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SEMI-CLASSICAL BOUNDS
ON SCATTERING CROSS SECTIONS

IN TWO DIMENSIONAL MAGNETIC FIELDS

HIDEO TAMURA

Abstract. We prove the uniform boundedness of averaged total cross sections
or of quantities related to scattering into cones in the semi-classical limit for
scattering by two dimensional magnetic fields. We do not necessarily assume
that the energy under consideration is in a non-trapping energy range in the
sense of classical dynamics.

§1. Introduction

The present work is a continuation to [20] where we have studied the

shadow scattering (the quantum total cross section doubles the classical one

in the semi-classical limit) in magnetic fields under the assumption that the

energy under consideration is in a non-trapping energy range in the sense

of classical dynamics and we have proved that the shadow scattering is in

gerenal violated in the case of scattering by magnetic fields. We here study

the problem about the uniform boundedness of averaged total cross sections

or of quantities related to scattering into cones in the semi-classical limit

without assuming such a non-trapping energy condition. In final section

(Section 9), we also study the bound on cross sections for scattering by

magnetic fields with small support. As a conclusion, we can obtain that

such a bound seems to depend on the flux of magnetic fields.

Throughout the whole exposition, we work exclusively in the two

dimensional space R2 with generic point x = ( x i , ^ ) . Let A{x) = (αi(x),

d2{x)) : R2 —» R2 be a smooth magnetic vector potential and let

2

(1.1) H(A) = (-iV - A)2/2 =

be the Schrόdinger operator associated with magnetic potential A, where

Dj = — ίdj — —id/dxj. We sometimes identify A with the one-form A =
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26 H. TAMURA

aidxi + Cί2dx2 and the magnetic field b(x) = d\a2 — di&i with the two-
form dA = b(x) dx\ Λ dx2 Throughout the entire discussion, b(x) is always
assumed to satisfy that:

(1.2) b{x) G C^(R2) is a real smooth function with compact support.

The Hamiltonian H(A) describes a quantum particle of unit mass mov-
ing in the magnetic field b. The magnetic potential A(x) with dA = b is not
uniquely determined and cannot be expected to fall off rapidly at infinity,
even if b(x) is assumed to be compactly supported. In fact, A{x) does not
decay faster than Odxj""1), if

I l.ϋl j-J — I Δt l\ \ I U\Jb) (JLJb

J

does not vanish (2πβ being called the flux of magnetic field 6), where the
integral with no domain attached is taken over the whole space. We use
this abbreviation throughout. Thus the perturbation H(A) — H$ to the
free Hamiltonian HQ = —Δ/2 is of long-range class. This implies that
the scattering matrix does not necessarily admit the usual decomposition
/<ί+ {Hilbert-Schmidt class}, Id being the identity operator, as in the short-
range scattering case and also the total cross section is not necessarily finite.
Indeed, it depends on the value β and becomes finite only for integer / 3 G Z .

We shall explain the above matter more precisely. The total cross
section is invariant under gauge transformations. We fix one of magnetic
potentials A(x) with dA — b and define it as follows:

(1.4)
ax(x) = -(2τr) 1d2J\og\x-y\b(y)dy,

a2{x) = (2π) ιdχ I \og\x-y\b(y)dy.

As is easily seen, A{x) — (αχ(x), α^x)) satisfies b — dA and behaves
like

(1.5)

as \x
provided that β φ 0.

We denote by H = H(A) the Schrδdinger operator with A{x) defined
above as a magnetic potential. This operator formally defined by (1.1)

(X). Thus A{x) does not fall off faster than O(|#| ) at infinity,
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TWO DIMENSIONAL MAGNETIC FIELDS 2 7

admits a unique self-adjoint realization in the space L2{R2) with domain

H2(R2) (Sobolev space). We also denote this realization as the same nota-

tion H = H{A). As previously stated, the perturbation H{A) — HQ is of

long-range class. Nevertheless we know ([11, 12]) that the ordinary wave

operators

(1.6) W±(H,H0) = s - lim exptitH) exp(-itHQ)

exist and are asymptotically complete

(1.7) R8LΏW±(H1H0) = L2(R2).

It is also known ([9]) that H has no bound states. Hence the scattering

operator

S(H,H0) = Wl(H,H0)W^(H,H0) : L2(R2) -+ L2(R2)

can be defined as a unitary operator on L2(R2) and it has the direct integral

decomposition

/ { )
Jo

where the fiber S(λ; H, Ho) is called a scattering matrix at energy λ and

acts as a unitary operator on L 2 ^ 1 ) , S1 being the unit circle. According

to the results due to [1, 10], the scattering matrix has an integral kernel

S(θ,ω,\]H,H0) smooth in λ > 0 and (θ,ω) G S1 x S1, θ φ ω. However

the scattering matrix 5(λ; H,HQ) does not necessarily take such a form

as Id + Γ(λ) with Hilbert-Schmidt operator Γ(λ) acting on L2(5'1) be-

cause of the long-range perturbation. In other words, the scattering kernel

S(θ,ω,λ;H,Ho) does not necessarily admit the delta-function δ(θ — ω) as

a singularity near the forward direction θ — ω.

We shall analyse such a singularity near the forward direction. We now

write
1 i ) , 0 < 7 < 2π,

for the azimuth angle from the positive x\ axis. Then

VΊ = (-x2/\x\2,Xι/\x\2)

and hence it follows from (1.5) that

A(x) = OO.
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28 H. TAMURA

It should be noted that V7 is smooth in R2 \ {0}, although η{x) itself is

smooth only in the plane split along the positive x\ axis. We also introduce

the auxiliary Hamiltonian

(1.8) Hβ = H(B) = H V - Bf/2, B(x) = βVΊ(x),

for which the perturbation H — Hβ is of short-range class. By the chain

rule of wave operators, we obtain

W±(H,H0) = W±(H,Hβ)W±(Hβ,H0)

and hence it follows that

S(H,H0) = W

where S(H,Hβ) = Wl(H,Hβ)W-(H,Hβ). The magnetic potential B(x)

represents so-called magnetic string and has a strong singularity at the

origin. Thus the operator Hβ does not necessarily have the same domain

as H or HQ. However it has been proved in [15] that the wave operators

W±(Hβ,H0) exist and are complete RaxιW±(Hβ,H0) = L2(R2). Therefore

the existence and completeness of wave operators W±(H,Hβ) also follow

immediately from (1.6) and (1.7). As is easily seen, Hβ is rotationally

invariant and hence it admits the partial wave expansion. This enables us

to calculate explicitly the scattering kernel of S(λ Hβ^Ho) ([15]). It takes

the form

; Hβ, H0)f)(θ) = / Sβ(θ - θf)f{θ!) dθf, f e L 2 ^ 1 ) ,
Jo

where θ and θf denote the azimuth angles from the positive x\ axis and

Sβ(θ) is given by

(1.9) Sβ(θ) = cos βπ δ{θ) -iTT'1 sin/3π exp(imfl) v.p.
exp(zc/j — 1

with m = [/?], [ ] being the Gauss notation. Here v.p. stands for the

principal value. If, in particular, β is an even integer, then S(λ; Hβ, Ho) =

Id and also if β is an odd integer, then S(λ;Hβ, HQ) — —Id. Since H —

Hβ is a short-range perturbation as stated above, the scattering matrix

S(λ] if, Hβ) has the decomposition Id+T(λ) with Hubert-Schmidt operator

T(λ). Thus the operator

(1.10) T(\;b) = i(2π)- 1(5(λ;iί,^o) - S(\;Hβ,H0)) : L^S1) -> L^S1)
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becomes an integral operator of Hilbert-Schmidt class and it has the kernel

T(θ,ω, λ; b) = i(2πyι(S{θ,ω, λ; H, Ho) - S(θ,ω, λ; Hβ, Ho)).

We give the concrete expression for T(θ,ω; λ;6) in the next section (see

Lemma 2.1). This is represented in terms of generalized eigenfunctions

Ψ±(x, λ,α;) of Hβ and has a definite meaning as a quantity related to scat-

tering involving the pair (Hβ,H), when H is considered as a short-range

perturbation to Hβ.

We define the differential cross section for scattering from incident di-

rection ω to final one θ at energy λ > 0. It takes the form

\f(ω -+ 0, λ; b)\2 = 2 π ( 2 λ ) - 1 / 2 | S ( θ , CJ, λ; H, Ho) - δ{θ - ω)\2

and the total cross section is defined as

The above integral is convergent for integer β G Z but is divergent for

non-integer β 0 Z because of strong singurality near the forward direction.

Thus the total cross section σ t o t(λ,^) is finite only for β G Z. We now

introduce

(1.11) σ{\,ω\b) = (2τr)3(2λ)~1 / 2 / |T(0,α;, λ; b)\2 dθ

as a basic quantity to be analysed here. This integral is finite even for the

case β ξ£ Z. If, in particular, β G Z, then σ(λ,cj; b) just coincides with the

total cross section σ t ot(λ,cj; b).

We move to the the semi-classical case and formulate the main result.

Let

H0(h) = -/ι 2 Δ/2, H{h) = #(/>; A) = (-i/ιV - A)2/2, 0 < / ι < 1,

where the magnetic potential A(x) is again defined by (1.4). For the pair

of semi-classical Hamiltonians (Ho(h), H(h)), the basic quantity σ^(λ,c^;6)

is given by

(1.12)

with
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30 H TAMURA

(1.13) g = h'1 > 1, k = \h~2 = Xg2.

We average this quantity with respect to incident direction ω and define

J σ/ι(λ,cc;; b) dω.

Then the main theorem is formulated as follows.

THEOREM 1.1. Let the notations be as above. Assume that the mag-

netic field b(x) fulfills (1.2). Then one has

locally uniformly in X > 0.

Assume that β/h G Z is an integer. Then the total cross section for

the pair (Ho(h),H(h)) is finite and σtot)/ι(λ,ω; 6) = σ/ι(λ,cj;6). We define

the averaged total cross section as

As an immediate consequence of the above theorem, we obtain the following

COROLLARY 1.2. Assume that (1.2) is fulfilled. If β/h G Z is an inte-

ger, then

0"avtot,fc(λ; 6) = 0 ( 1 ) , h -> 0,

where h tends to zero with restriction β/h E Z. If, in particular, b - b(\x\)

is a radial magnetic field, then cr t o t j/ ι(λ,α;;6) = 0 ( 1 ) as h —> 0.

We give another application of Theorem 1.1. Let g — h~ι and k — λh~2

be as in (1.13). Then the differential cross section for the pair (Ho(h), H(h))

is given by

Let p{ω) be a bounded function with support in a small neighborhood of

some direction LUQ fixed. We consider the following integral

σh(\,p,C) = f f
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where C = (0, oo) x Λ C R2 is the cone generated by the compact subset

Λ c S 1 and ω1 denotes the angle between directions ω and ωo The above

quantity represents the total number of particles scattered into cone C at

energy λ for the initial state having incident direction ω subject to proba-

bility density \p{ω)\2 ([2], Chap. 7). If supp ρΓ)A = $, then it is easily seen

that σ/ι(λ, p, C) < oo even for the case β/h 0 Z.

COROLLARY 1.3. Assume that (1.2) is fulfilled. Let C = (0, oo) x Λ be

the cone generated by the compact subset A C S1 and let σ/ι(λ,p, C) be as

above. If supp p Π Λ = 0, then

h-+0.

We shall explain the results related to the main theorem. First it should

be noted that the total scattering cross section with incident direction fixed

is not necessarily expected to be bounded uniformly in /ι, 0 < /ι < 1. It

may grow exponentially as h —» 0 for some incident direction in a trapping

energy range because of the resonance effect. This result is known as the

Breit-Wigner formula in the potential scattering case (for example, see [7]).

The uniform boundedeness as h —•> 0 of averaged total cross sections has

been verified by Sobolev [17] in the potential scattering case. The study

there has been made on the bound for cravtot(/c, ̂ V), where cr

avtot(&>SfV)

denotes the averaged total cross section at energy k for Schrδdinger operator

— Δ + gV with finite-range potential V. The semi-classical result follows as

a special case from the bound in the parameter range (</, k) with k ^ g and

g —> oo. On the other hand, the magnetic scattering case corresponds to

the parameter range with k ~ g2 and g —> oo (see (1.13)). The proof of the

main theorem is, in principle, based on the same idea as developed in [17].

However the idea there cannot directly apply to the magnetic scattering

case. The Hamiltonian Hβ defined by (1.8) has the magnetic string B(x) =

βVη(x) with strong singularity at the origin. Several new improvements

are required at many stages of the proof to control the perturbation H — Hβ.

We conclude the section by fixing several basic notations. The notations

( , } and ( , ) denote the scalar products in R2 and in L2(R2), respectively,

and || || is used to denote the norm of bounded operators. We also fix

ψ E CQ°([0,OO)) as a basic smooth cut-off function. This function has the

following properties: ψ > 0 is non-increasing and takes the values

(1.14) ψ(s) = 1 for 0 < s < 1, ψ(s) = 0 for s > 2.
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These notations are often used without further references throughout the

entire discussion.

§2. Integral kernel of operator T(X b)

We keep the same notations as in the previous section. In this section,

we give the representations for the integral kernel T(θ,ω^X;b) of operator

T(X b) defined by (1.10) and for the basic quantity

σav(λ;6) = (27Γ)-1 jσ(λ,ω;b)dω = (2π)2(2λ)-1/2 | |Γ(λ; b)fm,

where || ||HS denotes the Hilbert-Schmidt norm.

2.1. The representation for the kernel T(θ,ω;X;b) has been already

derived in [19]. We begin by making a brief review on the results obtained

there. Let GR = {x : \x\ < R} be the ball centered at the origin with

radius R. For notational brevity, the magnetic field b is always assumed to

be supported in the unit ball

supp fecGi.

Let A(x) be defined by (1.4) and let B(x) = βVη(x) be as in (1.8). Then

it readily follows that

d°(A(x) - B{x)) = O(|x |- 2-H), \x\ - oo.

Hence we can define a(x) G C°°(R2 \ {0}) as

roo

(2.1) a(x) = — (xιdι(sx) + X2d2(sx))ds, x φ 0.

The function a(x) is not necessarily smooth at the origin. It behaves like

O{\x\~ι) as \x\ —* 0. A simple computation yields ([19] Lemma 2.2) that

(2.2) A(x) = B(x) + Va(x) + E(x), xφO,

where E(x) — (ei(x), β2(x)) is given as

sx2b(sx)ds, β2(x) = — / sxιb(sx) ds.
h

The vector potential E(x) has support in Gι but is not necessarily smooth

at the origin.
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Let a(x) be as above and let ψ(s), s £ [0, oo), be a basic smooth cut-off

function. It has the properties in (1.14). We often write ψm(x) — φ{\x\/2πι).

We now define

(2.3) V = HJ - JHβ = H(A)J - JH(B),

where J is the multiplication operator with function J(x) defined by

(2.4) J(x) = φoo(x)Ja(x), Ja(x) = exp(iα(x)),

a n d ^ ^ ( x ) = 1 — ψo(x), ψo(χ) = Ψ{\x\)- W e c a l c u l a t e

V = Ja{H{A -

by use of the gauge transformation. By definition, ^oo(^) vanishes on G\

and hence it follows from (2.2) that A — Vα = B on the support of φ^.

Since ^oo = ^ood^l) is rotationally invariant, this implies that

(2.5) V = JalHiB),^} = JaiHo.φ^} = Ja[ψo,Ho],

where the notation [ , ] denotes the commutator relation. Thus the coef-

ficients of first order differential operator V are all supported in {x : 1 <

\x\ < 2} and, in particular, they vanish in a neighborhood of the origin.

2.2. As previously stated, the operator Hβ = H(B) admits the partial

wave expansion. Let Λ/, / G Z, be the eigenspace of the operator —id/dθ

acting on L2(S1) with eigenvalue /. Then we have

L2((0, oo); dr) <g> L2{Sι) = ^ Θ (L2((0, oo); dr) ® Λz).

lez

We use the unitary mapping

(2.6) (Uu)(r, θ) = rι'2u(rθ) : L2(R2) -> L2((0, oo); dr) ® L2{Sι)

to obtain that Hβ is formally decomposed as

lez

where

u=\l-β\.
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The operator Pi has a self-adjoint realization in £2((0, oo);dr) with domain

V(Pι) = {/ € L2((0,oo)) : Prf e L2((0,oo)), l imr" 1 ^) /^ ) ! < oo},
r—»0

where the operation Pif is interpreted in the distributional sense. Hence the

operator Hβ formally defined by (1.8) also admits a self-adjoint realization

(denoted by the same symbol Hβ) in L2(R2) with domain

Let η{x\ω) be the azimuth angle from ω. We write

φo(x,λ,ω) = exp(i\/2λ(x,cj}),

for the generalized eigenfunction of the free Hamiltonian Ho = — Δ/2. As

is well known, ψo is expanded as

(2.7) φo(x, λ,α;) =
lez

where θ(x) — η{x\ ω) and Jp denotes the Bessel function of order p. We also

define the generalized eigenfunctions of operator Hβ. These eigenfunctions

are formally defined as

φ±(x,\ω) = W±(Hβ,Ho)φo

by use of the intertwining property. However this definition does not have

the rigorous meaning, because φo is not in L2{R2). To give the precise

definition, we make use of the expansion formula (2.7) for ψo and of the

well-known asymptotic formula of the Bessel functions

(2.8) Jp(r) = (2/π) 1 / 2 r~ 1 / 2 cos(r - (2p + l)π/4)(l + uN(r)) + O(r~N)

as r —-> oo, where UN(T) obeys the bound (d/dr)mU]\[(r) = O(r~1~πι). We

now define f±ι(r) as

f±ι{r) = exp(±i|/|π/2)J|Z,(r) - exp(±z^τr/2) J,(r), v = \l - β\.

Then it follows from (2.8) that

f±ι(r) = Ci/r" 1/ 2 exp(τ^r) + exp(=F^)O(r'3/2) + exp(±?>)O(r-3/2)
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for some constants C±ι. This relation yields that

(d/dr)f±ι(r) ± if±ι(r) = O(r~3/2), r -> oo.

Hence /+/(r) and f-i(r) satisfy the incoming and outgoing radiation condi-

tions at infinity, respectively. Let θ(x) — j(x] ω) be again the azimuth angle

from ω and let ζ(x) — 7(x; —ω). If we make use of expansion formula (2.7)

and of the simple relation exp(i|/|π + ilθ) = exp(iZζ), then we can define

the incoming eigenfunction φ+ associated with wave operator W+(Hβ, HQ)

as

(2.9) φ+(x,\,ω) = ^]exp(iz/π/2) exp(ilθ(x)) Ju{V2λ\x\), v = \l -
lez

and the outgoing eigenfunction ψ- associated with W-{Hβ, HQ) as

(2.10) ψ_{x,\ω) = ^ e x p ( - ^ π / 2 ) e x p ( i / C ( ^ ) ) Λ ( v / 2 λ | x | ) , v=\l-β\.
lez

As is easily seen, the two eigenfunctions above are connected with each

other through the relation

The scattering matrix S(\;Hβ, HQ) has the property

(2.11) S(λ;Hβ,H0) : φ-{x,λ, ) ^ φ+(xA

as an operator acting on L2^1) — Σ/ e^θΛ/. This implies that S(λ;

Hβ,Ho) acts as the multiplication operator with exp(i(/ — u)π) on each

eigenspace Λ/ and hence the integral kernel of S(λ; Hβ, Ho) is given by

exp(i(Z - v)π)exp(il(θ - ω)),

which leads us to (1.9) after a simple calculation. Here the coordinates over

S1 are identified with the azimuth angles from the positive x\ axis.

2.3. We write R[μ\ H), Im μ ψ 0, for the resolvent [H - μ)~ι. Let

L2

S(R2) = L2(i22; (x)2s dx), (x) = (1 + \x\2)1'2,

https://doi.org/10.1017/S0027763000006309 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006309


36 H TAMURA

be a weighted L2 space. According to the results due to [9], the operator H

has the following spectral properties: (1) H has no bound states; (2) The

boundary values R(X ± zΌ; ϋ"), λ > 0, of resolvents to the positive real axis

exist

R(λ±ίO]H) = \imR(λ±ie\H) : L2

S{R2) -> L2_S{R2)

for s > 1/2, where the convergence is locally uniform in λ > 0. The lemma

below has been obtained as Proposition 5.1 of [19].

LEMMA 2.1. Let V and J be defined by (2.3) and (2.4); respectively.

Then the operator Γ(λ; b) has the following integral kernel:

T(θ,ω,λ;b) = (2πΓ2((J* -V*R(\ + iO;H))Vφ-(λ,ω),φ+(λ,θ)),

where ( , ) denotes the L2 scalar product in L2{R2) and φ±(X,ω) =

φ±(x,X,ω) are the eigenfunctions of Hβ defined by (2.9) and (2.10).

This lemma shows that Γ(λ; b) : L2(Sι) -> L2(Sλ) is of Hilbert-Schmidt

class for all λ > 0 and hence it follows by definition that

(2.12) σa v(λ;6) = (2π) 2(2λ)- 1/2| |(T*Γ)(λ; b)\\Ύΐ,

where (Γ*Γ)(λ;6) = Γ*(λ; 6)Γ(λ; b) and || | | T r stands for the trace norm.

We calculate the integral kernel of (T*Γ)(λ;6) by making use of Lemma

2.1. For notational brevity, we write S(λ) for S(λ;H, Ho) and Sβ(X) for

S(\;Hβ,Ho). Since both the operators are unitary, we obtain

(T*Γ)(λ; b) = i(2τr)- 1 {^(λ)Γ(λ; 6) - (5 |(λ)Γ(λ; b))*}.

By (2.11), Sβ(X) maps φ+(x, λ, •) to φ~(x, λ, •) and hence the integral kernel

of (SβT)(X; b) is represented as

(S£Γ)(0, ω; λ; b) = (2π)~2((J* - V*i?(λ + zO; ff(A)))^_(λ, α;), V _(λ, θ))

by Lemma 2.1. Thus the kernel of operator (T*T)(λ; b) is decomposed into

the sum TL(θ,ω,\;b) +T2(θ,ω,λ;b), where

T2 =
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and E\\]H) is given as

E'(X H) = (d/dX)E(X\H) = (2πi)~i(i?(λ + iO; H) - R(X - iO;

with the spectral resolution i£(λ; ϋ") of H. We assert that T\(0, u;, A; fe) = 0.

To see this, we recall the definition (2.3) of V and compute

J*V-V*J=[l-'φ2

oo,Hβ],

where 1 — ψ^ has compact support. Since Hβψ- — Xφ~, the above as-

sertion follows at once. Thus the representation for the integral kernel of

(Γ*Γ)(λ;6) is obtained as

(2.13) (T*T)(θ,ω,X-,b) = (2π)-2(E\X]H)Vφ-(X,ω)1Vφ_(X,θ)).

Recall that all the coefficients of V are supported i n { α : : l < | x | < 2 } .

Let ψ2(χ) — Ψ(\χ\/'22)i s o tha t Ψ2V — VΨ2 — V Taking account of these

facts, we now define the following two operators:

(Z(\)f)(x) = J(Vφ-)(x, X,ω)f(ω) dω : L^S1) -+ L2(R2),

Γ(λ) = ψ2ε\λ H)φ2 : L
2(R2) ^ L\R2).

Then we combine (2.12) and (2.13) to obtain the following

LEMMA 2.2. Let the notations be as above. Then the operator (Γ*Γ)

(λ fe) is decomposed as the composition of three operators

(Γ*Γ)(λ;6) - (2τr)-2Z*(λ)Γ(λ)Z(λ)

and one has

2.4. We turn back to the semi-classical case. We use g and k with the

meanings ascribed in (1.13). Taking account of relation (1.12), we define

the two Hamiltonians as follows:

H(g) = H(gA) = (-iV - gA)2/2, Hβ{g) = H{gB) = (-ΐV - gB)2/2.

The outgoing eigenfunction <^_(x, k^ω g) of Hβ(g) is given by

(2.14) φ- = Σexp(-iv7r/2)eW(ilζ(x))Ju{V2k\x\), v = \l - gβ\,
lez
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with the azimuth angle ζ(x) — η[x] —ω) from — ω. We further define the

following operators:

)x, Ja(g) = exp(iga(x))x,

V(g) = H(g)J(g) - J{g)Hβ(g) = Ja(g)[Ψo,Ho],

(Z(k;g)f)(x) = f(V{g)φ-)(x,kMg)f(ω)dω : L2{Sι) -+ L2(R2),

T(k g) = ψ2E'(k;H(g))ψ2 : L2(R2) -> L2(R2),

where a(x) is defined by (2.1) and

E'(k; H(g)) = (2πi)-ι{R(k + iO; H(g)) - R{k - ΐO;

Then it follows from Lemma 2.2 that the quantity crav^(λ;6) in Theorem

1.1 is expressed as

(2.16) σav,Λ(λ;6) = σΆV(k;gb) = {2kyίl2\\Z*{k;g)T{k-g)Z{k g)\\Ύΐ

with g — h~ι and k — λh~2 = Xg2. This relation plays a basic role in

proving the main theorem.

§3. Main lemmas and proof of Theorem 1.1

In this section we prove Theorem 1.1, accepting the two main lemmas

below (Lemmas 3.2 and 3.3) as proved. The main body of the present work

is occupied by the proof of these two lemmas.

3.1. The proof of the theorem is based on the singular number (s-

number) theory of bounded operators. Let Xj, 1 < j < 2, be separa-

ble Hubert spaces and let Bn — Bn(X\,X2) denote the class of finite-

dimensional operators K : X\ —» X2 with dim Ran K < n. For a bounded

operator F : Xι —> X2, we define the singular numbers of F as follows:

sn+1(F)= min \\F-K\\, n > 0,

where || || stands for the norm of operators from X\ into X2. If, in partic-

ular, F : X\ —* X\ is a non-negative compact operator, then the s-numbers

sn(F) are nothing but the eigenvalues of F. We here summarize several

basic properties of s-numbers which are repeatedly used throughout the

argument below. We refer to [8] and [18] (Lemma 3) for the proof of these

properties.

https://doi.org/10.1017/S0027763000006309 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006309


TWO DIMENSIONAL MAGNETIC FIELDS 3 9

PROPOSITION 3.1. (1) sn(F) = sn(F*).

(2) Let Fi, F2 : X\ —> X2 ^ e bounded operators. Then

{Fl + F2) < SniFi) + S m (F 2 ) .

(3) Let F\ : X i —» X2 α 7 7 ^ ̂ 2 : ^ 2 ~^ -^3 ^ e bounded operators. Then

sn+m-i(F2Fι) < sn(F1)sm(F2y

(4) Let F : Xι ^ X\ be a compact operator. Suppose that (F + Id) ι :

X\ —> Xi 25 α/50 bounded. If sn(F) < 1, ί/

We now formulate the two main lemmas from which Theorem 1.1 is

obtained by repeated use of Proposition 3.1.

LEMMA 3.2. LetZ{k;g) : L2(Sι) -* L2(R2) be defined in (2.15). Then

there exists L ^> 1 large enough such that for n > Lg

sn(Z(k]g))<Ce-dn

with some C, d > 0 independent of n and g ^> 1.

LEMMA 3.3. LetT(k]g) : L2(i?2) -> L2(i?2) 6e denned in (2.15). T/ien

t/zere ex^^s M ^> 1 ŝ cΛ, t/iαί /or n >

with some C > 0 independent of n and g ^> 1.

3.2. We first complete the proof of Theorem 1.1, accepting the two

lemmas above as proved.

Proof of Theorem 1.1. We write

en = en(k;g) = sn{Z(k;g)*T(k;g)Z(k;g)), n > 1.
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Then it follows from (2.16) that

n = l

Let L and M be as in Lemmas 3.2 and 3.3, respectively. We set J = [Lg],

N = [Mg] and m = N + 2 J . Then the sum above is decomposed into

n=l

where

Note that k — λ^2, λ > 0 being fixed. Since en < 4 for all n > 1 by Lemma

2.2, we have

(2k)-1/2I0(k;g) = O(l), g -+ oo.

We evaluate the other terms. We decompose

m + 2j - 1 - (TV + 1) + 2( J + i) - 2

and use Proposition 3.1 to obtain that

This, together with Lemmas 3.2 and 3.3, yields the bound

Similarly we can show that I2(k;g) also obeys the same bound as above.

Thus the proof is complete. Π

§4. Proof of L e m m a 3.2

We first prove Lemma 3.2. This lemma is easy to prove. We begin by

recalling the definition (2.14) of eigenfunction ψ-

φ-(x,k,ω;g) = ]Γexp(-iz/π/2) exp(ilζ(x))Jy(V2k\x\), v = \l - gβ\,
lez

where ζ(x) — η(x\ —ω) is again the azimuth angle from — ω.
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LEMMA 4.1. Assume that r is in a compact interval [0, R\. Then there

exists L ̂ > 1 such that for v > Lg

\Ju{V2kr)\ + \{d/dr)Jv{V2kr)\ < Ce~du

with some d, C > 0 independent of v.

Proof. The proof uses the Poisson integral representation for the Bessel

function ([5] p.81)

(4.1) Jp(r) = (r/2)P ̂ Γ ( ^ + 1 / 2 ) j ^ cos(r cos 0) sin2^ fl dθ

and the Stirling formula for the gamma function

Γ(p) = (2π) 1 / 2 e" V 1 / 2 ( l + o(l)), 39 ->• 00.

If 1/ > Lg for L ̂ > 1, then it follows from these two relations that

\Jv(y/2kr)\ < C(ck/v2γ'2 < C{l/2)v, r e [0, R],

for some c, C > 0. A similar argument applies to (d/dr)Jv{y2kr) for

v > Lg with another L ̂ > 1. This completes the proof. Q

Proof of Lemma 3.2. A simple consideration yields

; — ω)) = exp(il'j(x)) exp(iZ(τr — α;)),

where 7(x) is again the azimuth angle from the positive x\ axis. Recall

the definition (2.15) of operator V(g), V(g) — Ja(g)[ψo,Ho], where ψo =

-0(1̂ 1) is a function of \x\ only and Ja{g) is the multiplication operator with

exp(iga(x)), a(x) being defined by (2.1). Hence we see from Lemma 4.1 that

the integral kernel of operator Z(k g) : L2{S1) —> L2(R2) is represented in

the form

Σ
lez

(4.2) Z(x,ω;k,g) = Y'f1/(χ ,k,g)<S)ex.p(-ilω), 1/= \l - gβ\,

where fv has support in {x : 1 < \x\ < 2} for all v and obeys the estimate

(4.3) \U(x;k,g)\<Ce-d», v > Lg,
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with the same constants G?, L as in Lemma 4.1. Assume that n > L\g for

some L\ ̂ > 1. We choose Li so large that

|/| > n/2 > Lιg/2 = > ι/ = |/ - /3#| > n/3 > Lg

and we denote by Zn(k;g) : L2(Sι) —> L2(R2) the integral operator with

kernel

\l\<[n/2]

for n as above. As is easily seen, dimRanZn(fc; g) < n — 1, so that

sn(Z(k;g)) < \\Z(k;g) - Zn(k;g)\\ < Ce~dn

for some d, C > 0, which follows from (4.3) at once. This proves the

lemma. Π

§5. Proof of Lemma 3.3

The proof of Lemma 3.3 is rather long. The present and following three

sections are devoted to the proof of this lemma. The proof is based on the

three key lemmas (Lemmas 5.1 ~ 5.3) formulated below. We here complete

the proof of Lemma 3.3, accepting these three lemmas as proved.

5.1. We first derive several basic relations which are required to for-

mulate the key lemmas above. We decompose the magnetic potential

A = A{x) into A — ψooA + ψoA. We further rewrite A by use of rela-

tion (2.2). Let E{x) be as in (2.2). Since ψooE = 0, A is written as

(5.1) A = φ^B + aVψo + ΨoA + V ^ α ) = Aλ +

We set B\ — αVψo + ΨoΛ s o ^ n a ^ -̂l — ψooB + Bi. As is easily seen, A\(x)

and B\(x) are smooth functions and, in particular, B\(x) has support in

G2 = {x : \x\ < 2}.

We here introduce the following two Hamiltonians:

(52) . . w = HV- f lAi)2/2,
1 ' } Kβ(g) = (-iV-gψO0B)2/2 +

with N >̂ 1, where ψι = z/;(|α:|/2) has support in G4. The choice of N

is specified in the later discussion (see Lemma 6.1). Obviously both the

Hamiltonians admit self-adjoint realizations in L2(R2) with the same do-

mains V(K(g)) = V(Kβ(g)) = H2(R2). The Hamiltonian if (#) is unitarily
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equivalent to the orginal one H(g), which follows from (5.1) at once, and

also Kβ(g) has the partial wave expansion. Let

W(g) = K(g) - Kβ(g)

be the difference between the two Hamiltonians defined above. All the

coefficients of first order differential operator W(g) have support in G4 and

obey the bound O(g2) as g —> 00. Hence it satisfies the relation

(5.3) φ2W(g) = W(g)φ2 = W(g),

because ^2 — Ψ(\x\/22) = 1 on G4. Taking account of this fact, we obtain

from the resolvent equation that

φ2W(g){R(μ; K(g)) - R(μ Kβ(g))}φ2

= -φ2W(g)R(μ; K(g))φ2 • φ2W(g)R(μ; Kβ(g))φ2

with μ — /c + z6, 0 < 6 « 1, and hence we have

(Id - ψ2W(g)R(μ; K(g))φ2)(Id + ψ2W(g)R(μ; Kβ(g))φ2) = Id.

Similarly we have

(Id + ψ2W(g)R(μ; Kβ(g))φ2)(Id - φ2W(g)R(μ; K(g))φ2) = Id,

so that

(5.4) (Id + φ2W(g)R(μ; Kβ(g))φ2)~1 = (Id - φ2W(g)R(μ; K(g))φ2).

It follows again from the resolvent equation that

φ2R(μ; K(g))φ2(Id + φ2W(g)R(μ; Kβ(g))φ2) = φ2R(μ; Kβ(g))φ2,

which implies that

(5.5) φ2R(μ K(g))φ2 = φ2R(μ Kβ(g))φ2(U + φ2W(g)R(μ- Kβ(g))φ2)-\

5.2. We denote by KD{g) the self-adjoint operator obtained from

K(g) by imposing the zero Dirichlet conditions on the boundary dGg of

GQ = {x : \x\ < 9}. In other words, KD(g) = K(g) as a differential

operator and its domain is

V(KD(g)) = (H£(G9) n H2(G9)) φ (H^(GC

9) n H2(GC

9)).

https://doi.org/10.1017/S0027763000006309 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006309


44 H. TAMURA

We also define KP(g) for Kβ(g) in a similar way. Both the operators are
regarded as an operator acting on L2(R2) and their difference is still

W(g) = KD(g) - Kf?(g) = K{g) - Kβ{g).

The support of Ψ2 is completely contained in G9 supp Φ2 C G$ C G9.
Thus we repeat the same argument as above to obtain

(5.6) (Id + φ2W(g)R(μ; KJ?(g))ψ2y
ι = (Id - φ2W(g)R(μ- KD(g))φ2).

We now decompose the operator ψ2R{μ] K{g))Ψ2 in (5.5) into the compo-
sition of three operators

(5.7) ψ2R(μ;K(g))ψ2 = Fι(μ-g)F2(μ )g)F^(μ;g)

where
Fι(μ-g)=φ2R(μ-Kβ(g))i)2)

(5.8) F2(μ; g) = Id - ψ2W(g)R(μ; KD(g))φ2,

with
Id + Y(μ;g) = (Id + φ2W(g)R(μ;Kβ(g))φ2)F2(μ;g).

We can rewrite Y(μ g) as

(5.9) Y(μ; g) = φ2W(g){R(μ; Kβ(g)) - R(μ; K^(g))}φ2F2(μ; g)

by use of (5.6). The second main lemma follows from the three lemmas
below. These lemmas are proved in Sections 6, 7 and 8.

LEMMA 5.1.

lira sup si(Fi(fc + ic g)) ^ C g~λ

with some C > 0 independent of g >̂ 1.

LEMMA 5.2. There exists M > 1 such that for n > Mg

limsup sn(F2(k + ie; g)) < Cg4

with some C > 0 independent of g >̂ 1.
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LEMMA 5.3. There exists another M ^> 1 such that for n > Mg

limsupsn(F3(fc + ie\g)) < 2, g > 1.
e->0

5.3. We shall complete the proof of Lemma 3.3, accepting the three

key lemmas above as proved.

Proof of Lemma 3.3. By the principle of limiting absorption,

φ2R(k + ιe K(g))φ2 -> φ2R(k + iO; K(g))ψ2, e -+ 0,

in norm as an bounded operator acting on L2(R?) and hence we have

sn{φ2R{k + ie; K{g))φ2) -> sn{φ2R{k + iO; K{g))ψ2), e -> 0,

for each n > 1. By Proposition 3.1 and by the three lemmas above, it

follows from (5.7) that

for n > Mg with some M ^> 1. Since the two operators H(g) and K(g)

are unitarily equivalent to each other as previously stated, this proves the

lemma. Π

§6. Proof of L e m m a 5.1

The present section is devoted to the proof of Lemma 5.1. The proof

is reduced to the semi-classical resolvent estimate in a non-trapping energy

range.

6.1. We first determine how large TV is chosen in (5.2). The Hamilto-

nian Kβ{g) has

= βφOo(r){-x2/r2, Xl/r2), r = x\

as a magnetic potential. We compute the magnetic field

dφooB = βiΨM/r) dxi Λ dx2.

Hence the classical system associated with Hamiltonian Kβ(g) is given by

A = /3t/UM)4/M - Nφ[(\x\)Xl/\x\,

'ί βφU^WM - Nψ[(\x\)x2/\x\.
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This classical system conserves the energy

(x[(t)2 + x2{t)2)/2 + Nψi(x(t)) = const.

We say that energy λ > 0 is in a non-trapping energy range, if all the solu-

tions x(t; λ) with energy λ of equation (6.1) escape to infinity, \x(t; λ)| —> oo,

as t —> ±oo.

LEMMA 6.1. One can take N >> 1 so large that the energy λ = kg~2

under consideration is in a non-trapping energy range for the classical sys-

tem (6.1).

Proof. The system (6.1) is spherically symmetric. We consider this in

the polar coordinate system (r, θ). We have the conservation law for two

quantities (energy and angular momentum)

((r')2 + r2{θ'f)/2 + Nφx{r) = λ, τ2θ' + βφ^r) = p.

Hence it follows that

(r')2/2 +(p- βφoc(r))2r-2/2 + Nφ^r) = λ.

We now choose N > λ large enough. Then Nψι(r) = iV > λ for 0 < r < 2.

This implies that C?2 is a classically forbidden region. On the other hand,

if r > 2, then φoo(r) = 1 and hence

(d/dr)((p - β)2r~2/2 + Nφ^r)) < 0,

because ψ[ = ψf(r/2)/2 < 0 (recall that the basic cut-off function φ is

non-increasing). This proves the lemma. Π

We now fix TV as specified in Lemma 6.1. Then Lemma 5.1 is obtained

as an immediate consequence of the lemma below.

L E M M A 6.2. Let N be as above. Then one has

{x)-sR(k + ie-Kβ{g)){x)-s : L2{R2) -• L 2 ( i ? 2 ) , s > 1/2,

is bounded with bound O(g~λ) as g —> oo uniformly i n e , 0 < e C l .

Proof. By Lemma 6.1, λ is in a non-trapping energy range. Hence the

lemma follows from the semi-classical resolvent estimate due to [6, 14]. Π
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6.2. For later references, we here prepare two simple lemmas which

will be used to prove Lemma 5.3. As previously stated, Kβ{g) admits the

partial wave expansion. If we use the unitary mapping hi in (2.6), then this

operator is expanded as

lez

where

{-d2

r + {{I - gβψoo(r))2 - l/4)r" 2 )/2 + Ng2φx{r).

Similarly we have the expansion

lez

for operator K^(g), where PS{g) is obtained from Pβi(g) by imposing the

zero Dirichlet boundary condition at r = 9.

LEMMA 6.3. Let χ9 = χ9(r) be the characteristic function of the in-

terval [0,9]. Then one has that

X9R(k + ie; Pβi(g))χ9 : L2((0, oo); dr) -+ L2((0, oc); dr)

is bounded with bound O(g~1) uniformly in I £ Z and e. If in particular,

\l\ > Lg with some L ̂ > 1, then the operator obeys the bound O(l~2).

Proof. The first statement is an immediate consequence of Lemma 6.2.

The second one readily follows from tha fact that

(6.2) ((/ - gβφUr)? ~ l/4)r~2 > C I2 » fc, \l\ > Lg,

for 0 < r < 9, provided that L > 1. Π

LEMMA 6.4. One can take another L >> 1 so large that for \l\ > Lg

X9R(k + ie; P^(g))χ9 : L2((0, oo); dr) -+ L2((0, oo); dr)

is bounded with bound O(l~2) uniformly in e. In other words, k is not the

eigenvalue of PU (g) for I as above and there exists the limit

X9R(k + iO; P$(g))χ9 - lim χ9R(k + ιe; P$(g))χ9

uniformly in I as a bounded operator on £ 2((0, oc); dr).

Proof. This lemma also follows from (6.2) at once. Q
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§7. Proof of Lemma 5.2

In this section we prove Lemma 5.2. The proof is based on the asymp-

totic distribution of eigenvalues with sharp remainder estimate.

7.1. Recall the notation KD(g) in (5.2). It has

as its symbol. We denote by K^(g) the part of the operator KD(g) re-

stricted to the interior domain Gg. We consider the eigenvalue problem

(7.1) Kξ(g)u = τu, ue H^(G9) Π # 2(G 9).

We evaluate the number of eigenvalues lying in the interval (k — g,k + g) of

the above problem. Let { T J } , r3 — τ3(g), be the eigenvalues of (7.1) and let

{uj}, Uj = Uj{x\g), be the corresponding normalized eigenfunctions. Then

the spectral function is defined as

e(x,τ\g) = 2^ <
τΊ<τ

so that the number of eigenvalues less than r is given by

N(τ;KP(g))= ί e(x,τ;g)dx.
JG9

We assert that

(7.2) N(τ;Kξ(g)) = c0τ + O(τί/2), r - , oo,

if the ratio hi — r/g2 ranges over a compact interval Σ = [/̂ i, z^], 0 < κ\ <

K2 < oo, where

c0 - (2τr)-2vol{(x,0 : x G G 9, K{x&g) < 1)} - (2τr)-1meas(G9)

and the remainder estimate is uniform in g $̂> 1 and K G Σ. We first

complete the proof of Lemma 5.2, accepting (7.2) as proved.

Proof of Lemma 5.2. Recall the definition (5.8) of F2

F2(k + ie; 9) = Id- φ2W(g)R(k + ΐe; KD(g))φ2,
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where the coefficients of first order differential operator W(g) have support

in G4 and obey the bound O(g2). Hence the second operator on the right

side can be regarded as an operator from L2(Gg) into itself. We set

T(k + it- g) = ψ2W(g)R(k + it; Kg{g)) : L2(G9) -» L2(G9).

Let E(g) denote the spectral resolution over the interval (k — g,k + g) of

KP(g). We now use (7.2) with r = k±g ~ g

2. Then it follows that

m(g) = dimR<mT(k + ie;g)E{g) = O(g), g -> oc.

unifomly in e. As is easily seen,

is bounded with bound O(g) and hence W(g)(KP(g) + l ) - i is also bounded

with bound O(g3). Thus we have that

T(k + ze; g)(Id - E(g)) : L2(G9) -+ L2(G9)

obeys the bound O(g4) uniformly in e. We now assume that n > Mg > m(g)

for some M ^> 1 and use Proposition 3.1 to obtain that

sn(F2(k + ie g)) < Sl(Id) + ||Γ(fc + ie;g)(Id - E(g))<ψ2\\ =

uniformly in e. This proves the lemma. Q

7.2. We come back to (7.2). This formula is a more or less well known

result. We give only a sketch for a proof. We divide GQ into three regions

G9 = UΩj, 0 < j < 2, where Ωo = {x : |x| < 8} and

Ωx = {x : 7 < \x\ < 9 - l / τ 1 / 2 } , Ω2 = {x : 9 - 2/r1/2 < |x| < 9}.

Let {(/?o5 ̂ 1^2} be a smooth partition of unity on Gg subject to this division

and normalized by

φo{x)2 + φι{x; τ)2 + φ2{x\ r ) 2 = 1.

We write exp(—tKP(g))(x,y), t > 0, for the Green kernel of the semigroup

exp(—tKP(g)). Then we have

\exp{-tKξ{g))(x,x)\ < exp(-tH0){x,x) = O ^ 1 ) , t -+ 0,
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by the Feynman-Kac-Ito formula ([3]). This implies that e(x,τ;g) = O(τ)

uniformly in g and hence

(7.3) /

According to definition (5.2), K^{g) acts as (—zV — gβVη)2 /2 near the

boundary dG$. Since exp(i[gβ]j(x)) is smooth in Ωχ5 this operator is trans-

formed to (—iV — (gβ — [gβ\)Vη)2 J2 by the gauge transformation, which has

smooth coefficients bounded uniformly in g >̂ 1 in the region Ωχ Hence

we can apply the same argument as in [16] to obtain that

(7.4) ί φ1(x;τ)2e(x,τ]g)dx = (2π)-1 ί Ψl(x; τ)2 dxr + O{τ1'2).
J GQ J GQ

On the other hand, the problem in the interior domain ΩQ is treated as the

semi-classical problem on the number of eigenvalues less than K = τ/g2,

K G Σ being fixed, of the operator (—ihV — Aι)2/2, h = g~ι. We can

neglect a contribution from the boundary dGg and it essentially becomes

the problem over the whole space R2. We use the method standard in the

semi-classical spectral analysis (for example, see [13]) to obtain that

= (2π)-1 ί φQ{xf dxτ + O(τ1/2),
J GQJGQ J GQ

which, together with (7.3) and (7.4), proves (7.2).

§8. Proof of Lemma 5.3

We here prove the last lemma (Lemma 5.3). The proof uses a simple

theory of ordinary differential equations.

8.1. We first recall the definition (5.9) of Y(μ g), μ — k + ie. It con-

tains the difference between the resolvents R(μ;Kβ(g)) and R(μ]KP(g)).

Both the resolvents have the polar coordinate decomposition (see subsection

6.2). Thus we consider the operator

Tι(μ;g)=φ2{R(μ;Pβl(9))"R(μ\PS(9))}X9 : £2((0, oo); dr)

—+L 2 ((0,oo);dr),

where φ2(χ) — Ψ{\x\/22) i s regarded as a function of r — \x\ and χ$ — χ§(r)

is again the characteristic function of the interval [0,9]. If |Z| > Log with

some LQ ̂ $> 1, then there exists the limit

φ2R(k + iO P^(g))X9 = lim ψ2R(k + ie; Pg{g))χ9
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in norm as a bounded operator on £2((0, oo); dr) (see Lemma 6.4). On the

other hand, the resolvent R(k + ie Kβ(g)) has also the limit

φ2R(k + iO; Kβ(g))χ9 = lim φ2R(k + ze; Kβ(g))χ9 : L2(R2) -+ L2{R2)

by the principle of limiting absorption and hence ψ2R(k + ê; Pβi(g))χ9

converges in norm as a bounded operator on L2((0, oc); dr) uniformly in

I € Z. Thus we can define

Γ/(fc; g) = lim Tt{k + ie; g) : L2((0, oo); dr) -> L2((0, oo); dr)

for |2| > Lop, where the convergence is uniform in L

8.2. Let LQ ̂ > 1 be as above. We now define v\ = vι{r\ fc, g), \l\ >

as a real solution to Pβi(g)vι = kvi in (0, oo) with normalization

/ h(r;fc,^) | 2 dr = l.
Jo

In other words, vι solves the equation

(8.1) -v'/ + qι(r;g)vι = 2kvι e (0,oo),

where

φ- g) = ((I - gβ-φ^r))2 - l/4)r"2 + 2Ng2^(r).

Such a solution exists uniquely except for the sign ±. We define I; as

(8.2) ku = (u, χ9vι)rX9Vi : L2((0, oo); dr) -* L2((0, oo); dr),

where ( , ) r denotes the L2 scalar product in L2((0, oo);dr).

LEMMA 8.1. Le£ υ/7 |/| > Lo#7 δe as above. Then one has

/or an?/ d ̂ > 1 and, in particular, I1Ψ2 obeys the bound O(\l\~d) as a bounded

operator on L2((0, 00) dr).
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Proof. Let ψ G CQ°([0,9)) be a non-negative function with compact

support. We take the scalar product in £ 2((0, oo); dr) of φ2v\ with equation

(8.1). Since qι(r\g) > C I2 ^> k for r E (0,9), we integrate the resulting

relation by parts to obtain that

{ψvuφvi)r < CΓ2{{φ'vuφ'vι)r + \{φ"vuφvι)r\} = O(Γ2).

The lemma is proved by repeated use of this inequality. Π

L E M M A 8.2. Assume that \l\ > Log for Lo ^> 1 as above. Let Γ/(/c;g)

and Iι be defined as above. Then one has

as an operator on L2((0, oo); dr).

Proof. Let u\ = ψ2u — h^2u f° r u ^ L2((0, oo); dr). Then u\ has
support in [0, 9] and it follows by definition that

(8.3) {u

To prove the lemma, it suffices to show that

(8.4) Γz

Let Gι(r,rf) be the Green function of R(k + iO Pβi(g)). It takes the form

Gι(r,rf) = //(r_)/i/(r+), where r_ = min (r, r1) and r + = max(r,r ') . The

functions // and /i/ are linearly independent solutions to (Pβi(g) — k)w = 0

in (0, oo). The function f\ concides with v\ and is bounded near the origin

r = 0. On the other hand, h\ coincides with crι/2Hy '(y/2kr), v — \l — gβ\,

for r > 9 and satisfies the outgoing radiation condition at infinity, where

Hi is the Hankel function and the constant c, c = c(fc,p), is chosen in

such a way that the Wronskian for pair of solutions (//, hi) equals one. By

(8.3), we have

(R(k + iO; Pβι(g))uι)(r) = ht(r) Γ vι(rf)uι(rf) drf = 0 at r = 9.
Jo

This shows that

R{k + ΐO; Pβι(g))uι = R(k + iO; P^{g))uι

and hence (8.4) is obtained. D
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LEMMA 8.3. Assume again that \l\ > Log. Let

Pol = {-d2

r + (I2 - l/4)r" 2 )/2

be the operator obtained from the free Hamiltonian HQ = — Δ/2 by the

expansion in angular momentum channels. Then one has

(Poι + Idf^Ttik- g) :L 2 ((0, oo); dr) -+ L2((0, oo); dr)

is bounded and obeys the bound O{l~ι).

This lemma can be easily verified by use of Lemmas 6.3 and 6.4. We

skip the proof. We now combine the three lemmas above to obtain that for

any d ^> 1

\\(Poι + Id)ιl2Tι(k-g)<ψ2\\ = O(g-d), g -> oo,

uniformly in |/| > Log as a bounded operator on £ 2((0, oo); dr). Since

(Poz + Id)1/2Tι(k + i€ g) -> (Po/ + Idf^T^k- g), e -> 0,

converges in norm uniformly in |Z| > L$g, it follows that: For given d ^> 1,
there exists e(d, g) > 0 such that

(8.5) \\(Poι + IdΫ^Ttik + ιe;g)ψ2\\ < Cg~\ g > 1,

for 0 < e < e(d,g) and I as above.

8.3. We are now in a position to prove Lemma 5.3.

Proof of Lemma 5.3. We recall the definition (5.9) of Y(k + ie; g). The
operator has the composition

Y(k + ie; 9) = W(0)(#o + U)-χ'2FA{k + ie; g)F2(k + ie; g),

where F2 is defined by (5.8) and

F4(k + ze; 5 ) = {Ho + Idfl2ψ2{R{h + ie; Kβ{g)) - R(k + ie; KJ?

It has been already shown (Lemma 5.2) that

lim sup sn(F2[k + ie; g)) < C ̂
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for n > M\g with some M\ ^> 1 and also we have

We assert that there exist M ^> 1 such that

(8.6) limsupsn(F4(fc + ie;#)) < Cg~d, d > 1,

for n > Mg. If this is verified, then it follows from Proposition 3.1 that

limsiipsn(y(fc + ze;#)) < 1/2, g > 1,

for n > Mg with another M ^$> 1 and hence we have

ie ig)) < 1/2, n> Mg,

for 0 < e < e(n,g) with some e{n,g) depending on n and g. This, together
with Proposition 3.1 again, implies that sn(F^(k-\-ie; g)) < 2 for e as above
and the lemma follows at once.

We shall prove the above assertion (8.6). Let U be the unitary mapping
defined by (2.6) and let

Ql : L2((0, oo); dr) 0 L 2 ^ 1 ) -> L2((0, oo); dr) ® Λ/

be a projection, where Λ/ is again the eigenspace of —id/dθ associated with
eigenvalue I. Define

As is easily seen,

®Qι]U : L2(R2) -* L2(R2).
\l\<[n/2]

- R(k + ΐe; Pβ(g))} < 2

as an operator from L2((0, oc); dr) into itself and hence

n.

We now assume that n > 2L$g + 2. Then it follows from (8.5) that

\\F4(k+i6;g)-F4,n(k+ie;g)\\< max WiPoi + Id^T^k+ie;g)φ2\\ < Cg~d

\l\>Log

for d >̂ 1 and e > 0 as in (8.5). This proves (8.6) and the proof is complete.

D
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§9. Sacttering by magnetic fields with small support

We here study the cross section for scattering by magnetic fields with

small support. Throughout the section, we fix h = 1 and again assume

the magnetic field b(x) G C^(R2) to be supported in the unit ball Gi,

supp b C G\.

We consider the magnetic field

bR(χ) = R~2b(x/R), 0 < R < 1,

with support in GR. AS is easily seen, bR conserves the flux

ί bRdx = f bdx = 2πβ.

The corresponding megnetic potential AR(X) is given by AR ~ R~1A{x/R)^

dAji — bftdxγ Λ dx2, where A is still defined by (1.4). We denote by

H(AR) the Hamiltonian with AR as a magnetic potential and by σ(λ, CJ; bR)

the quantity defined by (1.11) for pair (HQ, H(AR)). We also denote by
σtot(λ,ccr, 6β) the total cross section for integer β G Z.

We now consider the integral

/ σ(λ,ω'1bR)d\
Ji

for compact interval / = [c

?^]5 0 < c < d < oo, fixed. The aim here is

to study the bound of this integral as R —> 0 and the special emphasis is

placed on the dependence on the value β.

9.1 We shall formulate the main result obtained here. Let

(9.1) a = 1 for β e Z, a = mm{ιs = \l - β\\l G Z} for β 0 Z.

If we write β = [β] + K, 0 < K < 1, for β 0 Z, then a = min (K, 1 — K).

THEOREM 9.1. Let the notations be as above. Then one has

ί σ(λ, ω- bR) dλ = O(R2a-2), R -> 0,

and if, in particular β G Z, then

Jσtot(\,ω;bR)d\ = O(l), R -> 0.
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We shall give a simple application of the above theorem. Let \f(ω —>

0, λ; ^ ) | 2 be the differential cross section for pair (Ho, H(AR)) and let C =

(0, oo) x Λ be the cone generated by the compact subset Λ c S 1 , where Λ

does not contain the incident direction ω. Then the integral

is finite even for β tjL Z and describes the total number of particles scattered

into cone C at energy λ. The following result is obtained as an immdiate

consequence of Theorem 9.1.

COROLLARY 9.2.

2 2~2)1 R -> 0.
Ji JAI JA

Remark Theorem 9.1 should be compared with the bound obtained

by Enss-Simon [4] in the case of potential scattering. Let VR(X), X G iϊ 2 ,

be a finite-range potential with support in GR and let σ t ot(λ, ω; VR) be the

total cross section for the Schrodinger operator HO + VR. Then the following

bound has been obtained in [4] (Theorems 3.1 and 3.2) :

σ t o t(λ, ω; VR) dλ = O(R~2), R-+0,

and if, in particular, VR > 0, then the bound above is of order O(l), where

the order relations are independent of VR. The corresponding bound for the

magnetic scattering case seems to depend strongly on the flux of magnetic

fields.

9.2. We shall prove Theorem 9.1. The first step toward the proof is

to show the following

LEMMA 9.3. One has the relation

= Rσ(R2\,ω b).

The lemma may be verified by making a change of variables. However

we give an alternative proof. The proof is based on the lemma below, which

has been already obtained as Lemma 5.3 of [19].
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LEMMA 9.4. Let Fω(y), y = (x,ω), be defined by

(9.2) Fω(y) = (2

for F G Cg°((0,oo)). Let φL = φ(\z\/L), L > 1, where φ is as in (1.14)
and z is in the straight line (impact plane) Tlω perpendicular to direction
ω. Write S and Sβ for the scattering operators S(H,Ho), H = H(A), and
S(Hβ,Ho), respectively. Then the limit

- Sβ)Fω\\ = lim ||(5 - Sβ)φLFω\\

exists, where the limit is denoted as the term on the left side, and one has

(9.3) \\(S - Sβ)Fω\\2 = J \F(λ)\2σ(X,ω;b)dλ.

Proof of Lemma 9.3. The quantities on both sides of the relation in the
lemma are continuous in λ > 0. Hence it suffices to prove the lemma in the
weak form. The lemma is verified in almost the same way as in the proof
of Theorem A. 1.1 of [4]. We give only a sketch for the proof.

Let

(URf)(x) = R-'fix/R) : L2(R2) -+ L2(R2)

be a unitary operator. Then a simple computation yields

URHOUU1 = R2H0, URHUK1 = URH(A)U^ = R2H(AR).

Hence it follows that URSU^1 = S(H(AR),H0) for 5 = S(H,H0). We
can also show that UnSβU^1 = 5^ for 5^ = S(Hβ, Ho). Thus we use the
relation (9.3) to obtain that

J | F ( λ ) | 2 σ ( λ , ω ; bR) dλ = \\(S - ? I I 2

• ω\\

for any F E C£°((0, oc)). The function (U^1Fω)(y) = RFω(Ry) on the right
side is represented by integral (9.2) with F replaced by R'1/2F{R~2\). This
yields

ί |F(λ)|2σ(λ,CJ; bR) dλ = R ί |F(λ)|2σ(i?2λ, ω b) dλ

by making a simple change of variable and the proof is complete. Π
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Let F € qj°((0,oo)) again. We define

(λ, to] bji) dλ.

Then it follows from Lemma 9.3 that

σF(R)=R~1 ίF{R-2X)σ(X,ω b)dX.

We evaluate the integral on the left side. If, in particular, we take F{\) > 0
with F = 1 on /, then

[ σ(\,ω;bR)dλ < σF(R).
Ji

9.3. We recall that V — Ja[ψθiHo\ (see (2.5)), where Ja is the mul-
tiplication operator with exp(m(x)) and a{x) is defined by (2.1). We note
that V has only the radial differentiation d/d\x\ as a first differential oper-
ator and its coefficients are supported in G = {x : 1 < \x\ < 2}. We can
represent σ(\,ω;b) as

where E(λ) is the spectral resolution associated with H = H(A), E'(λ) —

dE(λ))/dλ and ψ-(λ,ω) = (p_(x,λ,cj) is the outgoing eigenfunction of
Hβ = H(B), B = βVη(x), with eigenvalue λ (see (2.10)). This relation
can be obtained in the same way as used to prove Lemma 2.2 (see also
Proposition 5.2 of [19]). Thus the quantity σp(R) under consideration is
now rewritten as

1 ( dλ.

We evaluate this integral by use of partial integration. We note that λ ~ R2

when λ is restricted to the support of function F(R~2-).

9.4. We first prove the theorem for the case β 0 Z. We have to look at

the behavior of </?_(#, λ,u;), x G G, as λ —> 0, where G = {x : 1 < \x\ < 2}

again. Let a be as in (9.1) and let /* G Z be such that a = \l* — β\.

According to definition (2.10), the main contribution comes from Bessel

function Ja(\f2X\x\) of order α, and ψ- behaves like

φ-(x,\,ω) = Caexp{il*ζ(x))Xa/2\x\a + o(λα/2), λ -^ 0,
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for some constant Ca uniformly in x G G, where ζ(x) = η(x\ —ω) is the

azimuth angle from — ω1 so that dζ(x)/d\x\ = 0. The remainder estimate

above remains true in the G°° topology as a function of x. Thus the lemma

below can be easily verified and the bound O(R2a~2) in Theorem 9.1 follows

from this lemma by partial integration.

LEMMA 9.5. Let a be as above. Then one has:

φ.(x,\,ω)=O(\a/2), (d2/d\x\dλ)φ-(x,λ,ω) =

(d/d\x\)φ.(x,\,ω) = /2

where the order relation means that the L2 norm in G obeys the prescribed

bound as λ —•> 0.

Next we discuss the case β G Z. We assume for a moment that β = 0,

so that B(x) — βVj(x) = 0 and also

As is easily seen,

_ = 2 " 1 exp(ia(x))(Aφo)φo + O(λ 1 / 2 ) ,

where the order relation is used with the same meaning as in Lemma 9.5.

We can rewrite the leading term on the right side as

2- 1 exp(iα(x))(V, ψ0Vφ0) + O(λ 1/ 2).

Hence it can be further rewritten as

2"1 ((V - i Va),exp(ίa(x))φoVφo) + O{\1'2)

by a simple use of gauge transformation. According to relation (2.2), A(x)

= Va(x) on G. Since

- iA)\\ = \\E(λ)(H + X)ι'2{H + λ)"1/2(v - iA)\\ = O{\1'2)

as a bounded operator on L2(R2), we have

\(E(λ)Vφ-)(x)\2dx <C\.
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On the other hand, it is easy to see that V(d/d\)φ_ = O(λ~1/2). Thus the
desired bound O(l) in Theorem 9.1 is obtained for the case β = 0.

A similar argument applies to the general case β ^ 0 also. In this case,

φ-(x,\,ω) = exp(iβζ(x))φo(x: λ,cj),

which can be seen from definition (2.10). We should note that exp(iβζ(x))
is smooth in i?2\{0} for β e Z and also it follows that βVζ(x) = βVη(x) =
B(x). Since dζ(x)/d\x\ = 0 as previously stated, we have

Vφ_ = exp(i(a(x) + βζ(x)))[ψ0, Ho]φo

This enables us to repeat the same arguemnt as above and we can obtain
the desired bound O(l) for the general case also. Thus the proof of Theorem
9.1 is now complete.

REFERENCES

[1] S. Agmon, Some new results in spectral and scattering theory of differential operators
on Rn, Seminaire Goulaouic-Schwartz, 1978.

[2] W. O. Amrein, J. M. Jauch and K. B. Sinha, Scattering Theory in Quantum Me-
chanics, W. A. Benjamin. Inc., 1977.

[3] J. Avron, I. Herbst and B. Simon, Schrόdinger operators with magnetic fields. I,
General interactions, Duke Math. J., 45 (1978), 847-883.

[4] V. Enss and B. Simon, Finite total cross sections in nonrelativistic quantum me-
chanics, Commun. Math. Phys., 76 (1980), 177-209.

[5] A. Erdelyi, Higher Transcendental Functions, Vol. II, Robert E. Krieger Publ.
Company Inc., 1953.

[6] C. Gerard and A. Martinez, Principe d'absorption limite pour des operateurs de
Schrόdinger a longue portee, C. R. Acad. Sci. Paris, 306 (1988), 121-123.

[7] C. Gerard, A. Martinez and D. Robert, Breit-Wigner formulas for the scatter-
ing phase and the total scattering cross-section in the semi-classical limit, Com-
mun. Math. Phys., 121 (1989), 323-336.

[8] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint
operators, Translations of Mathematical Monographs, Vol. 18, A. M. S., 1969.

[9] T. Ikebe and Y. Saitό, Limiting absorption method and absolute continuity for the
Schrόdinger operators, J. Math. Kyoto Univ., 7 (1972), 513-542.

[10] H. Isozaki and H. Kitada, Scattering matrices for two-body Schrόdinger operators,
Sci. Papers College Arts Sci. Univ. Tokyo, 35 (1985), 81-107.

[11] M. Loss and B. Thaller, Scattering of particles by long-range magnetic fields, Ann.
of Phys., 176 (1987), 159-180.

[12] P. A. Perry, Scattering Theory by the Enss Method, Mathematical Reports 1, Har-
wood Academic, 1983.

https://doi.org/10.1017/S0027763000006309 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006309


TWO DIMENSIONAL MAGNETIC FIELDS 6 1

[13] D. Robert, Autour de Γapproximation Semi-classique, Birkhauser, 1987.

[14] D. Robert and H. Tamura, Semi-classical estimates for resolvents and asymptotics

for total scattering cross-sections, Ann. Inst. Henri Poincare, 46 (1987), 415-442.

[15] S. N. M. Ruijsenaars, The Aharonoυ-Bohm effect and scattering theory, Ann. of

Phys., 146 (1983), 1-34.

[16] R. Seeley, An estimate near the boundary for the spectral function of the Laplace

operator, Amer. J. Math., 102 (1980), 869-902.

[17] A. V. Sobolev, On the total scattering cross section for a finite-range potential,

Leningrad Math. J., 1 (1990), 1015-1026.

[18] A. V. Sobolev and D. R. Yafaev, On the quasi-classical limit of the total scattering

cross-section in nonrelativishc quantum mechanics, Ann. Inst. Henri Poincare, 44

(1986), 195-210.

[19] H. Tamura, Semi-classical analysis for total cross sections of magnetic Schrδdinger

operators in two dimensions,, Rev. Math. Phys., 7 (1995), 443-480.

[20] H. Tamura, Shadow scattering by magnetic fields in two dimensions, Ann. Inst. Henri

Poincare, 63 (1995), 253-276.

Department of Mathematics
Ibaraki University
Mito, Ibaraki 310
Japanv
tamura@mito . i pc . i barak i .ac . jp

https://doi.org/10.1017/S0027763000006309 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006309



