α,nA)+ q−1

α π̂((i, j) | α,n)
+
∑
β �=α

mαβπ̂({(i, ·), (·, j)} | {β, α},n), (46)

while (40) and (42) imply, for β �= α, the following equations:

F A
β (nβ)π̂({(i, ·), (·, j)} | {β, α},n) = (nβi·q−1

β + θAP
A
i )π̂B(j | α,nB)

+
∑
γ �=β

mβγ π̂({(i, ·), (·, j)} | {γ, α},n), (47)

F B
β (nβ)π̂({(i, ·), (·, j)} | {β, α},n) = (nβ·j q−1

β + θBP
B
j )π̂A(i | α,nA)

+
∑
γ �=β

mβγ π̂({(i, ·), (·, j)} | {γ, α},n). (48)

Now, (45)–(48) can be used to express π̂({(i, ·), (·, j)} | α,n) in terms of π̂((i, j) | α,n),
π̂A(i | α,nA), π̂B(j | α,nB), and known parameters. That relation can then be used in (32) to
solve for π̂((i, j) | α,n). A concrete example is discussed in the next section.
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6.4.2. Two subpopulations. Let α, β ∈ 	 such that α �= β. For 	 = {1, 2}, it is easy to solve
the systems of equations shown in (43) and (44). The solutions are

π̂A(i | α,nA)=
(
nαi·q−1

α + θAP
A
i

F A
α (nα)

+ mαβ(nβi·q−1
β + θAP

A
i )

F A
α (nα)F

A
β (nβ)

)(
1 − mαβmβα

F A
α (nα)F

A
β (nβ)

)−1

,

π̂B(j | α,nB)=
(
nα·j q−1

α + θBP
B
j

F B
α (nα)

+ mαβ(nβ·j q−1
β + θBP

B
j )

F B
α (nα)F

B
β (nβ)

)(
1 − mαβmβα

F B
α (nα)F

B
β (nβ)

)−1

.

In (47) and (48), note that the sum
∑
γ �=β mβγ π̂({(i, ·), (·, j)} | {γ, α},n) reduces to the single

term mβα π̂({(i, ·), (·, j)} | α,n). It is then easy to see that (45) and (47) imply that

π̂({(i, ·), (·, j)} | α,n) = q−1
α F A

β (nβ)

F A
α (nα + 1)F A

β (nβ)−mαβmβα
π̂((i, j) | α,n)

+ F A
α (nα)F

A
β (nβ)−mαβmβα

F A
α (nα + 1)F A

β (nβ)−mαβmβα
π̂A(i | α,nA) π̂B(j | α,nB),

whereas (46) and (48) imply that

π̂({(i, ·), (·, j)} | α,n) = q−1
α F B

β (nβ)

F B
α (nα + 1)F B

β (nβ)−mαβmβα
π̂((i, j) | α,n)

+ F B
α (nα)F

B
β (nβ)−mαβmβα

F B
α (nα + 1)F B

β (nβ)−mαβmβα
π̂A(i | α,nA) π̂B(j | α,nB).

Symmetrizing π̂({(i, ·), (·, j)} | α,n) with respect to the A and B loci using the above results,
(32) can now be written as

π̂((i, j) | α,n) = ξαmαβπ̂((i, j) | β,n)+ wijα, (49)

where

wijα = ξα

(
nαij + θAP

A
i π̂B(j | α,nB)+ θBP

B
j π̂A(i | α,nA)

+ ρ

2

(
F A
α (nα)F

A
β (nβ)−mαβmβα

F A
α (nα + 1)F A

β (nβ)−mαβmβα
+ F B

α (nα)F
B
β (nβ)−mαβmβα

F B
α (nα + 1)F B

β (nβ)−mαβmβα

)

× π̂A(i | α,nA) π̂B(j | α,nB)
)

and

ξ−1
α = 1

2

(
F A
α (nα)+ F B

α (nα)+ ρ

(
1 − q−1

α F A
β (nβ)

F A
α (nα + 1)F A

β (nβ)−mαβmβα

)

+ ρ

(
1 − q−1

α F B
β (nβ)

F B
α (nα + 1)F B

β (nβ)−mαβmβα

))
.

Finally, we can now solve (49) to obtain

π̂((i, j) | α,n) = ξαmαβwijβ + wijα

1 − ξαξβmαβmβα
.
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7. Discussion

The efficiency of an IS method hinges heavily on how close the adopted proposal distribution
is to the true distribution. The key insight provided by Stephens and Donnelly (2000) is that,
in sequential IS schemes that arise in population genetics, proposal distributions can be written
in terms of one-dimensional conditional sampling distributions whose optimality properties
can be characterized. We can therefore translate the problem of constructing good IS proposal
distributions into that of constructing good one-dimensional conditional sampling distributions.
So far, most approaches to the latter problem have relied to a large degree on one’s intuition and
experience. In contrast, the diffusion-generator approximation method developed by De Iorio
and Griffiths (2004a), (2004b) is a systematic approach that provides a general mathematical
prescription for constructing good conditional sampling distributions.

In the present paper we have extended the diffusion-generator approximation technique of
De Iorio and Griffiths (2004a), (2004b) to the neutral coalescent model with recombination,
obtaining explicit sampling formulae for diallelic and PIM models. We have addressed the case
with subdivided population structure, as well as the classic case with only a single population.
Although we have focused on the two-locus model in this paper, we believe that much of our
results can be generalized to multilocus models. In particular, the three-locus case can be solved
exactly using the technique we have developed here. Cases with more than three loci seem
more difficult, but our preliminary study looks promising. Our findings on multilocus models
will be reported in a later paper.

We plan to use our proposal distributions in actual sequential IS schemes and compare their
performance with using other proposal distributions. In the case of a single population we
have shown that our conditional sampling distributions generally differ from that suggested
by Fearnhead and Donnelly (2001). Furthermore, in the case of the infinitely-many-alleles
model we have shown that our distributions are generally closer to the true distributions than
are Fearnhead and Donnelly’s. Given that the diffusion-generator approximation technique
has been shown (see De Iorio and Griffiths (2004b)) to lead to significant improvements over
previous IS methods, the theoretical work presented here may have much practical value.
On a related note, it would be worthwhile and interesting to use our sampling distributions
in the composite likelihood method (see Hudson (2001), McVean et al. (2002), (2004), and
Myers et al. (2005)) and the PAC method (Li and Stephens (2003)).
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