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Community detection is one of the most important methodological fields 
of network science, and one which has attracted a significant amount 
of attention over the past decades. This area deals with the automated 
division of a network into fundamental building blocks, with the objective 
of providing a summary of its large-scale structure. Despite the importance 
and widespread adoption of community detection, there is a noticeable gap 
between what is arguably the state-of-the-art and the methods that are 
actually used in practice in a variety of fields. This Element attempts to address 
this discrepancy by dividing existing methods according to whether they have 
a ”descriptive” or an ”inferential” goal. While descriptive methods find patterns 
in networks based on context-dependent notions of community structure, 
inferential methods articulate a precise generative model, and attempt to fit 
it to data. In this way, they are able to provide insights into the mechanisms 
of network formation, and separate structure from randomness in a manner 
supported by statistical evidence. We review how employing descriptive 
methods with inferential aims is riddled with pitfalls and misleading answers, 
and thus should be in general avoided. We argue that inferential methods 
are more typically aligned with clearer scientific questions, yield more robust 
results, and should be in many cases preferred. We attempt to dispel some 
myths and half-truths often believed when community detection is employed 
in practice, in an effort to improve both the use of such methods as well as 
the interpretation of their results.

About the Series
This cutting-edge series provides 
authoritative and detailed coverage 
of the underlying theory of complex 
networks, specifically their structure and 
dynamical properties. Each Element within 
the series will focus upon one of three 
primary topics: static networks, dynamical 
networks, and numerical/computing 
network resources.

Series editor
Guido Caldarelli 
Ca’ Foscari 
University of  
Venice

the Structure and Dynamics 
of Complex Networks 

ISSN 2516-5763 (online)
ISSN 2516-5755 (print)

Descriptive vs. 
inferential Community 
Detection in Networks

Tiago P. Peixoto

Cover image: jivacore/Shutterstock

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


Elements in the Structure and Dynamics of Complex Networks
edited by

Guido Caldarelli
Ca’ Foscari University of Venice

DESCRIPTIVE VS. INFERENTIAL
COMMUNITY DETECTION

IN NETWORKS
Pitfalls, Myths, and Half-Truths

Tiago P. Peixoto
Central European University, Vienna

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009113007

DOI: 10.1017/9781009118897

© Tiago de Paula Peixoto 2023

This work is in copyright. It is subject to statutory exceptions and to the provisions
of relevant licensing agreements; with the exception of the Creative Commons version
the link for which is provided below, no reproduction of any part of this work may

take place without the written permission of Cambridge University Press.

An online version of this work is published at http://dx.doi.org/10.1017/9781009118897
under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits
re-use, distribution and reproduction in any medium for non-commercial purposes

providing appropriate credit to the original work is given. You may not
distribute derivative works without permission. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third
parties. Permission to reproduce this third-party content must be obtained from these

third-parties directly. When citing this work, please include a reference to the
DOI 10.1017/9781009118897

First published 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-11300-7 Paperback
ISSN 2516-5763 (online)
ISSN 2516-5755 (print)

Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this
publication and does not guarantee that any content on such websites is, or will

remain, accurate or appropriate.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.cambridge.org
http://www.cambridge.org/9781009113007
http://dx.doi.org/10.1017/9781009118897
https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.1017/9781009118897
http://dx.doi.org/10.1017/9781009118897
https://doi.org/10.1017/9781009118897


Descriptive vs. Inferential Community Detection in
Networks

Pitfalls, Myths, and Half-Truths

Elements in the Structure and Dynamics of Complex Networks

DOI: 10.1017/9781009118897
First published online: May 2023

Tiago P. Peixoto
Central European University, Vienna

Author for correspondence: Tiago P. Peixoto, peixotot@ceu.edu

Abstract: Community detection is one of the most important
methodological fields of network science, and one which has attracted a
significant amount of attention over the past decades. This area deals with
the automated division of a network into fundamental building blocks,
with the objective of providing a summary of its large-scale structure.

Despite the importance and widespread adoption of community detection
there is a noticeable gap between what is arguably the state-of-the-art
and the methods that are actually used in practice in a variety of fields.
This Element attempts to address this discrepancy by dividing existing

methods according to whether they have a “descriptive” or an “inferential”
goal. While descriptive methods find patterns in networks based on

context-dependent notions of community structure, inferential methods
articulate a precise generative model, and attempt to fit it to data. In this
way, they are able to provide insights into the mechanisms of network

formation, and separate structure from randomness in a manner
supported by statistical evidence. We review how employing descriptive
methods with inferential aims is riddled with pitfalls and misleading

answers, and thus should be in general avoided. We argue that inferential
methods are more typically aligned with clearer scientific questions, yield
more robust results, and should be in many cases preferred. We attempt to

dispel some myths and half-truths often believed when community
detection is employed in practice, in an effort to improve both the use of
such methods as well as the interpretation of their results. This title is also

available as Open Access on Cambridge Core.

Keywords: community detection, stochastic block models, network clustering,
statistical inference, Bayesian inference

© Tiago de Paula Peixoto 2023
ISBNs: 9781009113007 (PB), 9781009118897 (OC)

ISSNs: 2516-5763 (online), 2516-5755 (print)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:peixotot@ceu.edu
https://doi.org/10.1017/9781009118897


Contents

1 Introduction 1

2 Descriptive vs. inferential community detection 2

3 Modularity maximization considered harmful 22

4 Myths, pitfalls, and half-truths 29

5 Conclusion 65

References 66

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


Elements in the Structure and Dynamics of Complex Networks 1

1 Introduction
Community detection is the task of dividing a network — typically one which
is large — into many smaller groups of nodes that have a similar contribution
to the overall network structure. With such a division, we can better summarize
the large-scale structure of a network by describing how these groups are con-
nected, rather than describing each individual node. This simplified description
can be used to digest an otherwise intractable representation of a large system,
providing insight into its most important patterns, how these patterns relate to
its function, and the underlying mechanisms responsible for its formation.
Because of its important role in network science, community detection has

attracted substantial attention from researchers, specially in the last 20 years,
culminating in an abundant literature (see Refs. [1, 2] for a review). This field
has developed significantly from its early days, specially over the last 10 years,
during which the focus has been shifting towards methods that are based on
statistical inference (see e.g. Refs. [3–5]).
Despite this shift in the state-of-the-art, there remains a significant gap

between the best practices and the adopted practices in the use of commu-
nity detection for the analysis of network data. It is still the case that some
of the earliest methods proposed remain in widespread use, despite their many
serious shortcomings that have been uncovered over the years. Most of these
problems have been addressed with more recent methods, that also contributed
to a much deeper theoretical understanding of the problem of community
detection [3, 4, 6, 7].
Nevertheless, some misconceptions remain and are still promoted. Here we

address some of the more salient ones, in an effort to dispel them. These mis-
conceptions are not uniformly shared; and those that pay close attention to the
literature will likely find few surprises here. However, it is possible that many
researchers employing community detection are simply unaware of the issues
with the methods being used. Perhaps even more commonly, there are those
that are in fact aware of them, but not of their actual solutions, or the fact that
some supposed countermeasures are ineffective.
Throughout the following we will avoid providing “black box” recipes to be

followed uncritically, and instead try as much as possible to frame the issues
within a theoretical framework, such that the criticisms and solutions can be
justified in a principled manner.
We will set the stage by making a fundamental distinction between “descrip-

tive” and “inferential” community detection approaches. As others have
emphasized before [8], community detection can be performedwithmany goals
in mind, and this will dictate which methods are most appropriate. We will
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2 Descriptive vs. Inferential Community Detection in Networks

provide a simple “litmus test” that can be used to determine which overall
approach is more adequate, based on whether our goal is to seek inferential
interpretations. We will then move to a more focused critique of the method
that is arguably the most widely employed — modularity maximization. This
method has an exemplary character, since it contains all possible pitfalls of
using descriptive methods for inferential aims. We will then follow with a dis-
cussion of myths, pitfalls, and half-truths that obstruct a more effective analysis
of community structure in networks.
(We will not give a throughout technical introduction to inferential com-

munity detection methods, which can be obtained instead in Ref. [5]. For
a practical guide on how to use various inferential methods, readers are
referred to the detailed HOWTO1 available as part of the graph-tool Python
library [9].)

2 Descriptive vs. inferential community detection
At a very fundamental level, community detection methods can be divided into
two main categories: “descriptive” and “inferential.”
Descriptive methods attempt to find communities according to some

context-dependent notion of a good division of the network into groups. These
notions are based on the patterns that can be identified in the network via an
exhaustive algorithm, but without taking into consideration the possible rules
that were used to create the patterns uncovered. These patterns are used only
to describe the network, not to explain it. Usually, these approaches do not
articulate precisely what constitutes community structure to begin with, and
focus instead only on how to detect such patterns. For this kind of method, con-
cepts of statistical significance, parsimony, and generalizability are usually not
evoked.

Inferential methods, on the other hand, start with an explicit definition of
what constitutes community structure, via a generative model for the network.
This model describes how a latent (i.e. not observed) partition of the nodes
would affect the placement of the edges. The inference consists on reversing
this procedure to determine which node partitions are more likely to have been
responsible for the observed network. The result of this is a “fit” of a model
to data, that can be used as a tentative explanation of how the network came
to be. The concepts of statistical significance, parsimony, and generalizability
arise naturally and can be quantitatively assessed in this context.

1 Available at https://graph-tool.skewed.de/static/doc/demos/inference/inference.html.
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Elements in the Structure and Dynamics of Complex Networks 3

Descriptive community detection methods are by far the most numerous, and
those that are in most widespread use. However, this contrasts with the current
state-of-the-art, which is composed in large part of inferential approaches. Here
we point out the major differences between them and discuss how to decide
which is more appropriate, and also why one should in general favor the infer-
ential varieties whenever the objective is to derive generative interpretations
from data.

2.1 Describing vs. explaining
We begin by observing that descriptive clustering approaches are the meth-
ods of choice in certain contexts. For instance, such approaches arise naturally
when the objective is to divide a network into two or more parts as a means to
solve a variety of optimization problems. Arguably, the most classic example of
this is the design of very large scale integrated (VLSI) circuits [10]. The task is
to combine from up to billions of transistors into a single physical microproces-
sor chip. Transistors that connect to each other must be placed together to take
less space, consume less power, reduce latency, and reduce the risk of cross-
talk with other nearby connections. To achieve this, the initial stage of a VLSI
process involves the partitioning of the circuit into many smaller modules with
few connections between them, in a manner that enables their efficient spatial
placement, i.e. by positioning the transistors in each module close together and
those in different modules farther apart.
Another notable example is parallel task scheduling, a problem that appears

in computer science and operations research. The objective is to distribute pro-
cesses (i.e. programs, or tasks in general) between different processors, so they
can run at the same time. Since processes depend on the partial results of other
processes, this forms a dependency network, which then needs to be divided
such that the number of dependencies across processors is minimized. The opti-
mal division is the one where all tasks are able to finish in the shortest time
possible.
Both examples above, and others, have motivated a large literature on “graph

partitioning” dating back to the 70s [11–13], which covers a family of problems
that play an important role in computer science and algorithmic complexity
theory.
Although reminiscent of graph partitioning, and sharing with it many algo-

rithmic similarities, community detection is used more broadly with a different
goal [1, 2]. Namely, the objective is to perform data analysis, where one wants
to extract scientific understanding from empirical observations. The communi-
ties identified are usually directly used for representation and/or interpretation
of the data, rather than as a mere device to solve a particular optimization
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4 Descriptive vs. Inferential Community Detection in Networks

problem. In this context, a merely descriptive approach will fail at giving us
a meaningful insight into the data, and can be misleading, as we will discuss in
the following.
We illustrate the difference between descriptive and inferential approaches in

Fig. 1. We first make an analogy with the famous “face” seen on images of the
CydoniaMensae region of the planet Mars. Amerely descriptive account of the
image can be made by identifying the facial features seen, which most people
immediately recognize. However, an inferential description of the same image
would seek instead to explain what is being seen. The process of explanation
must invariably involve at its core an application of the law of parsimony, or
Occam’s razor. This principle predicates that when considering two hypothe-
ses compatible with an observation, the simplest one must prevail. Employing
this logic results in the conclusion that what we are seeing is in fact a regular
mountain, without denying that it looks like a face in that picture and instead
acknowledging that it does so accidentally. In other words, the “facial” descrip-
tion is not useful as an explanation, as it emerges out of random features rather
than exposing any underlying mechanism.
Going out of the analogy and back to the problem of community detec-

tion, in Fig. 1(c) and (d) we see a descriptive and an inferential account of an
example network, respectively. The descriptive one is a division of the nodes
into 13 assortative communities, which would be identified with many descrip-
tive community detection methods available in the literature. Indeed, we can
inspect visually that these groups form assortative communities,2 andmost peo-
ple would agree that these communities are really there, according to most
definitions in use: these are groups of nodes with many more internal edges
than external ones. However, an inferential account of the same network would
reveal something else altogether. Specifically, it would explain this network as
the outcome of a process where the edges are placed at random, without the
existence of any communities. The communities that we see in Fig. 1(c) are
just a byproduct of this random process, and therefore carry no explanatory
power. In fact, this is exactly how the network in this example was generated,
i.e. by choosing a specific degree sequence and connecting the edges uniformly
at random.
In Fig. 2(a) we illustrate in more detail how the network in Fig. 1 was gen-

erated: The degrees of the nodes are fixed, forming “stubs” or “half-edges,”
which are then paired uniformly at random forming the edges of the network.3

2 See Sec. 4.6 for possible pitfalls with relying on visual inspections.
3 This uniform pairing will typically also result in the occurrence of pairs of nodes of degree one
connected together in their own connected component. We consider instances of the process

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


Elements in the Structure and Dynamics of Complex Networks 5

Figure 1 Difference between descriptive and inferential approaches to data
analysis. As an analogy, in panels (a) and (b) we see two representations of
the Cydonia Mensae region on Mars. Panel (a) is a descriptive account of

what we see in the picture, namely a face. Panel (b) is an inferential
representation of what lies behind it, namely a mountain (this is a more recent
image of the same region with a higher resolution to represent an inferential
interpretation of the figure in panel (a)). More concretely for the problem of
community detection, in panels (c) and (d) we see two representations of the
same network. Panel (c) shows a descriptive division into 13 assortative

communities. In panel (d) we see an inferential representation as a
degree-constrained random network, with no communities, since this is a

more likely model of how this network was formed (see Fig. 2).

In Fig. 2(b), like in Fig. 1, the node colors show the partition foundwith descrip-
tive community detection methods. However, this network division carries no

where this does not happen for visual clarity in Fig. 2(c) and (d), but without sacrificing its
main message.
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6 Descriptive vs. Inferential Community Detection in Networks

(a) Generative process (random stub matching)
13 nodes with degree 20 and 230 nodes with degree 1

Stubs paired uniformly at random

(c) New sample(b) Observed network

Figure 2 Descriptive community detection finds a partition of the network
according to an arbitrary criterion that bears in general no relation to the rules

that were used to generate it. In (a) is shown the generative model we
consider, where first a degree sequence is given to the nodes (forming

“stubs”, or “half-edges”) which then are paired uniformly at random, forming
a graph. In (b) is shown a realization of this model. The node colors show the
partition found with virtually any descriptive community detection method. In
(c) is shown another network sampled from the same model, together with the
same partition found in (b), which is completely uncorrelated with the new
apparent communities seen, since they are the mere byproduct of the random
placement of the edges. An inferential approach would find only a single

community in both (b) and (c), since no partition of the nodes is relevant for
the underlying generative model.

explanatory power beyond what is contained in the degree sequence of the
network, since it is generated otherwise uniformly at random. This becomes
evident in Fig. 2(c), where we show another network sampled from the same
generative process, i.e. another random pairing, but partitioned according to the
same division as in Fig. 2(b). Since the nodes are paired uniformly at random,
constrained only by their degree, this will create new apparent “communities”
that are always uncorrelated with one another. Like the “face” on Mars, they
can be seen and described, but they cannot (plausibly) explain how the network
came to be.
We emphasize that the communities found in Fig. 2(b) are indeed really there

from a descriptive point of view, and they can in fact be useful for a variety of
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Elements in the Structure and Dynamics of Complex Networks 7

tasks. For example, the cut given by the partition, i.e. the number of edges
that go between different groups, is only 13, which means that we need only
to remove this number of edges to break the network into (in this case) 13
smaller components. Depending on context, this kind of information can be
used to prevent a widespread epidemic, hinder undesired communication, or,
as we have already discussed, distribute tasks among processors and design a
microchip. However, what these communities cannot be used for is to explain
the data. In particular, a conclusion that would be completely incorrect is that
the nodes that belong to the same group would have a larger probability of
being connected between themselves. As shown in Fig. 2(a), this is clearly not
the case, as the observed “communities” arise by pure chance, without any
preference between the nodes.

2.2 To infer or to describe? A litmus test
Given the above differences, and the fact that both inferential and descriptive
approaches have their uses depending on context, we are left with the question:
Which approach is more appropriate for a given task at hand? In order to help
answering this question, for any given context, it is useful to consider the fol-
lowing “litmus test”:

Q: “Would the usefulness of our conclusions change if we learn,
after obtaining the communities, that the network being analyzed is
maximally random?”

If the answer is “yes,” then an inferential approach is needed.

If the answer is “no,” then an inferential approach is not required.

Litmus test: to infer or to describe?

If the answer to the above question is “yes,” then an inferential approach is war-
ranted, since the conclusions depend on an interpretation of how the data were
generated. Otherwise, a purely descriptive approach may be appropriate since
considerations about generative processes are not relevant.
It is important to understand that the relevant question in this context is not

whether the network being analyzed is actuallymaximally random,4 since this

4 “Maximally random” here means that, conditioned on some global or local constraints, like
the number of edges or the node degrees, the placement of the edges is done in uniformly at
random. In other words, the network is sampled from a maximum-entropy model constrained
in a manner unrelated to community structure, such that whatever communities wemay ascribe
to the nodes could have played no role in the placement of the edges.
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8 Descriptive vs. Inferential Community Detection in Networks

is rarely the case for empirical networks. Instead, considering this hypothetical
scenario serves as a test to evaluate if our task requires us to separate between
actual latent community structures (i.e. those that are responsible for the net-
work formation), from those that arise completely out of random fluctuations,
and hence carry no explanatory power. Furthermore, most empirical networks,
even if not maximally random, like most interesting data, are better explained
by a mixture of structure and randomness, and a method that cannot tell those
apart cannot be used for inferential purposes.
Returning to the VLSI and task scheduling examples we considered in the

previous section, it is clear that the answer to the litmus test above would
be “no,” since it hardly matters how the network was generated and how we
should interpret the partition found, as long as the integrated circuit can be
manufactured and function efficiently, or the tasks finish in the minimal time.
Interpretation and explanations are simply not the primary goals in these cases.5

However, it is safe to say that in network data analyses very often the answer
to the question above question would be “yes.” Typically, community detection
methods are used to try to understand the overall large-scale network structure,
determine the prevalent mixing patterns, make simplifications and generaliza-
tions, all in a manner that relies on statements about what lies behind the data,
e.g. whether nodes were more or less likely to be connected to begin with. A
majority of conclusions reached would be severely undermined if one would
discover that the underlying network is in fact completely random. This means
that these analyses suffer the substantial risk of yielding misleading answers
when using purely descriptive methods, since they are likely to be overfitting
the data — i.e. confusing randomness with underlying generative structure.6

2.3 Inferring, explaining, and compressing
Inferential approaches to community detection (see Ref. [5] for a detailed intro-
duction) are designed to provide explanations for network data in a principled
manner. They are based on the formulation of generative models that include

5 Although this is certainly true at a first instance, we can also argue that properly understanding
why a certain partition was possible in the first place would be useful for reproducibility and to
aid the design of future instances of the problem. For these purposes, an inferential approach
would be more appropriate.

6 We emphasize that the concept of overfitting is intrinsically tied with an inferential goal, i.e.
one that involves interpretations about an underlying distribution of probability relating to the
network structure. The partitioning of a graph with the objective of producing an efficient chip
design cannot overfit, because it remove does not elicit an inferential interpretation. There-
fore, whenever we mention that a method overfits, we refer only to the situation where it is
being employed with an inferential goal, and that it incorporates a level of detail that cannot
be justified by the statistical evidence available in the data.
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Elements in the Structure and Dynamics of Complex Networks 9

the notion of community structure in the rules of how the edges are placed.
More formally, they are based on the definition of a likelihood P(AAA|bbb) for the
network AAA conditioned on a partition bbb, which describes how the network could
have been generated, and the inference is obtained via the posterior distribution,
according to Bayes’ rule, i.e.

P(bbb|AAA) = P(AAA|bbb)P(bbb)
P(AAA) , (1)

where P(bbb) is the prior probability for a partition bbb. The inference procedure
consists in sampling from or maximizing this distribution, which yields the
most likely division(s) of the network into groups, according to the statistical
evidence available in the data (see Fig. 3).
Overwhelmingly, the models used to infer communities are variations of the

stochastic block model (SBM) [14], where in addition to the node partition, it
takes the probability of edges being placed between the different groups as an
additional set of parameters. A particularly expressive variation is the degree-
corrected SBM (DC-SBM) [15], with a marginal likelihood given by [16]

P(AAA|bbb) =
∑
eee,kkk

P(AAA|kkk,eee,bbb)P(kkk|eee,bbb)P(eee|bbb), (2)

where eee = {ers} is a matrix with elements ers specifying how many edges go
between groups r and s, and kkk = {ki} are the degrees of the nodes. Therefore,
this model specifies that, conditioned on a partition bbb, first the edge counts
eee are sampled from a prior distribution P(eee|bbb), followed by the degrees from
the prior P(kkk|eee,bbb), and finally the network is wired together according to the
probability P(AAA|kkk,eee,bbb), which respects the constraints given by kkk, eee, and bbb. See
Fig. 3(a) for a illustration of this process.
This model formulation includes maximally random networks as special

cases — indeed the model we considered in Fig. 2 corresponds exactly to the
DC-SBM with a single group. Together with the Bayesian approach, the use
of this model will inherently favor a more parsimonious account of the data,
whenever it does not warrant a more complex description — amounting to a
formal implementation of Occam’s razor. This is best seen by making a for-
mal connection with information theory, and noticing that we can write the
numerator of Eq. 1 as

P(AAA|bbb)P(bbb) = 2−Σ(AAA,bbb), (3)

where the quantity Σ(AAA,bbb) is known as the description length [17–19] of the
network. It is computed as7

7 Note that the sum in Eq. 2 vanishes because only one term is non-zero given a fixed
network AAA.
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10 Descriptive vs. Inferential Community Detection in Networks

(a) Generative process
55

7

7

1

11

2

1

34

2

48

Node partition, P(b) Edges between groups, P(e|b) Degrees, P(k|e,b) Network, P(A|k,e,b)

(b) Inference procedure

Observed network A Posterior distribution P(b|A) Marginal probabilities

Figure 3 Inferential community detection considers a generative process (a),
where the unobserved model parameters are sampled from prior distributions.
In the case of the DC-SBM, these are the priors for the partition P(bbb), the
number of edges between groups P(eee|bbb), and the node degrees, P(kkk|eee,bbb).
Finally, the network itself is sampled from its model, P(AAA|kkk,eee,bbb). The

inference procedure (b) consists on inverting the generative process given an
observed network AAA, corresponding to a posterior distribution P(bbb|AAA), which
then can be summarized by a marginal probability that a node belongs to a

given group (represented as pie charts on the nodes).

Σ(AAA,bbb) = − log2 P(AAA|kkk,eee,bbb)︸                ︷︷                ︸
D(AAA |kkk,eee,bbb)

− log2 P(kkk|eee,bbb) − log2 P(eee|bbb) − log2 P(bbb)︸                                                ︷︷                                                ︸
M(kkk,eee,bbb)

. (4)

The second set of terms M(kkk,eee,bbb) in the above equation quantifies the amount
of information in bits necessary to encode the parameters of the model.8 The
first term D(AAA|kkk,eee,bbb) determines how many bits are necessary to encode the
network itself, once the model parameters are known. This means that if Bob
wants to communicate to Alice the structure of a network AAA, he first needs to

8 If a value x occurs with probability P(x), this means that in order to transmit it in a communi-
cation channel we need to answer at least − log2 P(x) yes-or-no questions to decode its value
exactly. Therefore we need to answer one yes-or-no question for a value with P(x) = 1/2, zero
questions for P(x) = 1, and log2 N questions for uniformly distributed values with P(x) = 1/N.
This value is called “information content,” and essentially measures the degree of “surprise”
when encountering a value sampled from a distribution. See Ref. [20] for a thorough but
accessible introduction to information theory and its relation to inference.
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Elements in the Structure and Dynamics of Complex Networks 11

transmit M(kkk,eee,bbb) bits of information to describe the parameters bbb, eee, and kkk,
and then finally transmit the remainingD(AAA|kkk,eee,bbb) bits to describe the network
itself. Then, Alice will be able to understand the message by first decoding the
parameters (kkk,eee,bbb) from the first part of the message, and using that knowledge
to obtain the network AAA from the second part, without any errors.
What the above connection shows is that there is a formal equivalence

between inferring the communities of a network and compressing it. This hap-
pens because finding the most likely partition bbb from the posterior P(bbb|AAA) is
equivalent to minimizing the description length Σ(AAA,bbb) used by Bob to transmit
a message to Alice containing the whole network.
Data compression amounts to a formal implementation of Occam’s razor

because it penalizes models that are too complicated: if we want to describe
a network using many communities, then the model part of the description
length M(kkk,eee,bbb) will be large, and Bob will need many bits to transmit the
model parameters to Alice. However, increasing the complexity of the model
will also reduce the first term D(AAA|kkk,eee,bbb), since there are fewer networks that
are compatible with the bigger set of constraints, and hence the second part of
Bob’s message will need to be shorter to convey the network itself once the
parameters are known. Compression (and hence inference), therefore, is a bal-
ancing act between model complexity and quality of fit, where an increase in
the former is only justified when it results in an even larger increase of the
second, such that the total description length is minimized.
The reason why the compression approach avoids overfitting the data is due

to a powerful fact from information theory, known as Shannon’s source cod-
ing theorem [21], which states that it is impossible to compress data sampled
from a distribution P(x) using fewer bits per symbol than the entropy of the
distribution, H = −∑

x P(x) log2 P(x) — indeed, it’s a remarkable fact from
Shannon’s theory that a statement about a single sample (how many bits we
need to describe it) is intrinsically connected to the distribution from which it
came. Therefore, as the dataset becomes large, it also becomes impossible to
compress the data more than can be achieved by using a code that is optimal
according to its true distribution. In our context, this means that it is impos-
sible, for example, to compress a maximally random network using a SBM
with more than one group.9 This means, for example, that when encountering
an example like in Fig. 2, inferential methods will detect a single community
comprising all nodes in the network, since any further division does not pro-
vide any increased compression, or equivalently, no augmented explanatory

9 More accurately, this becomes impossible only when the network becomes asymptotically
infinite; for finite networks the probability of compression is only vanishingly small.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


12 Descriptive vs. Inferential Community Detection in Networks

(b) New sample(a) Observed network

Figure 4 Inferential community detection aims to find a partition of the
network according to a fit of a generative model that can explain its structure.
In (a) is shown a network sampled from a stochastic block model (SBM) with
6 groups, and where the group assignments were hidden from view. The node
colors show the groups found via Bayesian inference of the SBM. In (b) is
shown another network sampled from same SBM, together with the same

partition found in (a), showing that it carries a substantial explanatory power
— very differently from the example in Fig. 2 (c).

power. From the inferential point of view, a partition like Fig. 2(b) overfits the
data, since it incorporates irrelevant random features — a.k.a. “noise” — into
its description.
In Fig. 4(a) is shown an example of the results obtained with an inferen-

tial community detection algorithm, for a network sampled from the SBM.
As shown in Fig. 4(b), the obtained partitions are still valid when carried
over to an independent sample of the model, because the algorithm is capa-
ble of separating the general underlying pattern from the random fluctuations.
As a consequence of this separability, this kind of algorithm does not find
communities in maximally random networks, which are composed only of
“noise.”
The concept of compression is more generally useful than just avoiding

overfitting within a class of models. In fact, the description length gives us a
model-agnostic objective criterion to compare different hypotheses for the data
generating process according to their plausibility. Namely, since Shannon’s
theorem tells us that the best compression can be achieved asymptotically only
with the truemodel, then if we are able to find a description length for a network
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Elements in the Structure and Dynamics of Complex Networks 13

using a particular model, regardless of how it is parametrized, this also means
that we have automatically found an upper bound on the optimal compression
achievable. By formulating different generative models and computing their
description length, we have not only an objective criterion to compare them
against each other, but we also have a way to limit further what can be obtained
with any other model. The result is an overall scale on which different models
can be compared, as we move closer to the limit of what can be uncovered for
a particular network at hand.
As an example, in Fig. 5 we show the description length values with some

models obtained for a protein-protein interaction network for the organism
Meleagris gallopavo (wild turkey) [22]. In particular, we can see that with
the DC-SBM/TC (a version of the model with the addition of triadic clo-
sure edges [23]) we can achieve a description length that is far smaller than
what would be possible with networks sampled from either the Erdős-Rényi,
configuration, or planted partition (a SBM with strictly assortative commu-
nities [24]) models, meaning that the inferred model is much closer to the
true process that actually generated this network than the alternatives. Nat-
urally, the actual process that generated this network is different from the
DC-SBM/TC, and it likely involves, for example, mechanisms of node dupli-
cation which are not incorporated into this rather simple model [25]. However,
to the extent that the true process leaves statistically significant traces in the
network structure,10 computing the description length according to it should
provide further compression when compared to the alternatives.11 Therefore,
we can try to extend or reformulate our models to incorporate features that we
hypothesize to be more realistic, and then verify if this in fact the case, know-
ing that whenever we find a more compressive model, it is moving closer to
the true model — or at least to what remains detectable from it for the finite
data.
The discussion above glosses over some important technical aspects. For

example, it is possible for two (or, in fact, many) models to have the same or
very similar description length values. In this case, Occam’s razor fails as a
criterion to select between them, and we need to consider them collectively
as equally valid hypotheses. This means, for example, that we would need to

10 Visually inspecting Fig. 5 reveals what seems to be local symmetries in the network structure,
presumably due to gene duplication. These patterns are not exploited by the SBM description,
and points indeed to a possible path for further compression.

11 In Sec. 4.8 we discuss further the usefulness of models like the SBM despite the fact we know
they are not the true data generating process.
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14 Descriptive vs. Inferential Community Detection in Networks

Figure 5 Compression points towards the true model. (a) Protein-protein
interaction network for the organismMeleagris gallopavo [22]. The node

colors indicate the best partition found with the DC-SBM/TC [23] (there are
more groups than colors, so some colors are repeated), and the edge colors
indicate whether they are attributed to triadic closure (red) or the DC-SBM
(black). (b) Description length values according to different models. The
unknown true model must yield a description length value smaller than the
DC-SBM/TC, and no other model should be able to provide a superior

compression that is statistically significant.

average over them when making specific inferential statements [26] — select-
ing between them arbitrarily can be interpreted as a form of overfitting.
Furthermore, there is obviously no guarantee that the true model can actu-
ally be found for any particular data. This is only possible in the asymptotic
limit of “sufficient data,” which will vary depending on the actual model.
Outside of this limit (which is the typical case in empirical settings, in partic-
ular when dealing with sparse networks [27]), fundamental limits to inference
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Elements in the Structure and Dynamics of Complex Networks 15

are unavoidable,12 which means in practice that we will always have lim-
ited accuracy and some amount of error in our conclusions. However, when
employing compression, these potential errors tend towards overly simple
explanations, rather than overly complex ones. Whenever perfect accuracy is
not possible, it is difficult to argue in favor of a bias in the opposite direction.
We emphasize that it is not possible to “cheat” when doing compression. For

any particular model, the description length will have the same form

Σ(AAA,θ) = D(AAA|θ) +M(θ), (5)

where θ is some arbitrary set of parameters. If we constrain the model such
that it becomes possible to describe the data with a number of bits D(AAA|θ) that
is very small, this can only be achieved, in general, by increasing the number
of parameters θ, such that the number of bits M(θ) required to describe them
will also increase. Therefore, there is no generic way to achieve compression
that bypasses actually formulating a meaningful hypothesis that matches statis-
tically significant patterns seen in the data. One may wonder, therefore, if there
is an automatized way of searching for hypotheses in a manner that guarantees
optimal compression. The most fundamental way to formulate this question
is to generalize the concept of minimum description length as follows: for any
binary string xxx (representing any measurable data), we define L(xxx) as the length
in bits of the shortest computer program that yields xxx as an output. The quantity
L(xxx) is known as Kolmogorov complexity [29, 30], and if we would be able to
compute it for a binary string representing an observed network, we would be
able to determine the “true model” value in Fig. 5, and hence know how far we
are from the optimum.13

Unfortunately, an important result in information theory is that L(xxx) is not
computable [30]. This means that it is strictly impossible to write a computer
program that computes L(xxx) for any string xxx.14 This does not invalidate using

12 A very important result in the context of community detection is the detectability limit of the
SBM. As discovered by Decelle et al [6, 28], if a sufficiently large network is sampled from a
SBM with a sufficiently weak but nontrivial structure below a specific threshold, it becomes
strictly impossible to uncover the true model from this sample.

13 As mentioned before, this would not necessarily mean that we would be able to find the actual
true model in a practical setting with perfect accuracy, since for a finite xxx there could be many
programs of the same minimal length (or close) that generate it.

14 There are two famous ways to prove this. One is by contradiction: if we assume that we have a
program that computes L(xxx), then we could use it as subroutine to write another program that
outputs xxxwith a length smaller than L(xxx). The other involves undecidabilty: if we enumerate all
possible computer programs in order of increasing length and check if their outputs match xxx,
we will eventually find programs that loop indefinitely. Deciding whether a program finishes
in finite time is known as the “halting problem,” which has been proved to be impossible to
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16 Descriptive vs. Inferential Community Detection in Networks

the description length as a criterion to select among alternative models, but it
dashes any hope of fully automatizing the discovery of optimal hypotheses.

2.4 Role of inferential approaches in community detection
Inferential approaches based on the SBM have an old history, and were intro-
duced for the study of social networks in the early 80’s [14]. But despite such
an old age, and having appeared repeatedly in the literature over the years [31–
39] (also under different names in other contexts e.g. [40, 41]), they entered
the mainstream community detection literature rather late, arguably after the
influential paper by Karrer and Newman that introduced the DC-SBM [15] in
2011, at a point where descriptive approaches were already dominating. How-
ever, despite the dominance of descriptive methods, the existence of inferential
criteria was already long noticeable. In fact, in a well-known attempt to sys-
tematically compare the quality of a variety of descriptive community detection
methods, the authors of Ref. [42] proposed the now so-called Lancichinetti–
Fortunato–Radicchi (LFR) benchmark, offered as a more realistic alternative
to the simpler Newman-Girvan benchmark [43] introduced earlier. Both are in
fact generative models, essentially particular cases of the DC-SBM, contain-
ing a “ground truth” community label assignment, against which the results of
various algorithms are supposed to be compared. Clearly, this is an inferential
evaluation criterion, although, historically, virtually all of the methods com-
pared against that benchmark are descriptive in nature [44] (these studies were
conducted mostly before inferential approaches had gained more traction). The
use of such a criterion already betrays that the answer to the litmus test con-
sidered previously would be “yes,” and therefore descriptive approaches are
fundamentally unsuitable for the task. In contrast, methods based on statisti-
cal inference are not only more principled, but in fact provably optimal in the
inferential scenario: an estimation based on the posterior distribution obtained
from the true generative model is called “Bayes optimal,” since there is no pro-
cedure that can, on average, produce results with higher accuracy. The use of
this inferential formalism has led to the development of asymptotically opti-
mal algorithms and the identification of sharp transitions in the detectability of
planted community structure [6, 45].
The conflation one often finds between descriptive and inferential goals in

the literature of community detection likely stems from the fact that while it

solve. In general, it cannot be determined if a program reaches an infinite loop in a manner that
avoids actually running the program and waiting for it to finish. Therefore, this rather intuitive
algorithm to determine L(xxx) will not necessarily finish for any given string xxx. For more details
see e.g. Refs [29, 30]
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is easy to define benchmarks in the inferential setting, it is substantially more
difficult to do so in a descriptive setting. Given any descriptive method (modu-
larity maximization [46], Infomap [47], Markov stability [48], etc.) it is usually
problematic to determine for which network these methods are optimal (or
even if one exists), and what would be a canonical output that would be unam-
biguously correct. In fact, the difficulty with establishing these fundamental
references already serve as evidence that the task itself is ill-defined. On the
other hand, taking an inferential route forces one to start with the right answer,
via a well-specified generative model that articulates what the communities
actually mean with respect to the network structure. Based on this precise def-
inition, one then derives the optimal detection method by employing Bayes’
rule.
It is also useful to observe that inferential analyses of aspects of the network

other than directly its structure might still be only descriptive of the structure
itself. A good example of this is the modelling of dynamics that take place on
a network, such as a random walk. This is precisely the case of the Infomap
method [47], which models a simulated random walk on a network in an infer-
ential manner, using for that a division of the network into groups. While this
approach can be considered inferential with respect to an artificial dynamics,
it is still only descriptive when it comes to the actual network structure (and
will suffer the same problems, such a finding communities in maximally ran-
dom networks). Communities found in this way could be useful for particular
tasks, such as to identify groups of nodes that would be similarly affected by a
diffusion process. This could be used, for example, to prevent or facilitate the
diffusion by removing or adding edges between the identified groups. In this
setting, the answer to the litmus test above would also be “no,” since what is
important is how the network “is” (i.e. how a random walk behaves on it), not
how it came to be, or if its features are there by chance alone. Once more, the
important issue to remember is that the groups identified in this manner can-
not be interpreted as having any explanatory power about the network structure
itself, and cannot be used reliably to extract inferential conclusions about it. We
are firmly in a descriptive, not inferential setting with respect to the network
structure.
Another important difference between inferential and descriptive approaches

is worth mentioning. Descriptive approaches are often tied to very particular
contexts, and cannot be directly compared to one another. This has caused great
consternation in the literature, since there is a vast number of such methods,
and little robust methodology on how to compare them. Indeed, why should
we expect that the modules found by optimizing task scheduling should be
comparable to those that optimize the description of a dynamics? In contrast,
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18 Descriptive vs. Inferential Community Detection in Networks

inferential approaches all share the same underlying context: they attempt to
explain the network structure; they vary only in how this is done. They are,
therefore, amenable to principled model selection procedures [20, 49, 50],
designed to evaluate which is the most appropriate fit for any particular net-
work, even if the models used operate with very different parametrizations, as
we discussed already in Sec. 2.3. In this situation, the multiplicity of different
models available becomes a boon rather than a hindrance, since they all con-
tribute to a bigger toolbox we have at our disposal when trying to understand
empirical observations.
Finally, inferential approaches offer additional advantages that make them

more suitable as part of a scientific pipeline. In particular, they can be naturally
extended to accommodate measurement uncertainties [51–53] — an unavoid-
able property of empirical data, which descriptive methods almost universally
fail to consider. This information can be used not only to propagate the uncer-
tainties to the community assignments [26] but also to reconstruct the missing
or noisy measurements of the network itself [37, 54]. Furthermore, inferen-
tial approaches can be coupled with even more indirect observations such as
time-series on the nodes [55], instead of a direct measurement of the edges of
the network, such that the network itself is reconstructed, not only the com-
munity structure [56]. All these extensions are possible because inferential
approaches give us more than just a division of the network into groups; they
give us a model estimate of the network, containing insights about its formation
mechanism.

2.5 Behind every description there is an implicit generative
model

Descriptive methods of community detection — such as graph partitioning for
VLSI [11] or Infomap [47]— are not designed to produce inferential statements
about the network structure. They do not need to explicitly articulate a genera-
tive model, and the quality of their results should be judged solely against their
manifestly noninferential goals, e.g. whether a chip design can be efficiently
manufactured in the case of graph partitioning.
Nevertheless, descriptive methods are often employed with inferential aims

in practice. This happens, for example, when modularity maximization is
used to discover homophilic patterns in a social network, or when Infomap
is used to uncover latent communities generated by the LFR benchmark. In
these situations, it is useful to consider to what extent can we expect any
of these methods reveal meaningful inferential results, despite their intended
use.
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From a purely mathematical perspective, there is actually no formal
distinction between descriptive and inferential methods, because every descrip-
tive method can be mapped to an inferential one, according to some implicit
model. Therefore, whenever we are attempting to interpret the results of a
descriptive community detection method in an inferential way — i.e. make a
statement about how the network came to be—we cannot in fact avoid making
implicit assumptions about the data generating process that lies behind it. (At
first this statement seems to undermine the distinction we have been making
between descriptive and inferential methods, but in fact this is not the case, as
we will see below.)
It is not difficult to demonstrate that it is possible to formulate any conceiv-

able community detection method as a particular inferential method. Let us
consider an arbitrary quality function

W(AAA,bbb) ∈ R (6)

which is used to perform community detection via the optimization

bbb∗ = argmax
bbb

W(AAA,bbb). (7)

We can then interpret the quality function W(AAA,bbb) as the “Hamiltonian” of a
posterior distribution

P(bbb|AAA) = e βW(AAA,bbb)

Z(AAA) , (8)

with normalization Z(AAA) = ∑
bbb e βW(AAA,bbb). By making β → ∞ we recover the

optimization of Eq. 7, or we may simply try to find the most likely partition
according to the posterior, in which case β > 0 remains an arbitrary parame-
ter. Therefore, employing Bayes’ rule in the opposite direction, we obtain the
following effective generative model:

P(AAA|bbb) = P(bbb|AAA)P(AAA)
P(bbb) , (9)

=
e βW(AAA,bbb)

Z(AAA)
P(AAA)
P(bbb) , (10)

where P(AAA) = ∑
bbb P(AAA|bbb)P(bbb) is the marginal distribution over networks, and

P(bbb) is the prior distribution for the partition. Due to the normalization of
P(AAA|bbb) we have the following constraint that needs to be fulfilled:∑

AAA

e βW(AAA,bbb)

Z(AAA) P(AAA) = P(bbb). (11)

Therefore, not all choices of P(AAA) and P(bbb) are compatible with the poste-
rior distribution and the exact possibilities will depend on the actual shape of
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20 Descriptive vs. Inferential Community Detection in Networks

W(AAA,bbb). However, one choice that is always possible is a maximum-entropy
one,

P(AAA) = Z(AAA)
Ξ
, P(bbb) = Ω(bbb)

Ξ
, (12)

with Ω(bbb) = ∑
AAA e βW(AAA,bbb) and Ξ =

∑
AAA,bbb eβW(AAA,bbb). Taking this choice leads to

the effective generative model

P(AAA|bbb) = e βW(AAA,bbb)

Ω(bbb) . (13)

Therefore, inferentially interpreting a community detection algorithm with a
quality functionW(AAA,bbb) is equivalent to assuming the generative model P(AAA|bbb)
and prior P(bbb) of Eqs. 13 and 12 above. Furthermore, this also means that any
arbitrary community detection algorithm implies a description length given (in
nats) by15

Σ(AAA,bbb) = −βW(AAA,bbb) + ln
∑
AAA′,bbb′

e βW(AAA′,bbb′). (14)

What the preceding results show is that there is no such thing as a “model-free”
community detection method, since they are all equivalent to the inference of
some generativemodel. The only difference to a direct inferential method is that
in that case the modelling assumptions are made explicitly, inviting rather than
preventing scrutiny. Most often, the effective model and prior that are equiv-
alent to an ad hoc community detection method will be difficult to interpret,
justify, or even compute (in general, Eq. 14 cannot be written in closed form).
Furthermore there is no guarantee that the obtained description length of

Eq. 14 will yield a competitive or even meaningful compression. In particu-
lar, there is no guarantee that this effective inference will not overfit the data.
Although we mentioned in Section 2.3 that inference and compression are
equivalent, the compression achieved when considering a particular generative
model is constrained by the assumptions encoded in its likelihood and prior. If
these are poorly chosen, no actual compression might be achieved, for example
when comparing to the one obtained with a maximally random model. This is
precisely what happens with descriptive community detection methods: they
overfit because their implicit modelling assumptions do not accommodate the
possibility that a network may be maximally random, or contain a balanced
mixture of structure and randomness.
Since we can always interpret any community detection method as inferen-

tial, is it still meaningful to categorize some methods as descriptive? Arguably

15 The description length of Eq. 14 is only valid if there are no further parameters in the quality
functionW(AAA, bbb) other than bbb that are being optimized.
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yes, because directly inferential approaches make their generative models and
priors explicit, while for a descriptive method we need to extract them from
reverse engineering. Explicit modelling allows us to make judicious choices
about the model and prior that reflect the kinds of structures we want to detect,
relevant scales or lack thereof, and many other aspects that improve their
performance in practice, and our understanding of the results. With implicit
assumptions we are “flying blind,” relying substantially on serendipity and
trial-and-error — not always with great success.
It is not uncommon to find criticisms of inferential methods due to a per-

ceived implausibility of the generative models used — such as the conditional
independence of the placement of the edges present in the SBM [8]— although
these assumptions are also present, but only implicitly, in other methods,
like modularity maximization (see Sec. 4.1). We discuss this issue further in
Sec. 4.8.
The above inferential interpretation is not specific to community detection,

but is in fact valid for any learning problem. The set of explicit or implicit
assumptions that must come with any learning algorithm is called an “inductive
bias.” An algorithm is expected to function optimally only if its inductive bias
agrees with the actual instances of the problems encountered. It is important to
emphasize that no algorithm can be free of an inductive bias, we can only chose
which intrinsic assumptions we make about how likely we are to encounter
a particular kind of data, not whether we are making an assumption. There-
fore, it is particularly problematic when a method does not articulate explicitly
what these assumptions are, since even if they are hidden from view, they
exist nonetheless, and still need to be scrutinized and justified. This means we
should be particularly skeptical of the impossible claim that a learning method
is “model-free,” since this denomination is more likely to signal an inability or
unwillingness to expose the underlying modelling assumptions, which could
potentially be revealed as unappealing and fragile when eventually forced to
come under scrutiny.

2.6 Caveats and challenges with inferential methods
Inferential community detection is a challenging task, and is not without its
caveats. One aspect they share with descriptive approaches is algorithmic com-
plexity (see Sec. 4.9), and the fact that they in general try to solve NP-hard
problems. This means that there is no known algorithm that is guaranteed to
produce exact results in a reasonable amount of time, except for very small net-
works. That does not mean that every instance of the problem is hard to answer,
in fact it can be shown that in key cases robust answers can be obtained [45],
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22 Descriptive vs. Inferential Community Detection in Networks

but in general all existing methods are approximative, with the usual trade-off
between accuracy and speed. The quest for general approaches that behave well
while being efficient is still ongoing and is unlikely to exhausted soon.
Furthermore, employing statistical inference is not a “silver bullet” that auto-

matically solves every problem. If our models are “misspecified,” i.e. represent
very poorly the structure present in the data, then our inferences using themwill
be very limited and potentially misleading (see Sec. 4.8) — the most we can
expect from our methodology in this case is to obtain good diagnostics of when
this is happening [26]. There is also a typical trade-off between realism and sim-
plicity, such that models that more closely match reality are more difficult to
express in simple terms with tractable models. Usually, the more complex a
model is, the more difficult becomes its inference. The technical task of using
algorithms such as Markov chain Monte Carlo (MCMC) to produce reliable
inferences for a complex model is nontrivial and requires substantial expertise,
and is likely to be a long-living field of research.
In general it can be said that, although statistical inference does not provide

automatic answers, it gives us an invaluable platform where the questions can
be formulated more clearly, and allows us to navigate the space of answers
using more robust methods and theory.

3 Modularity maximization considered harmful
The most widespread method for community detection is modularity maximi-
zation [46], which happens also to be one the most problematic. This method
is based on the modularity function,

Q(AAA,bbb) = 1
2E

∑
ij

(
Aij −

kikj
2E

)
δbi ,bj, (15)

where Aij ∈ {0,1} is an entry of the adjacency matrix, ki =
∑

j Aij is the degree
of node i, bi is the group membership of node i, and E is the total number of
edges. The method consists in finding the partition b̂bb that maximizes Q(AAA,bbb),

b̂bb = argmax
bbb

Q(AAA,bbb). (16)

The motivation behind the modularity function is that it compares the exist-
ence of an edge (i, j) to the probability of it existing according to a null model,
Pij = kikj/2E, namely that of the configuration model [57] (or more precisely,
the Chung-Lu model [58]). The motivation for this method is that we should
consider a partition of the network meaningful if the occurrence of edges
between nodes of the same group exceeds what we would expect with a random
null model without communities.
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Despite its widespread adoption, this approach suffers from a variety of
serious conceptual and practical flaws, which have been documented exten-
sively [1, 2, 59–61]. The most problematic one is that it purports to use an
inferential criterion— a deviation from a null generative model— but is in fact
merely descriptive. As has been recognized very early, this method categori-
cally fails in its own stated goal, since it always finds high-scoring partitions in
networks sampled from its own null model [59]. Indeed, the generative model
we used in Fig. 2(a) is exactly the null model considered in the modularity func-
tion, which if maximized yields the partition seen in Fig. 2(a). As we already
discussed, this result bears no relevance to the underlying generative process,
and overfits the data.
The reason for this failure is that the method does not take into account the

deviation from the null model in a statistically consistent manner. The modu-
larity function is just a re-scaled version of the assortativity coefficient [62],
a correlation measure of the community assignments seen at the endpoints of
edges in the network. We should expect such a correlation value to be close
to zero for a partition that is determined before the edges of the network are
placed according to the null model, or equivalently, for a partition chosen at
random. However, it is quite a different matter to find a partition that optimizes
the value of Q(AAA,bbb), after the network is observed. The deviation from a null
model computed in Eq. 15 completely ignores the optimization step of Eq. 16,
although it is a crucial part of the algorithm. As a result, the method of modu-
larity maximization tends to massively overfit, and find spurious communities
even in networks sampled from its null model. If we search for patterns of cor-
relations in a random graph, most of the time we will find them. This is a pitfall
known as “data dredging” or “p-hacking,” where one searches exhaustively for
different patterns in the same data and reports only those that are deemed sig-
nificant, according to a criterion that does not take into account the fact that we
are doing this search in the first place.
We demonstrate this problem in Fig. 6, where we show the distribution of

modularity values obtained with a uniform configuration model with ki = 5 for
every node i, considering both a random partition and the one that maximizes
Q(AAA,bbb).While for a random partition we findwhat wewould expect, i.e. a value
of Q(AAA,bbb) close to zero, for the optimized partition the value is substantially
larger. Inspecting the optimized partition in Fig. 6(c), we see that it corresponds
indeed to 15 seemingly clear assortative communities—which by construction
bear no relevance to how the network was generated. They have been dredged
out of randomness by the optimization procedure.
Somewhat paradoxically, another problem with modularity maximization is

that in addition to systematically overfitting, it also systematically underfits.
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24 Descriptive vs. Inferential Community Detection in Networks

Figure 6 Modularity maximization systematically overfits, and finds
spurious structures even its own null model. In this example we consider a

random network model with N = 103 nodes, with every node having degree 5.
(a) Distribution of modularity values for a partition into 15 groups chosen at

random, and for the optimized value of modularity, for 5000 networks
sampled from the same model. (b) Adjacency matrix of a sample from the
model, with the nodes ordered according to a random partition. (c) Same as
(b), but with the nodes ordered according to the partition that maximizes

modularity.

This occurs via the so-called resolution limit: in a connected network16 the
method cannot find more than

√
2E communities [60], even if they seem intu-

itive or can be found by other methods. An example of this is shown in Fig. 7,
where for a network generated with the SBM containing 30 communities,

16 Modularity maximization, like many descriptive community detection methods, will always
place connected components in different communities. This is another clear distinction with
inferential approaches, since maximally randommodels—without latent community structure
— can generate disconnected networks if they are sufficiently sparse. From an inferential point
of view, it is therefore incorrect to assume that every connected component must belong to a
different community.
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Figure 7 The resolution limit of modularity maximization prevents small
communities from being identified, even if there is sufficient statistical

evidence to support them. Panel (a) shows a network with B = 30
communities sampled from an assortative SBM parametrization. The colors
indicate the 18 communities found with modularity maximization, where
several pairs of true communities are merged together. Panel (b) shows the
inference result of an assortative SBM [24], recovering the true communities
with perfect accuracy. Panels (c) and (d) show the results for a similar model
where a larger community has been introduced. In (c) we see the results of
modularity maximization, which not only merges the smaller communities
together, but also splits the larger community into several spurious ones —
thus both underfitting and overfitting different parts of the network at the

same time. In (d) we see the result obtained by inferring the SBM, which once
again finds the correct answer.

modularity maximization finds only 18, while an inferential approach has no
problems finding the true structure. There are attempts to counteract the reso-
lution limit by introducing a “resolution parameter” to the modularity function,
but as we discuss in Sec. 4.4 they are in general ineffective.
These two problems — overfitting and underfitting — can occur in tandem,

such that portions of the network dominated by randomness are spuriously
revealed to contain communities, whereas other portions with clear modular
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26 Descriptive vs. Inferential Community Detection in Networks

structure can have those obstructed. The result is a very unreliable method
to capture the structure of heterogeneous networks. We demonstrate this in
Fig. 7(c) and (d).
In addition to thesemajor problems,modularitymaximization also often pos-

sesses a degenerate landscape of solutions, with very different partitions having
similar values of Q(AAA,bbb) [61]. In these situations the partition with maximum
value ofmodularity can be a poor representative of the entire set of high-scoring
solutions and depend on idiosyncratic details of the data rather than general
patterns — which can be interpreted as a different kind of overfitting.17

The combined effects of underfitting and overfitting can make the results
obtained with the method unreliable and difficult to interpret. As a demonstra-
tion of the systematic nature of the problem, in Fig. 8(a) we show the number
of communities obtained using modularity maximization for 263 empirical
networks of various sizes and belonging to different domains [64], obtained
from the Netzschleuder catalogue [65]. Since the networks considered are
all connected, the values are always below

√
2E, due to the resolution limit;

but otherwise they are well distributed over the allowed range. However, in
Fig. 8(b) we show the same analysis, but for a version of each network that is
fully randomized, while preserving the degree sequence. In this case, the num-
ber of groups remains distributed in the same range (sometimes even exceeding
the resolution limit, because the randomized versions can end up disconnected).
As Fig. 8(c) shows, the number of groups found for the randomized networks is
strongly correlated with the original ones, despite the fact that the former have
no latent community structure. This is a strong indication of the substantial
amount of noise that is incorporated into the partitions found with the method.
The systematic overfitting of modularity maximization — as well as other

descriptive methods such as Infomap — has been also demonstrated recently
in Ref. [66], from the point of view of edge prediction, on a separate empirical
dataset of 572 networks from various domains.
Although many of the problems with modularity maximization were long

known, for some time there were no principled solutions to them, but this is no
longer the case. In the table below we summarize some of the main problems
with modularity and how they are solved with inferential approaches.

17 This kind of degeneracy in the solution landscape can also occur in an inferential setting [26,
63]. However, there it can be interpreted as the existence of competing hypotheses for the same
data, whose relative plausibility can be quantitatively assessed via their posterior probability. In
case the multiplicity of alternative hypotheses is too large, this would be indicative of poor fit,
or a misspecification of the model, i.e. a general inadequacy of the model structure to capture
the structure in the data for any possible choice of parameters.
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Figure 8 Modularity maximization incorporates a substantial amount of
noise into its results. (a) Number of groups found using modularity

maximization for 263 empirical networks as a function of the number of
edges. The dashed line corresponds to the

√
2E upper bound due to the

resolution limit. (b) The same as in (a) but with randomized versions of each
network. (c) Correspondence between the number of groups of the original

and randomized network. The dashed line shows the diagonal.

Problem Principled solution via inference

Modularity maximization overfits,
and finds modules in maximally
random networks. [59]

Bayesian inference of the SBM
is designed from the ground up
to avoid this problem in a princi-
pled way and systematically suc-
ceeds [5].
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28 Descriptive vs. Inferential Community Detection in Networks

Problem Principled solution via inference

Modularity maximization has a res-
olution limit, and finds at most

√
2E

groups in connected networks [60].

Inferential approaches with hierar-
chical priors [16, 67] or strictly
assortative structures [24] do not
have any appreciable resolution
limit, and can find a maximum
number of groups that scales as
O(N/logN). Importantly, this is
achieved without sacrificing the
robustness against overfitting.

Modularity maximization has a
characteristic scale, and tends to
find communities of similar size;
in particular with the same sum of
degrees (see Sec. 4.4).

Hierarchical priors can be spe-
cifically chosen to be a priori
agnostic about characteristic sizes,
densities of groups and degree
sequences [16], such that these are
not imposed, but instead obtained
from inference, in an unbiased way.

Modularity maximization can only
find strictly assortative communi-
ties.

Inferential approaches can be based
on any generative model. The
general SBM will find any kind
of mixing pattern in an unbiased
way, and has no problems identi-
fying modular structure in bipar-
tite networks, core-periphery net-
works, and any mixture of these or
other patterns. There are also spe-
cialized versions for bipartite [68],
core-periphery [69], and assorta-
tive patterns [24], if these are being
searched exclusively.

The solution landscape of modular-
ity maximization is often degener-
ate, with many different solutions
with close to the same modularity
value [61], and with no clear way
of how to select between them.

Inferential methods are character-
ized by a posterior distribution of
partitions. The consensus or dis-
sensus between the different solu-
tions [26] can be used to determine
howmany cohesive hypotheses can
be extracted from inference, and to
what extent is the model being used
a poor or a good fit for the network.
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Because of the above problems, the use of modularity maximization should
be discouraged, since it is demonstrably not fit for purpose as an inferential
method. As a consequence, the use of modularity maximization in any recent
network analysis that relies on inferential conclusions can be arguably consid-
ered a “red flag” that strongly indicates methodological inappropriateness. In
the absence of secondary evidence supporting the alleged community structures
found, or extreme care to counteract the several limitations of the method (see
Secs. 4.2, 4.3 and 4.4 for how typical attempts usually fail), the safest assump-
tion is that the results obtained with that method tend to contain a substantial
amount of noise, rendering any inferential conclusion derived from them highly
suspicious.
As a final note, we focus on modularity here not only for its widespread

adoption but also because of its exemplary character. At a fundamental level,
all of its shortcoming are shared with any descriptive method in the literature
— to varied but always non-negligible degrees.

4 Myths, pitfalls, and half-truths
In this section we focus on assumed or asserted statements about how to cir-
cumvent pitfalls in community detection, which are in fact better characterized
as myths or half-truths, since they are either misleading, or obstruct a more
careful assessment of the true underlying nature of the problem. The following
subsections each deal with one of these pitfalls.

4.1 “Modularity maximization and SBM inference are equivalent
methods.”

As we have discussed in Sec. 2.5, it is possible to interpret any community
detection algorithm as the inference of some generative model. Because of this,
the mere fact that an equivalence with an inferential approach exists cannot
be used to justify the inferential use of a descriptive method, or to use it as a
criterion to distinguish between approaches that are statistically principled or
not. To this aim, we need to ask instead whether the modelling assumptions
that are implicit in the descriptive approach can be meaningfully justified, and
whether they can be used to consistently infer structures from networks.
Some recent works have detailed some specific equivalences of modularity

maximization with statistical inference [70, 71]. As we will discuss in this sec-
tion, these equivalences are far more limited than commonly interpreted. They
serve mostly to understand in more detail the reasons why modularity maxi-
mization fails as a reliable method, but do not prevent it from failing — they
expose more clearly its sins, but offer no redemption.
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We start with a very interesting connection revealed by Zhang and
Moore [70] between the effective posterior distribution we obtain when using
the modularity function as a Hamiltonian,

P(bbb|AAA) = e βEQ(AAA,bbb)

Z(AAA) , (17)

and the posterior distribution of the strictly assortative DC-SBM, which we
refer here as the degree-corrected planted partition model (DC-PP),

P(bbb|AAA,ωin,ωout,θ) =
P(AAA|ωin,ωout,θ,bbb)P(bbb)

P(AAA|ωin,ωout,θ)
, (18)

which has a likelihood given by

P(AAA|ωin,ωout,θ,bbb) =
∏
i<j

e−ωbi ,bj θiθj
(
ωbi ,bjθiθj

)Aij
Aij!

, (19)

where

ωrs = ωinδrs + ωout(1 − δrs). (20)

This model assumes that there are constant rates ωin and ωout controlling the
number of edges that connect to nodes of the same and different communities,
respectively. In addition, each node has its own propensity θi, which determines
the relative probability it has of receiving an edge, such that nodes inside the
same community are allowed to have very different degrees. This is a far more
restrictive version of the full DC-SBM we considered before, since it not only
assumes assortativity as the only mixing pattern, but also that all communities
share the same rate ωin, which imposes a rather unrealistic similarity between
the different groups.
Before continuing, it is important to emphasize that the posterior of Eq. 18

corresponds to the situation where the number of communities and all param-
eters of the model, except the partition itself, are known a priori. This does
not correspond to any typical empirical setting where community detection
is employed, since we do not often have such detailed information about the
community structure, and in fact no good reason to even use this particular
parametrization to begin with. The equivalences that we are about to con-
sider apply only in very idealized scenarios, and are not expected to hold in
practice.
Taking the logarithm of both sides of Eq. 19, and ignoring constant terms

with respect to the model parameters we have
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lnP(AAA|ωin,ωout,θ,bbb) =
(
ln
ωin
ωout

) [∑
i<j

(
Aij −

ωin − ωout
ln(ωin/ωout)

θiθj

)
δbi ,bj

]
+∑

i<j

[
Aij ln(θiθjωout) − θiθjωout

]
. (21)

Therefore, ignoring additive terms that do not depend on bbb (since they become
irrelevant after normalization in Eq. 17) and making the arbitrary choices (we
will inspect these in detail soon),

β = ln
ωin
ωout
,

ln(ωin/ωout)
ωin − ωout

= 2E, θi = ki, (22)

we obtain the equivalence,

lnP(AAA|ωin,ωout,θ,bbb) = βEQ(AAA,bbb), (23)

allowing us to equate Eqs. 17 and 18 (there is a methodological problem with
the choice θi = ki, as we will see later, but we will ignore this for the time
being). Therefore, for particular choices of the model parameters, one recov-
ers modularity optimization from the maximum likelihood estimation of the
DC-PP model with respect to bbb. Indeed, this allows us to understand more
clearly what implicit assumptions go behind using modularity for inferential
aims. For example, besides making very specific prior assumptions about the
model parameters ωin, ωout and θ, this posterior also assumes that all partitions
are equally likely a priori,

P(bbb) ∝ 1. (24)

We can in fact write this uniform prior more precisely as

P(bbb) =
[ N∑
B=1

{
N
B

}
B!

]−1
, (25)

where
{N
B
}
B! is the number of labelled partitions of a set N into B groups. This

number reaches a maximum at B ≈ 0.72×N, and decays fast from there, mean-
ing that such a uniform prior is in fact very concentrated on a very large number
of groups — partially explaining the tendency of the modularity posterior to
overfit. Let us examine now the prior assumption

ln(ωin/ωout)
ωin − ωout

= 2E. (26)

For any value of E, Eq. (26) admits many solutions. However, not all of them
are consistent with the expected number of edges in the network according to
the DC-PP model. Assuming, for simplicity, that all B groups have the same
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Figure 9 Using modularity maximization is equivalent to performing a
maximum likelihood estimate of the DC-PP model with very specific

parameter choices, that depend on the number of edges E in the network and
the number of communities B. In (a) we show the valid choices of ωin and
ωout obtained when the solid and dashed lines cross, corresponding

respectively to Eqs. 26 and 28, where we can see that for B = 2 no solution is
possible where the expected modularity is positive. In (b) we show the two
possible values for the expected modularity that are consistent with the
implicit model assumptions, as a function of the number of groups.

size N/B, and that all nodes have the same degree 2E/N, then the expected
number of edges according to the assumed DC-PP model is given by

2⟨E⟩ = (2E)2
(
ωin
B
+
ωout(B − 1)

B

)
. (27)

Equating the expected with the observed value, ⟨E⟩ = E, leads to

ωin + ωout(B − 1) = B
2E
. (28)

Combining Eqs. 26 and 28 gives us at most only two values ofωin andωout that
are compatible with the expected density of the network and the modularity
interpretation of the likelihood, as seen in Fig. 9(a), and therefore only two
possible values for the expected modularity, computed as

⟨Q⟩ = 1
B
(2Eωin − 1) . (29)

One possible solution is always ωin = ωout = 1/2E, which leads to ⟨Q⟩ = 0.
The other solution is only possible for Q > 2, and yields a specific expected
value of modularity which approaches ⟨Q⟩ → 1 as B increases (see Fig. 9(b)).
This yields an implausibly narrow range for the consistency of modularity
maximization with the inference of the DC-PP model. The bias towards larger
values of Q(AAA,bbb) as the number of groups increases is not an inherent property
of the DC-PP model, as it accommodates any expected value of modularity by
properly choosing its parameters. Instead, this is an arbitrary implicit assump-
tion baked in Q(AAA,bbb), which further explains why maximizing it will tend to
find many groups even on random networks.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


Elements in the Structure and Dynamics of Complex Networks 33

In a later work [71], Newman relaxed the above connection with modularity
by using instead its generalized version [72, 73],

Q(AAA,bbb, γ) = 1
2E

∑
ij

(
Aij − γ

kikj
2E

)
δbi ,bj, (30)

where γ is the so-called “resolution” parameter. With this additional parameter,
we have more freedom about the implicit assumptions of the DC-PP model.
Newman in fact showed that if we make the choices,

β = ln
ωin
ωout
, γ =

ωin − ωout
ln(ωin/ωout)

, θi =
ki√
2E
, (31)

then we recover the Gibbs distribution with the generalized modularity from
the DC-PP likelihood of Eq. 19. Due to the independent parameter γ, now the
assumed values of ωin and ωout are no longer constrained by E alone, and can
take any value. Therefore, if we knew the correct value of themodel parameters,
we could use them to choose the appropriate value of γ and hence maximize
Q(AAA,bbb, γ), yielding the same answer as maximizing lnP(AAA|ωin,ωout,θ,bbb) with
the same parameters.
There are, however, serious problems remaining that prevent this equiva-

lence from being true in general, or in fact even typically. For the equivalence
to hold, we need the number of groups B and all parameters to be known a
priori and to be equal to Eq. 31. However, the choice θi = ki/

√
2E involves

information about the observed network, namely the actual degrees seen— and
therefore is not just a prior assumption, but one done a posteriori, and hence
needs to be justified via a consistent estimation that respects the likelihood prin-
ciple. When we perform a maximum likelihood estimate of the parametersωin,
ωout, and θ, we obtain the following system of nonlinear equations [24],

ω∗
in =

2ein∑
r θ̂

2
r

(32)

ω∗
out =

eout∑
r<s θ̂rθ̂s

(33)

θ∗i = ki

[
2einθ̂bi∑

r θ̂
2
r
+
eout

∑
r,bi θ̂r∑

r<s θ̂rθ̂s

]−1
, (34)

where ein =
∑

i<j Aijδbi ,bj , eout =
∑

i<j Aij(1 − δbi ,bj ), and θ̂r =
∑

i θ
∗
i δbi ,r. This

system (Eqs. (32), (33), and (34)) admits θ∗i = ki/
√
2E as a solution only if the

following condition is met for every group r:∑
i
kiδbi ,r =

2E
B
. (35)
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Figure 10 Generalized modularity and the DC-PP model are only equivalent
if the symmetry of Eq. 35 is preserved. Here we consider an instance of the

DC-PP model with ωin = 2Ec/N, ωout = 2E(1 − c)/∑r,s
√nrns, and

θi = 1/√nbi , where nr is the number of nodes in group r. The parameter
c ∈ [0,1] controls the degree of assortativity. For non-uniform group sizes, the
symmetry of Eq. 35 is not preserved with this choice of parameters. We use
the parametrization nr = Nαr−1(1 − α)/(1 − αB), where α > 0 controls the

group size heterogeneity. When employing generalized modularity, we choose
the closest possible parameter choice with ωin = 2Ec/(∑r e2r/2E) and

ωout = 2E(1 − c)/(2E − ∑
r e2r/2E), where er =

∑
i kiδbi ,r. In (a) we show the

inference results for the uniform case with α→ 1, where both approaches are
identical, performing equally well all the way down to the detectability

threshold [6] (vertical line). In (b) we show the result with α = 2, which leads
to unequal group sizes, causing the behavior between both approaches to
diverge. In all cases we consider averages over 5 networks with N = 104

nodes, average degree 2E/N = 3, and B = 10 groups.

In other words, the sum of degrees inside each groupmust be the same for every
group. Note also that the expected degrees according to the DC-PP model will
be inconsistent with Eq. 31 if the condition in Eq. (35) is not met, i.e.

⟨ki⟩ = θi

[
ωin

∑
j
θjδbi ,bj + ωout

∑
j
θj(1 − δbi ,bj )

]
. (36)

Substituting θi = ki/
√
2E in the above equation will yield in general ⟨ki⟩ , ki,

as long as Eq. 35 is not fulfilled, regardless of how we choose ωin and ωout.
Framing it differently, for any choice of ωin, ωout and θ such that the

sums
∑

i θiδbi ,r are not identical for every group r, the DC-SBM likelihood
lnP(AAA|ωin,ωout,θ,bbb) is not captured byQ(AAA,bbb, γ) for any value of γ, and there-
fore maximizing both functions will not yield the same results. That is, the
equivalence is only valid for special cases of the model and data. We show in
Fig. 10 an example of an instance of the DC-PP model where the generalized
modularity yields results which are inconsistent with using likelihood of the
DC-PP model directly.
Because of the above caveats, we have to treat the claimed equivalence with

a grain of salt. In general there are only three scenarios we may consider when
analysing a network:
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1. We know that the network has been sampled from the DC-PP model, as well
as the correct number of groups B and the values of the parametersωin,ωout,
and θ, and the following symmetry exists:∑

i
θiδbi ,r = C, (37)

where C is a constant.
2. Like the first case, but where the symmetry of Eq. 37 does not exist.
3. Every other situation.

Cases 1 and 2 are highly idealized and are not expected to be encountered in
practice, which almost always falls in case 3. Nevertheless, the equivalence
between the DC-PP model and generalized modularity is only valid in case 1.
In case 2, as we already discussed, the use of generalized modularity will be
equivalent to some generative model — as all methods are— but which cannot
be expressed within the DC-PP parametrization.
Because of the above problems, the relevance of this partial equivalence

between these approaches in practical scenarios is arguably dubious. It serves
only to demonstrate how the implicit assumptions behind modularity maximi-
zation are hard to justify.
We emphasize also the obvious fact that even if the equivalence with the

DC-PP model were to hold more broadly, this would not make the patholog-
ical behavior of modularity described in Sec. 3 disappear. Instead, it would
only show that this particular inferential method would also be pathological.
In fact, it is well understood that maximum likelihood is not in general an
appropriate inferential approach for models with an arbitrarily large number
of degrees of freedom, since it lacks the regularization properties of Bayesian
methods [5], such as the one we described in Sec. 2.2, where instead of con-
sidering point estimates of the parameters, we integrate over all possibilities,
weighted according to their prior probability. In this way, it is possible to infer
the number of communities, instead of assuming it a priori, together with all
other model parameters. In fact, when such a Bayesian approach is employed
for the DC-PP model, one obtains the following marginal likelihood [24],

P(AAA|bbb) =
∫

P(AAA|ωin,ωout,θ,bbb)P(ωin)P(ωout)P(θ |bbb) dωindωoutdθ (38)

=
ein!eout!( B

2
)ein (

B
2

)eout
(E+1)1−δB,1

∏
r

(nr−1)!
(er+nr−1)!

×
∏

i ki!∏
i<j Aij!

∏
i Aii!!

,

(39)
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where ein =
∑

i<j Aijδbi ,bj and eout = E − ein. As demonstrated in Ref. [24],
this approach allows us to detect purely assortative community structures in a
nonparametric way, in a manner that prevents both overfitting and underfitting
— i.e. the resolution limit vanishes since we inherently consider every possible
value of the parameters ωin and ωout — thus lifting two major limitations of
modularity. Note also that Eq. 39 (or its logarithm) does not bear any direct
resemblance to the modularity function, and therefore it does not seem possible
to reproduce its behavior via a simple modification of the latter.18

We also mention briefly a result obtained by Bickel and Chen [74], which
states that modularity maximization can consistently identify the community
assignments of networks generated by the SBM in the dense limit. This limit
corresponds to networks where the average number of neighbors is comparable
to the total number of nodes. In this situation, the community detection problem
becomes substantially easier, and many algorithms, including e.g. unregular-
ized spectral clustering, can do just as well as modularity maximization. This
result tells us more about how easy it is to find communities in dense networks
than about the quality of the algorithms compared. The dense scenario does not
represent well the difficulty of finding communities in real networks, which
are overwhelmingly sparse, with an average degree much smaller than the total
number of nodes. In the sparse case, likelihood-based inferential approaches
are optimal and outperform modularity [6, 74]. Comparable equivalences have
also been encountered with spectral methods [75], but they also rely on par-
ticular realizations of the community detection problem, and do not hold in
general.
In short, if the objective is to infer the DC-PP model, there is no reason

to do it via the maximization of Q(AAA,bbb, γ), nor is it in general equivalent to
any consistent inference approach such as maximum likelihood or Bayesian
posterior inference. Even in the unlikely case where the true number of com-
munities is known, the implicit assumptions of modularity correspond to the
DC-PP model not only with uniform probabilities between communities but
also uniform sums of degrees for every community. If these properties are not
present in the network, the method offers no inherent diagnostic, and will find
spurious structures that tend to match it, regardless of their statistical signifi-
cance. Combined with the overall lack of regularization, these features render
the method substantially prone to distortion and overfitting. Ultimately, the use
of any form of modularity maximization fails the litmus test we considered
earlier, and should be considered a purely descriptive community detection

18 There is also no need to “fix” modularity. We can simply use Eq. 39 in its place for most
algorithms, which incurs almost no additional computational overhead.
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method. Whenever the objective is to understand network structure, it needs
to be replaced with a flexible and robust inferential procedure.

4.2 “Consensus clustering can eliminate overfitting.”
As mentioned in Sec. 3, methods like modularity maximization tend to have a
degenerate solution landscape. One strategy proposed to tackle this problem is
to obtain a consensus clustering, i.e. leverage the entire landscape of solutions
to produce a single partition that points in a cohesive direction, representa-
tive of the whole ensemble [63, 76, 77]. If no cohesive direction exists, one
could then conclude that no actual community structure exists, and therefore
solve the overfitting problem of finding communities in maximally random
networks. In reality, however, a descriptive community detection method can
in fact display a cohesive set of solutions on a maximally random network. We
demonstrate this in Fig. 11 which shows the consensus between 105 different
maximum modularity solutions for a small random network, using the method
of Ref. [26] to obtain the consensus. Although we can notice a significant var-
iability between the different partitions, there is also substantial agreement. In
particular, there is no clear indication from the consensus that the underlying
network is maximally random. The reason for this that the randomness of the
network is quenched, and does indeed point to a specific community structure
with the highest modularity. The ideas of solution heterogeneity and overfitting
are, in general, orthogonal concepts.
With care, it is possible to probe the solution landscape in a manner that

reveals a signal of the randomness of the underlying network. For this purpose,
some authors have proposed that instead of finding the maximum modularity
partition, one instead samples them from theGibbs distribution [70, 76, 78, 79],

P(bbb) = e βQ(AAA,bbb)

Z(AAA) , (40)

with normalization Z(AAA) = ∑
bbb e βQ(AAA,bbb), effectively considering Q(AAA,bbb) as the

Hamiltonian of a spin system with an inverse temperature parameter β. For a
sufficiently large random network, there is a particular value β = β∗, below
which samples from the distribution become uncorrelated, forming a lack of
consensus [70]. There is a problem, however: there is no guarantee that if a
lack of consensus exists for β < β∗, then the network must be random; only
the reverse is true. In general, while statements can be made about the behav-
ior of the modularity landscape for maximally random and sufficiently large
networks, or even for networks sampled from a SBM, very little can be said
about its behavior on real, finite networks. Since real networks are likely to
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38 Descriptive vs. Inferential Community Detection in Networks

Figure 11 Consensus clustering of a maximally random network, sampled
from the Erdő-Rényi model, that combines 105 solutions of the maximum

modularity method. On each node there is a pie chart describing the
frequencies with which it was observed in a given community, obtained using
the approach described in Ref. [26]. Despite the lack of latent communities,

there is a substantial agreement between the different answers.

contain a heterogeneousmixture of randomness and structure (e.g. as illustrated
in Fig. 7(c)) this kind of approach becomes ultimately unreliable. One funda-
mental problem here is that these approaches attempt to reach an inferential
conclusion (“is the network sampled from a random model?”) without fully
going through Bayes’ formula of Eq. 1, and reasoning about model assump-
tions, prior information and compressibility. We currently lack a principled
methodology to reach such a conclusion while avoiding these crucial steps.
Another aspect of the relationship between consensus clustering and over-

fitting is worth mentioning. In an inferential setting, if we wish to obtain an
estimator for the true partition b̂bb, this will in general depend on how we evalu-
ate its accuracy. In other words, we must define an error function ε(bbb′,bbb) such
that

bbb = argmin
bbb′

ε(bbb′,bbb). (41)
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Based on this, our best possible estimate is the onewhichminimizes the average
error over the entire posterior distribution,

b̂bb = argmin
bbb′

∑
bbb
ε(bbb′,bbb)P(bbb|AAA). (42)

Note that in general this estimator will be different from the most likely
partition, i.e.

b̂bb , argmax
bbb

P(bbb|AAA). (43)

The optimal estimator b̂bb will indeed correspond to a consensus over all possi-
ble partitions, weighted according to their plausibility. In situations where the
posterior distribution is concentrated on a single partition, both estimators will
coincide. Otherwise, the most likely partition might in fact be less accurate and
incorporate more noise than the consensus estimator, which might be seen as a
form of overfitting. This kind of overfitting is of a different nature than the one
we have considered so far, since it amounts to a residual loss of accuracy, where
an (often small) fraction of the nodes end up incorrectly classified, instead of
spurious groups being identified. However, there are many caveats to this kind
of analysis. First, it will be sensitive to the error function chosen, which needs
to be carefully justified. Second, there might be no cohesive consensus, in situ-
ations where the posterior distribution is composed of several distinct “modes,”
each corresponding to a different hypothesis for the network. In such a situation
the consensus between themmight be unrepresentative of the ensemble of solu-
tions. There are principled approaches to deal with this problem, as described
in Refs. [26, 80].

4.3 “Overfitting can be tackled by doing a statistical significance
test of the quality function.”

Sometimes practitioners are aware that non-inferential methods like modular-
ity maximization can find communities in random networks. In an attempt to
extract an inferential conclusion from their results, they compare the value of
the quality function with a randomized version of the network — and if a sig-
nificant discrepancy is found, they conclude that the community structure is
statistically meaningful [78]. Unfortunately, this approach is as fundamentally
flawed as it is straightforward to implement.
The reason why the test fails is because in reality it answers a question that

is different from the one intended. When we compare the value of the qual-
ity function obtained from a network and its randomized counterpart, we can
use this information to answer only the following question: “Can we reject the
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hypothesis that the observed network was sampled from a random null model?”
No other information can be obtained from this test, including whether the
network partitionwe obtained is significant. All we can determine is if the opti-
mized value of the quality function is significant or not. The distinction between
the significance of the quality function value and the network partition itself is
subtle but crucial.
We illustrate the above difference with an example in Fig. 12(b). This

network is created by starting with a maximally random Erdős-Rényi (ER) net-
work, and adding to it a few more edges so that it has an embedded clique of
six nodes. The occurrence of such a clique from an ER model is very unlikely,
so if we perform a statistical test on this network that is powerful enough, we
should be able to rule out that it came from the ER model with good confi-
dence. Indeed, if we use the value of maximum modularity for this test, and
compare with the values obtained for the ER model with the name number of
nodes and edges (see Fig. 12(a)), we are able to reach the correct conclusion
that the null model should be rejected, since the optimized value of modularity
is significantly higher for the observed network. Should we conclude there-
fore that the communities found in the network are significant? If we inspect
Fig. 12(b), we see that the maximum value of modularity indeed corresponds
to a more-or-less decent detection of the planted clique. However, it also finds
another seven completely spurious communities in the random part of the net-
work. What is happening is clear — the planted clique is enough to increase
the value of Q such that it becomes a suitable test to reject the null model,19

but the test is not able to determine that the communities themselves are sta-
tistically meaningful. In short, the statement “the value of Q is significant” is
not synonymous with “the network partition is significant.” Conflating the two
will lead to the wrong conclusion about the significance of the communities
uncovered.
In Fig. 12(c) we show the result of a more appropriate inferential approach,

based on the SBM as described in Sec. 2.3, that attempts to answer a much
more relevant question: “which partition of the network into groups is more
likely?” The result is able to cleanly separate the planted clique from the rest
of the network, which is grouped into a single community.
This example also shows how the task of rejecting a null model is very

oblique to Bayesian inference of generative models. The former attempts to
determine what the network is not, while the latter what it is. The first task

19 Note that it is possible to construct alternative examples, where instead of planting a clique,
we introduce the placement of triangles, or other features that are known to increase the value
of modularity, but that do not correspond to an actual community structure [81].
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Figure 12 The statistical significance of the maximum modularity value is
not informative of the significance of the community structure. In (a) we

show the distribution of optimized values of modularity for networks sampled
from the Erdős-Rényi (ER) model with the same number of nodes and edges

as the network shown in (b) and (c). The vertical line shows the value
obtained for the partition shown in (b), indicating that the network is very
unlikely to have been sampled from the ER model (P = 0.002). However,
what sets this network apart from typical samples is the existence of a small
clique of six nodes that would not occur in the ER model. The remaining

communities found in (b) are entirely meaningless. In (c) we show the result
of inferring the SBM on this network, which perfectly identifies the planted

clique without overfitting the rest of the network.

tends to be easy — we usually do not need very sophisticated approaches to
determine that our data did not come from a null model, specially if our data is
complex. On the other hand, the second task is far more revealing, constructive,
and arguably more useful in general.
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4.4 “Setting the resolution parameter of modularity
maximization can remove the resolution limit.”

The resolution limit of the generalized modularity of Eq. 30 is such that, in
a connected network, no more than

√
γ2E communities can be found, with γ

being the resolution parameter [72, 73]. Therefore, by changing the value of
γ, we can induce the discovery of modules of arbitrary size, at least in prin-
ciple. However, there are several underlying problems with tuning the value
of γ for the purpose of counter-acting the resolution limit. The first is that it
requires a specific prior knowledge about what would be the relevant scale for
a particular network — which is typically unavailable — turning an otherwise
nonparametric approach into one which is parametric.20 The second problem
is even more serious: In many cases no single value of γ is appropriate. This
happens because, as we have seen in Sec. 4.1, generalized modularity comes
with the built-in assumption that the sum of degrees of every group should be
the same. The preservation of this homogeneity means that when the network
is composed of communities of different sizes, either the smaller ones will be
merged together or the bigger ones will be split into smaller ones, regardless
of the statistical evidence [82]. We show a simple example of this in Fig. 13,
where no value of γ can be used to recover the correct partition.
However, the most important problem with the analysis of the resolution

limit in the context of modularity maximization is that it is often discussed in
a manner that is largely decoupled from the issue of statistical significance.
Since we can interpret a limit on the maximum number of groups as type
of systematic underfitting, we can only meaningfully discuss the removal of
this limitation if we also do not introduce a tendency to overfit, i.e. find more
groups than justifiable by statistical evidence. This is precisely the problem
with “mutliresolution” approaches [83], or analyses of quality functions other
than modularity [84], that claim a reduced or a lack of resolution limit, but
without providing a robustness against overfitting. This one-sided evaluation
is fundamentally incomplete, as we may end up trading one serious limitation
for another.
Methods based on the Bayesian inference of the SBM can tackle the issue of

over- and underfitting, as well as preferred sizes of communities at the source.
As was shown in Ref. [85], a uninformative assumption about the mixing pat-
terns between groups leads naturally to a resolution limit similar to the one

20 We emphasize that the maximum likelihood approach proposed in Ref. [71] to determine γ,
even ignoring the caveats discussed in Sec. 4.1 that render it invalid unless very specific con-
ditions are met, is only applicable for situations when the number of groups is known, directly
undermining its use to counteract the resolution limit.
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Figure 13 Modularity maximization imposes characteristic community sizes
in a manner that hides heterogeneity. Panel (a) shows the overlap between the
true and obtained partition for the network described in Fig. 7, as a function of
the resolution parameter γ. Panels (b) to (e) show the partitions found for
different values of γ, where we see that as smaller groups are uncovered,

bigger ones are spuriously split. The result is that no value of γ allows the true
communities to be uncovered.

existing for modularity, where no more than O(
√
N) groups can be inferred

for sparse networks. However, since in an inferential context our assumptions
are made explicitly, we can analyse them more easily and come up with more
appropriate choices. In Ref. [67] it was shown how replacing the noninforma-
tive assumption by a Bayesian hierarchical model can essentially remove the
resolution limit, with a maximum number of groups scaling as O(N/logN).
That model is still unbiased with respect to the expected mixing patterns, and
incorporates only the assumption that the patterns themselves are generated by
another SBM, with its own patterns generated by yet another SBM, and so on
recursively. Another model that has also been shown to be free of the resolu-
tion limit is the assortative SBM of Ref. [24]. Importantly, in both these cases
the removal of the resolution limit is achieved without sacrificing the capacity
of the method to avoid overfitting — e.g. none of these approaches will find
spurious groups in random networks.
The issue with preferred group sizes can also be tackled in a principled way

in an inferential setting. As demonstrated in Ref. [16], we can also design
Bayesian prior hierarchies where the group size distribution is chosen in a non-
informative manner, before the partition itself is determined. This results in
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an inference method that is by design agnostic with respect to the distribution
of group sizes, and will not prefer any of them in particular. Such a method
can then be safely employed on networks with heterogeneous group sizes in
an unbiased manner. In Fig. 7(d) we show how such an approach can easily
infer groups of different sizes for the same example of Fig. 13, in a completely
nonparametric manner.

4.5 “Modularity maximization can be fixed by replacing the null
model.”

Several variations of the method of modularity maximization have been pro-
posed, where instead of the configuration model, another null model is used,
in a manner that makes the method applicable in various scenarios, e.g. with
bipartite networks [86], correlation matrices [87], signed edge weights [88],
networks embedded in euclidean spaces [89], to name a few. While the choice
of null model has an important effect on what kind of structures are uncovered,
its choice does not address any of the statistical shortcomings of modularity that
we consider here. In general, just like it happens for the configuration model,
the approach will find spurious communities in networks sampled from its null
model, regardless of how it is chosen. As as discussed in Sec. 3, this happens
because the measured deviation does not account for the optimization proce-
dure employed. Any method based on optimizing the modularity score will
amount to a data dredging procedure, independently of the null model chosen,
and are thus unsuitable for inferential aims.

4.6 “Descriptive approaches are good enough when the
community structure is obvious.”

A common argument goes that, sometimes, the community structure of a net-
work is so “obvious” that it will survive whatever abuse we direct at it, and
it will be uncovered by a majority of community detection methods that we
employ. Therefore, if we are confident that our network contains a clear signal
of its community structure, specially if several algorithms substantially agree
with each other, or they agree with metadata, then it does not matter very much
which algorithm we use.
There are several problems with this argument. First, if an “obvious”

structure exists, it does not necessarily mean that it is really meaningful, or sta-
tistically significant. If ten algorithms overfit, and one does not, the majority
vote is incorrect, and we should prefer the minority opinion. This is precisely
the case we considered in Fig. 2, where virtually any descriptive method would
uncover the same 13 communities — thus overfitting the network — while an
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inferential approach would not. And if a method agrees with metadata, while
another finds further structure not in agreement, what is to say that this struc-
ture is not really there? (Metadata are not “ground truth,” they are only more
data [90–92], and hence can have its own complex, incomplete, noisy, or even
irrelevant relationship with the network.)
Secondly, and even more importantly, how do we even define what is an

“obvious” community structure? In general, networks are not low dimensional
objects, and we lack methods to inspect their structure directly, a fact which
largely motivates community detection in the first place. Positing that we can
just immediately determine community structure largely undermines this fact.
Often, structure which is deemed “obvious” at first glance, ceases to be so
upon closer inspection. For example, one can find claims in the literature that
different connected components must “obviously” correspond to different com-
munities. However, maximally random graphs can end up disconnected if they
are sufficiently sparse, which means that from an inferential point of view
different components can belong to the same community.
Another problem is that analyses of community detection results rely fre-

quently on visual inspections of graphical network layouts, where one tries to
evaluate if the community labels agree with the position of the nodes. However,
the positioning of the nodes and edges is not inherent to the network itself, and
needs to be obtained with some graph drawing algorithm. A typical example
are the so-called “spring-block” or “force-directed” layouts, where one consid-
ers attractive forces between nodes connected by an edge (like a spring) and an
overall repulsive force between all nodes [93]. The final layout is then obtained
by minimizing the energy of the system, resulting in edges that have similar
length and as few crossings between edges as possible (e.g. in Fig. 1 we used
the algorithm of Ref. [93]). This kind of drawing in itself can be seen as a type
of indirect descriptive community detection method, since nodes belonging to
the same assortative community will tend to be placed close to each other [94].
Based on this observation, when we say that we “see” the communities in a
drawing like in Fig. 1, we are in reality only seeing what the layout algorithm
is telling us. Therefore, we should always be careful when comparing the results
we get with a community detection algorithm to the structure we see in these
layouts, because there is no reason to assume that the layout algorithm itself is
doing a better job than the clustering algorithmwe are evaluating.21 In fact, this

21 Indeed, if we inspect Fig. 11, which shows the consensus clustering of a maximally random
network, we notice that nodes that are classified in the same community end up close together
in the drawing, i.e. the layout algorithm also agrees with the modularity consensus. Therefore,
it should not be used as a “confirmation” of the structure any more than the result of any other
community detection algorithm, since it is also overfitting from an inferential perspective.
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is often not the case, since the actual community structures in many networks
do not necessarily have a sufficiently low-dimensional representation that is
required for this kind of visualization to be effective.

4.7 “The no-free-lunch theorem means that every community
detection method is equally good.”

For a wide class of optimization and learning problems there exist so-called
“no-free-lunch” (NFL) theorems, which broadly state that when averaged
over all possible problem instances, all algorithms show equivalent perfor-
mance [95–97]. Peel et al [92] have proved that this is also valid for the problem
of community detection, meaning that no single method can perform system-
atically better than any other, when averaged over all community detection
problems. This has been occasionally interpreted as a reason to reject the claim
that we should systematically prefer certain classes of algorithms over others.
This is, however, a misinterpretation of the theorem, as we will now discuss.
The NFL theorem for community detection is easy to state. Let us consider

a generic deterministic community detection algorithm indexed by f, defined
by the function b̂bbf (AAA), which ascribes a single partition to a network AAA. Peel
et al [92] consider an instance of the community detection problem to be an
arbitrary pair (AAA,bbb) composed of a network AAA and the correct partition bbb that
one wants to find from AAA. We can evaluate the accuracy of the algorithm f via
an error (or “loss”) function

ε(bbb, b̂bbf (AAA)), (44)

which should take the smallest possible value if b̂bbf (AAA) = bbb. If the error function
does not have an inherent preference for any partition (it’s “homogeneous”),
then the NFL theorem states [92, 96]∑

(AAA,bbb)
ε(bbb, b̂bbf (AAA)) = Λ(ε), (45)

whereΛ(ε) is a value that depends only on the error function chosen, but not on
the community detection algorithm f. In other words, when averaged over all
problem instances, all algorithms have the same accuracy. This implies, there-
fore, that in order for one class of algorithms to perform systematically better
than another, we need to restrict the universe of problems to a particular sub-
set. This is a seemingly straightforward result, but which is unfortunately very
susceptible to misinterpretation and overstatement.
A common criticism of this kind of NFL theorem is that it is a poor represen-

tation of the typical problems we may encounter in real domains of application,
which are unlikely to be uniformly distributed across the entire problem space.
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Therefore, as soon as we constrain ourselves to a subset of problems that
are relevant to a particular domain, then this will favor some algorithms over
others — but then no algorithm will be superior for all domains. But since we
are typically only interested in some domains, theNFL theorem is then arguably
“theoretically sound, but practically irrelevant” [98]. Although indeed correct,
in the case of community detection this logic is arguably an understatement.
This is because as soon as we restrict our domain to community detection prob-
lems that reveal something informative about the network structure, then we are
out of reach of the NFL theorem, and some algorithms will do better than oth-
ers, without evoking any particular domain of application. We demonstrate this
in the following.
The framework of the NFL theorem of Ref. [92] operates on a liberal notion

of what constitutes a community detection problem and its solution, which
means for an arbitrary pair (AAA,bbb) choosing the right f such that b̂bbf (AAA) = bbb. Under
this framework, algorithms are just arbitrary mappings from network to parti-
tion, and there is no necessity to articulate more specifically how they relate to
the structure of the network — community detection just becomes an arbitrary
game of “guess the hidden node labels.” This contrasts with how actual com-
munity detection algorithms are proposed, which attempt to match the node
partitions to patterns in the network, e.g. assortativity, general connection pref-
erences between groups, etc. Although the large variety of algorithms proposed
for this task already reveal a lack of consensus on how to precisely define it, few
would consider it meaningful to leave the class of community detection prob-
lems so wide open as to accept any matching between an arbitrary network and
an arbitrary partition as a valid instance.
Even though we can accommodate any (deterministic) algorithm deemed

valid according to any criterion under the NFL framework, most algorithms in
this broader class do something else altogether. In fact, the absolute vast major-
ity of them correspond to a maximally random matching between network and
partition, which amounts to little more than just randomly guessing a partition
for any given network, i.e. they return widely different partitions for inputs that
are very similar, and overall point to no correlation between input and output.22

22 An interesting exercise is to count how many such algorithms exist. A given community
detection algorithm f needs to map each of all Ω(N) = 2(

N
2) networks of N nodes to one of

Ξ(N) = ∑N
B=1

{N
B
}
B! labeled partitions of its nodes. Therefore, if we restrict ourselves to a

single value of N, the total number of input-output tables is Ξ(N)Ω(N). If we sample one such
table uniformly at random, it will be asymptotically impossible to compress it using fewer than
Ω(N) log2 Ξ(N) bits — a number that grows super-exponentially with N. As an illustration, a
random community detection algorithm that works only with N = 100 nodes would already
need 101479 terabytes of storage. Therefore, simply considering algorithms that humans can
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It is not difficult to accept that these random algorithms perform equally “well”
for any particular problem, or even all problems, but the NFL theorem says that
they have equivalent performance even to algorithms that we may deem more
meaningful. How do we make a formal distinction between algorithms that are
just randomly guessing from those that are doing something coherent and trying
to discover actual network patterns? As it turns out, there is an answer to this
question that does not depend on particular domains of application: we require
the solutions found to be structured and compressive of the network.
In order to interpret the statement of the NFL theorem in this vein, it is useful

to re-write Eq. 45 using an equivalent probabilistic language,∑
AAA,bbb

P(AAA,bbb)ε(bbb, b̂bbf (AAA)) = Λ′(ε), (46)

where Λ′(ε) ∝ Λ(ε), and P(AAA,bbb) ∝ 1 is the uniform probability of encounter-
ing a problem instance. When writing the theorem statement in this way, we
notice immediately that instead of being agnostic about problem instances, it
implies a very specific network generative model, which assumes a complete
independence between network and partition. Namely, if we restrict ourselves
to networks of N nodes, we have then:23

P(AAA,bbb) = P(AAA)P(bbb), (47)

P(AAA) = 2−(
N
2), (48)

P(bbb) =
[ N∑
B=1

{
N
B

}
B!

]−1
. (49)

Therefore, the NFL theorem states simply that if we sample networks and parti-
tions from a maximally random generative model, then all algorithms will have
the same average accuracy at inferring the partition from the network. This is
hardly a spectacular result — indeed the Bayes-optimal algorithm in this case,
i.e. the one derived from the posterior distribution of the true generative model
and which guarantees the best accuracy on average, consists of simply guessing
partitions uniformly at random, ignoring the network structure altogether.
The probabilistic interpretation reveals that the NFL theorem involves a very

specific assumption about what kind of community detection problem we are
expecting. It is important to remember that it is not possible to make “no

write and use (together with their expected inputs and outputs) already pulls us very far away
from the general scenario considered by the NFL theorem.

23 We could easily introduce arbitrary constraints such as total number of edges or degree
distribution, which would change the form of Eqs. 47 and 48, but none of the ensuing analysis.
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assumption” about a problem; we are always forced to make some assump-
tion, which even if implicit is not exempted from justification, and the uniform
assumption of Eqs. 47 to 49 is no exception. In Fig. 14(a) we show a typi-
cal sample from this ensemble of community detection problems. In a very
concrete sense, we can state that such problem instances are unstructured and
contain no learnable community structure, or in fact no learnable network struc-
ture at all. We say that a community structure is (in principle) learnable if the
knowledge of the partition bbb can be used to compress the network AAA, i.e. there
exists an encoding H (i.e. a generative model) such that

Σ(AAA|bbb,H ) < − log2 P(AAA), (50)

<

(
N
2

)
, (51)

where Σ(AAA|bbb,H ) = − log2 P(AAA|bbb,H ) is the description length of AAA accord-
ing to model H, conditioned on the partition being known. However, it is a
direct consequence of Shannon’s source coding theorem [21, 29], that for the
vast majority of networks sampled from the model of Eq. 47 the inequality in
Eqs. (50) and (51) cannot be fulfilled as N → ∞, i.e. the networks are incom-
pressible.24 This means that the true partition bbb carries no information about
the network structure, and vice versa, i.e. the partition is not learnable from
the network. In view of this, the common interpretation of the NFL theorem as
“all algorithms perform equally well” is in fact quite misleading, and should be
more accurately phrased as “all algorithms perform equally poorly,” since no
inferential algorithm can uncover the true community structure inmost cases, at
least no better than by chance alone. In other words, the universe of community
detection problems considered in the NFL theorem is composed overwhelm-
ingly of instances for which compression and explanation are not possible.25

This uniformity between instances also reveals that there is no meaningful
trade-off between algorithms for most instances, since all algorithms will yield

24 For finite networks a positive compression might be achievable with small probability, but due
to chance alone, and not in a manner that makes its structure learnable.

25 One could argue that such a uniform model is justified by the principle of maximum entropy,
which states that in the absence of prior knowledge about which problem instances are more
likely, we should assume they are all equally likely a priori. This argument fails precisely
because we do have sufficient prior knowledge that empirical networks are not maximally
random— specially those possessing community structure, according to any meaningful defi-
nition of the term. Furthermore, it is easy to verify for each particular problem instance that the
uniform assumption does not hold; either by compressing an observed network using any gen-
erative model (which should be asymptotically impossible under the uniform assumption [21]),
or performing a statistical test designed to be able to reject the uniform null model. It is exceed-
ingly difficult to find an empirical network for which the uniformmodel cannot be rejectedwith
near-absolute confidence.
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Figure 14 The NFL theorem involves predominantly instances of the
community detection problem that are strictly incompressible, i.e. the true
partitions cannot be used to explain the network. In (a) we show a typical
sample of the uniform problem space given by Eq. 47, for N = 100 nodes,
which yields a dense maximally random network, randomly divided into
B = 72 groups. It is asymptotically impossible to use this partition to

compress this network into fewer than Σmin(AAA|bbb) =
(N
2
)
= 4950 bits, and

therefore the partition is not learnable from the network alone with any
inferential algorithm. We show also the description length of the SBM

conditioned on the true partition, ΣSBM(AAA|bbb), as a reference. In (b) we show
an example of a community detection problem that is solvable, at least in

principle, since ΣSBM(AAA|bbb) < Σmin(AAA|bbb). In this case, the partition can be used
to inform the network structure, and potentially vice-versa. This class of

problem instance has a negligible contribution to the sum in the NFL theorem
in Eq. 45, since it occurs only with an extremely small probability when

sampled from the uniform model of Eq. 47. It is therefore more reasonable to
state that the network in example (b) has an actual community structure,

while the one in (a) does not.

the same negligible asymptotic performance, with an accuracy tending towards
zero as the number of nodes increases. In this setting, there is not only no free
lunch, but in fact there is no lunch at all (see Fig. 15).
If we were to restrict the space of possible community detection algorithms

to those that provide actual explanations, then by definition this would imply a
positive correlation between network and partition,26 i.e.

26 Note that Eq. 53 is a necessary but not sufficient condition for the community detection problem
to be solvable. An example of this are networks generated by the SBM, which are solvable only
if the strength of the community structure exceeds a detectability threshold [6], even if Eq. 53
is fulfilled.
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P(AAA,bbb) = P(AAA|bbb)P(bbb) (52)

, P(AAA)P(bbb). (53)

Not only this implies a specific generative model but, as a consequence, also
an optimal community detection algorithm, that operates based on the posterior
distribution

P(bbb|AAA) = P(AAA|bbb)P(bbb)
P(AAA) . (54)

Therefore, learnable community detection problems are invariably tied to an
optimal class of algorithms, undermining to a substantial degree the relevance
of the NFL theorem in practice. In other words, whenever there is an actual
community structure in the network being considered— i.e. due to a systematic
correlation between AAA and bbb, such that P(AAA,bbb) , P(AAA)P(bbb) — there will be
algorithms that can exploit this correlation better than others (see Fig. 14(b)
for an example of a learnable community detection problem). Importantly, the
set of learnable problems form only an infinitesimal fraction of all problem
instances, with a measure that tends to zero as the number of nodes increases,
and hence remain firmly out of scope of the NFL theorem. This observation has
been made before, and is equally valid, in the wider context of NFL theorems
beyond community detection [99–103].
Note that since there aremanyways to choose a nonuniformmodel according

to Eq. 53, the optimal algorithms will still depend on the particular assump-
tions made via the choice of P(AAA,bbb) and how it relates to the true distribution.
However, this does not imply that all algorithms have equal performance on
compressible problem instances. If we sample a problem from the universe
H1, with P(AAA,bbb|H1), but use instead two algorithms optimal in H2 and H3,
respectively, their relative performances will depend on how close each of
these universes is to H1, and hence will not be in general the same. In fact,
if our space of universes is finite, we can compose them into a single unified
universe [104] according to

P(AAA,bbb) =
M∑
i=1

P(AAA,bbb|Hi)P(Hi), (55)

which will incur a compression penalty of at most log2M bits added to the
description length of the optimal algorithm. This gives us a path, based on hier-
archical Bayesian models and minimum description length, to achieve optimal
or near-optimal performance on instances of the community detection prob-
lem that are actually solvable, simply by progressively expanding our set of
hypotheses.
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Figure 15 A common interpretation of the NFL theorem for community
detection is that it reveals a necessary trade-off between algorithms: since

they all have the same average performance, if one algorithm does better than
another in one set of instances, it must do worse on a equal number of

different instances, as depicted in panel (a). However, in the actual setting
considered by the NFL theorem there is no meaningful trade-off:

asymptotically, all algorithms perform maximally poorly for the vast majority
of instances, as depicted in panel (b), since in these cases the network
structure is uninformative of the partition. If we constrain ourselves to

informative problem instances (which compose only an infinitesimal fraction
of all instances), the NFL theorem is no longer applicable.

The idea that we can use compression as an inference criterion has been for-
malized by Solomonoff’s theory of inductive inference [105], which forms a
rigorous induction framework based on the principle of Occam’s razor. Impor-
tantly, the expected errors of predictions achieved under this framework are
provably upper-bounded by the Kolmogorov complexity of the data generating
process [106], making the induction framework consistent. As we mentioned
already in Sec. 2.3, the Kolmogorov complexity is a generalization of the
description length we have been using, and it is defined by the length of the
shortest binary program that generates the data. The only major limitation
of Solomonoff’s framework is its uncomputability, i.e. the impossibility of
determining Kolmogorov’s complexity with any algorithm [30]. However, this
impossibility does not invalidate the framework, it only means that induction
cannot be fully automatized: we have a consistent criterion to compare hypothe-
ses, but no deterministic mechanism to produce directly the best hypothesis.
There are open philosophical questions regarding the universality of this induc-
tive framework [107, 108], but whatever fundamental limitations it may have
do not follow directly from NFL theorems such as the one from Ref. [92]. In
fact, as mentioned in footnote 25, it is a rather simple task to use compression to
reject the uniform hypothesis forming the basis of the NFL theorem for almost
any network data.
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Since compressive community detection problems are out of the scope of
the NFL theorem, it is not meaningful to use it to justify avoiding comparisons
between algorithms, on the grounds that all choices must be equally “good” in
a fundamental sense. In fact, we do not need much sophistication to reject this
line of argument, since the NFL theorem applies also when we are considering
trivially inane algorithms, e.g. one that always returns the same partition for
every network. The only domain where such an algorithm is as good as any
other is when we have no community structure to begin with, which is precisely
what the NFL theorem relies on.
Nevertheless, there are some lessons we can draw from the NFL theorem.

It makes it clear that the performances of algorithms are tied directly to the
inductive bias adopted, which should always be made explicit. The superficial
interpretation of the NFL theorem as an inherent equity between all algorithms
stems from the assumption that considering all problem instances uniformly is
equivalent to being free of an inductive bias, but that is not possible. The uni-
form assumption is itself an inductive bias, and one that it is hard to justify in
virtually any context, since it involves almost exclusively unsolvable problems
(from the point of view of compressibility). In contrast, considering only com-
pressible problem instances is also an inductive bias, but one that relies only
on Occam’s razor as a guiding principle. The advantage of the latter is that it is
independent of domain of application, i.e. we are requiring only that an inferred
partition can help explaining the network in some manner, without having to
specify exactly how a priori.
In view of the above observations, it becomes easier to understand results

such as of Ghasemian et al [66] who found that compressive inferential commu-
nity detection methods tend to systematically outperform descriptive methods
in empirical settings, when these are employed for the task of edge prediction.
Even though edge prediction and community detection are not the same task,
and using the former to evaluate the latter can lead in some cases to overfit-
ting [109], typically the most compressive models will also lead to the best
generalization. Therefore, the superior performance of the inferential meth-
ods is understandable, even though Ghasemian et al also found a minority of
instances where some descriptive methods can outperform inferential ones. To
the extent that these minority results cannot be attributed to overfitting, or tech-
nical issues such as insufficientMCMC equilibration, it could simplymean that
the structure of these networks fall sufficiently outside of what is assumed by
the inferential methods, but without it being a necessary trade-off that comes
as a consequence of the NFL theorem — after all, under the uniform assump-
tion, edge prediction is also strictly impossible, just like community detection.
In other words, these results do not rule out the existence of an algorithm that
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works better in all cases considered, at least if their number is not too large.27

In fact, this is precisely what is achieved in Ref. [110] via model stacking,
i.e. a combination of several predictors into a meta-predictor that achieves
systematically superior performance. This points indeed to the possibility of
using universal methods to discover the latent compressive modular structure
of networks, without any tension with the NFL theorem.

4.8 “Statistical inference requires us to believe the generative
model being used.”

We have been advocating for the use of statistical inference for community
detection in networks whenever our objective is of an inferential nature.
One possible objection to the use of statistical inference is when the genera-

tive models on which they are based are considered unrealistic for a particular
kind of network. Although this type of consideration is ultimately important,
it is not necessarily an obstacle. First we need to remember that realism is a
matter of degree, not kind, since no model can be fully realistic, and therefore
we should never be fully committed to “believe” any particular model. Because
of this, an inferential approach can be used to target a particular kind of struc-
ture, and the corresponding model is formulated with this in mind, but without
the need to describe other properties of the data. The SBM is a good example
of this, since it is often used with the objective of finding communities, rather
than any kind of network structure. A model like the SBM is a good way to off-
set the regularities that relate to the community structure with the irregularities
present in real networks, without requiring us to believe that in fact it generated
the network.
Furthermore, certain kinds of models are flexible enough so that they can

approximate other models. For example, a good analogy with fitting the SBM
to network data is to fit a histogram to numerical data, with the node parti-
tioning being analogous to the data binning. Although a piecewise constant

27 It is important to distinguish the actual statement of the NFL theorem — “all algorithms per-
form equally well when averaged over all problem instances”— from the alternative statement:
“No single algorithm exhibits strictly better performance than all others over all instances.”
Although the latter is a corollary of the former, it can also be true when the former is false. In
other words, a particular algorithm can be better on average over relevant problem instances,
but still underperform for some of them. In fact, it would only be possible for an algorithm to
strictly dominate all others if it can always achieve perfect accuracy for every instance. Other-
wise, there will be at least one algorithm (e.g. one that always returns the same partition) that
can achieve perfect accuracy for a single network where the optimal algorithm does not (“even
a broken clock is right twice a day”). Therefore, sub-optimal algorithms can eventually out-
perform optimal ones by chance when a sufficiently large number of instances is encountered,
even when the NFL theorem is not applicable (and therefore this fact is not necessarily a direct
consequence of it).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


Elements in the Structure and Dynamics of Complex Networks 55

model is almost never the true underlying distribution, it provides a reasonable
approximation in a tractable, nonparametric manner. Because of its capacity to
approximate a wide class of distributions, we certainly do not need to believe
that a histogram is the true data-generating process to extract meaningful infer-
ences from it. In fact, the same can be said of the SBM in its capacity to
approximate a wide class of network models [111, 112].
The above means that we can extract useful, statistically meaningful infor-

mation from data even if the models we use are misspecified. For example, if
a network is generated by a latent space model [113], and we fit a SBM to it,
the communities that are obtained in this manner are not quite meaningless:
they will correspond to discrete spatial regions. Hence, the inference would
yield a caricature of the underlying latent space, amounting to a discretization
of the true model — indeed, much like a histogram. This is very different from,
say, finding communities in an Erdős-Rényi graph, which bear no relation to
the true underlying model, and would be just overfitting the data. In contrast,
the SBM fit to a spatial network would be approximately capturing the true
model structure, in a manner that could be used to compress the data and make
predictions (although not optimally).
Furthermore, the associated description length of a network model is a good

criterion to tell whether the patterns we have found are actually simplifying our
network description, without requiring the underlying model to be perfect. This
happens in the same way as using a software like gzip makes our files smaller,
without requiring us to believe that they are in fact generated by the Markov
chain underlying the Lempel-Ziv algorithm [114].
Of course, realism becomes important as soon as we demand more from the

point of view of interpretation and prediction. Are the observed community
structures due to homophily or triadic clusure [23]? Or are they due to spa-
tial embedding [113]? What models are capable of reproducing other network
descriptors, together with the community structure? Which models can better
reconstruct incomplete networks [53, 54]?When answering these questions, we
are forced to consider more detailed generative processes, and compare them.
However, we are never required to believe them — models are always tenta-
tive, and should always be replaced by superior alternatives when these are
found. Indeed, criteria such as MDL serve precisely to implement such a com-
parison between models, following the principle of Occam’s razor. Therefore,
the lack of realism of any particular model cannot be used to dismiss statistical
inference as an underlying methodology. On the contrary, the Bayesian work-
flow [115] enables a continuous improvement of our modelling apparatus, via
iterativemodel building, model checking, and validation, all within a principled
and consistent framework.
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It should be emphasized that, fundamentally, there is no alternative. Reject-
ing an inferential approach based on the SBM on the grounds that it is an
unrealistic model (e.g. because of the conditional independence of the edges
being placed, or some other unpalatable assumption), but instead preferring
some other non-inferential community detection method is incoherent: As we
discussed in Sec. 2.5, every descriptive method can be mapped to an inferen-
tial analogue, with implicit assumptions that are hidden from view. Unless one
can establish that the implicit assumptions are in fact more realistic, then the
comparison cannot be justified. Unrealistic assumptions should be replaced by
more realistic ones, not by burying one’s head in the sand.

4.9 “Inferential approaches are prohibitively expensive.”
One of the reasons why descriptive methods such as modularity maximiza-
tion are widely used is because of very efficient heuristics that enable their
application for very large networks. The most famous of which is the Louvain
algorithm [116], touted for its speed and good ability to find high-scoring par-
titions. A more recent variation of this method is the Leiden algorithm [117],
which is a refinement of the Louvain approach, designed to achieve even more
high-scoring partitions, without sacrificing speed. None of these methods were
developed with the purpose of assessing the statistical evidence of the partitions
found, and since they are most often employed as modularity maximization
techniques, they suffer from all the shortcomings that come with it.
It is often perceived that principled inferential approaches based on the SBM,

designed to overcome all of the shortcomings of descriptive methods including
modularity maximization, are comparatively much slower, often prohibitively
so. However, we show here that this perception is quite inaccurate, since mod-
ern inferential approaches can be quite competitive. From the point of view
of algorithmic complexity, agglomerative [118] or merge-split MCMC [119]
have at most a log-linear complexity O(E log2 N), where N and E are the num-
ber of nodes and edges, respectively, when employed to find the most likely
partition. This means they belong to the same complexity class as the Louvain
and Leiden algorithms, despite the fact the SBM-based algorithms are in fact
more general, and do not attempt to find strictly assortative structures — and
hence cannot make any optimizations that are only applicable in this case, as
done by Louvain and Leiden. In practice, all these algorithms return results in
comparable times.
In Fig. 16 we show a performance comparison between various algorithms

on 38 empirical networks of various domains and number of edges spanning
six orders of magnitude, obtained from the Netzschleuder repository [65]. We
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Figure 16 Inferential algorithms show competitive performance with
descriptive ones. In panel (a) is shown the run-time of the Leiden

algorithm [117] and the agglomerative MCMC [118] for modularity, and three
SBM parametrizations: planted partition (PP), degree-corrected SBM, and
nested degree-corrected SBM (NSBM), for 38 empirical networks [65]. All
experiments were done on a laptop with an i9-9980HK Intel CPU, and

averaged over at least 10 realizations. The dashed line shows an O(E log2 E)
scaling. In (b) are shown the same run times, but relative to the Leiden

algorithm. The horizontal dashed lines show the median values.

used the Leiden implementation provided by its authors,28 and compared with
various SBM parametrizations implemented in the graph-tool library [9]. In
particular we consider the agglomerative MCMC of Ref. [118] employed for
modularity maximization, the Bayesian planted partition (PP) model [24], the
degree-corrected SBM with uniform priors [16] and the nested SBM [16, 67].
As seen in Fig. 16(a), all algorithms display the same scaling with the number
of edges, and differ only by an approximately constant factor. This difference is
speed is due to the more complex likelihoods used by the SBM and additional
data structures that are needed for its computation. When the agglomerative
MCMC [118] is used with the simpler modularity function, it comes very close
to the Leiden algorithm, despite not taking advantage of any custom optimiza-
tion for that particular quality function. When used with the strictly assortative
PP model, the algorithm slows down by a larger factor when compared to Lei-
den — most of which can be attributed to the increased complexity of the
quality function. For the general SBM and nested SBM the algorithm slows
down further, since now it is searching for arbitrary mixing patterns (not only
assortative ones) and entire modular hierarchies. Indeed the performance dif-
ference between the most complex SBM and Leiden can be substantial, but at
this point it also becomes an apples-and-oranges comparison, since the infer-
ential method not only is not restricted to assortative communities, but it also

28 Retreived from https://github.com/vtraag/leidenalg.
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uncovers an entire hierarchy of partitions in a nonparametric manner, while
being unhindered by the resolution limit andwith protection against overfitting.
Overall, if a practitioner is considering modularity maximization, they should
prefer instead at least the Bayesian PP model, which solves the same kind of
problem but it is not marred by all the shortcomings of modularity, including
the resolution limit and systematic overfitting, while still being comparatively
fast. The more advanced SBM formulations allow the researcher to probe a
wider array of mixing patterns, without abdicating from statistical robustness,
at the expense of increased computation time. As this analysis shows, all algo-
rithms are accessible for fairly large networks of up to 107 edges on a laptop,
but in fact can scale to 109 or more on high-performance computing (HPC)
systems.
Based on the above, it becomes difficult to justify the use modularity maxi-

mization based solely on performance concerns, even on very large networks,
since there are superior inferential approaches available with comparable
speed, and which achieve more meaningful results in general.29

4.10 “Belief propagation outperforms MCMC.”
Themethod of belief propagation (BP) [6] is an alternative algorithm toMCMC
for inferring the partitions from the posterior distribution of the SBM in the
semi-parametric case where the model parameters controlling the probabil-
ity of connections between groups and the expected sizes of the groups are
known a priori. It relies on the assumption that the network analyzed was truly
sampled from the SBM, that the number of groups is much smaller than the
number of nodes, B ≪ N, and the network is sufficiently large, N ≫ 1.
Even though none of these assumptions are likely to hold in practice, BP is
an extremely useful and powerful algorithm since it returns an estimate of the
marginal posterior probability that is not stochastic, unlike MCMC. Further-
more, it is amenable to analytical investigations, which was used to uncover
the detectability threshold of the SBM [6, 45], and important connections with
spectral clustering [120]. It is often claimed, however, that it is also faster
than MCMC when employed for the same task. This is, however, not quite

29 In this comparison we consider only the task of finding point estimates, i.e. best scoring par-
titions. This is done to maintain an apples-to-apples comparison, since this all that can be
obtainedwith the Leiden and other modularitymaximization algorithms. To take full advantage
of the Bayesian frameworkwewould need to characterize the full posterior distribution instead,
and sample partitions from it, instead of maximizing it, which incurs a larger computational
cost and requires a more detailed analysis [26]. We emphasize, however, that the point esti-
mates obtained with the SBM posterior already contain a substantial amount of regularization,
and will not overfit the number of communities, for example.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


Elements in the Structure and Dynamics of Complex Networks 59

Figure 17 Comparison of run times between MCMC and BP on laptop with
an i9-9980HK Intel CPU, for a network of flights between airports, with
N = 3188 nodes and E = 18833. We used the agglomerative algorithm of

Ref. [118], and initialized BP with the model parameters found with MCMC.
The dashes line shows a B2 slope.

true in general, as we now discuss. The complexity of BP is O(τNB2), where
τ is the convergence time, which is typically small compared to the other
quantities [for the DC-SBM the complexity becomes O(τℓNB2), where ℓ is
the number of distinct degrees in the network [27]]. A MCMC sweep of the
SBM, i.e. the number of operations required to give a chance of each node
to be moved once from its current node membership, can be implemented in
time O(N), independent of the number of groups B [118, 119], when using the
parametrization of Refs. [16, 85]. This means that the performance difference
between both approaches can be substantial when the number of groups is large.
In fact, if B = O(

√
N) which a reasonable reference for empirical networks,

BP becomes O(N2) while MCMC remains O(N). Agglomerative MCMC ini-
tialization schemes, which can significantly improve the mixing time, have
themselves a complexity O(N log2 N) [118], still significantly faster than BP
for large B.
In Fig. 17 we show a run-time comparison between BP and MCMC for

an empirical network of flights between airports.30 As the number of groups
increases, the run-time of BP grows quadratically, as expected, while for
MCMC it remains constant. There are several caveats in this comparison, which
is somewhat apples-to-oranges: BP outputs a full marginal distribution for
every node, containing even probabilities that are very low, while for MCMC

30 Obtained from https://openflights.org/data.html.
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we obtain anything from a point estimate to full marginal or joint probabil-
ities, at the expense of longer running times, which is not revealed by the
comparison in Fig. 17, which corresponds only to a point estimate. On the
other hand, BP requires a value of the model parameters besides the parti-
tion itself, which can in principle be obtained together with the marginals via
expectation-maximization (EM) [6], although a meaningful convergence for
complex problems cannot be guaranteed with this algorithm [121]. Overall, we
can state that some answers can be achieved in log-linear time with MCMC
independently from the number of groups (and requiring no particular assump-
tions on the data), while with BPwe can never escape the quadratic dependence
on B.
We emphasize that BP is only applicable in the semiparametric case, where

the number of groups and model parameters are known. The nonparametric
case considered in Sec. 2.3, which is arguably more relevant in practice, cannot
be tackled using BP, leaving MCMC as the only game in town, at least with the
current state-of-the-art.

4.11 “Spectral clustering outperforms likelihood-based
methods.”

Spectral clustering methods divide a network into groups based on the leading
eigenvectors of a linear operator associated with the network structure [122,
123]. There are important connections between spectral methods and statisti-
cal inference, in particular there are certain linear operators that can be shown
to provide a consistent estimation of the SBM [120, 124]. However, when
compared to likelihood-based methods, spectral methods are only approxima-
tions, as they amount to a simplification of the problem. Nevertheless, one
of the touted advantages of this class of methods is that they tend to be sig-
nificantly faster than likelihood based methods using MCMC. But like in the
case of BP considered in the previous section, the run-time of spectral meth-
ods is intimately related to the number of groups one wishes to infer, unlike
MCMC. Independently of the operator being used, the clustering into B groups
requires the computation of the first B leading eigenvectors. The most effi-
cient algorithms for this purpose are based on the implicitly restarted Arnoldi
method [125], which has a worse-case time complexity O(NB2) for sparse
matrices. Therefore, for sufficiently large number of groups they can cease to
be faster than MCMC, which has a run-time complexity independent of the
number of groups [118, 119].
In Fig. 18 we show a comparison of spectral clustering and MCMC infer-

ence for the Anybeat social network [126]. Indeed, for small number of groups
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Figure 18 Comparison of run times between MCMC and spectral clustering
using the Laplacian matrix, on a laptop with an i9-9980HK Intel CPU, for the
Anybeat social network [126], with N = 12645 vertices and E = 49132 edges.

We used the agglomerative algorithm of Ref. [118] and the ARPACK
eigenvector solver [127].

spectral clustering can be significantly faster, but eventually becomes slower as
the number of groups increases. The complexity of the spectral algorithm does
not scale exactly like the worse case O(NB2) in practice, and the actual times
will depend on the details of the particular operator. The MCMC algorithm
becomes slightly faster, on the other hand, since the agglomerative initializa-
tion heuristic used terminates sooner when more groups are imposed [118].
As usual, there are caveats with this comparison. First, the eigenvectors by
themselves do not provide a clustering of the network. Usually, these are given
as input to a general-purpose clustering algorithm, typically k-means, which
itself also has a complexity O(NB2), not included in the comparison of Fig. 18.
Furthermore, spectral clustering usually requires the number of groups itself
to be known in advance — although heuristics exist for spectral algorithms,
but which usually require a significant part of the entire spectrum to be deter-
mined [120]. Likelihood-based methods, if implemented as a nonparametric
Bayesian posterior like done in Sec. 2.3, do not require this prior information.
On the other hand, spectral methods can be parallelized rather easily, unlike
MCMC, and hence can take advantage of multicore processors.

4.12 “Bayesian posterior, MDL, BIC and AIC are different but
equally valid model selection criteria.”

One outstanding problemwith using inferential community detection is that the
likelihood of a model like the SBM does not, by itself, offer a principled way to
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determine the appropriate number of groups. This is because if wemaximize the
likelihood directly, it will favor a number of groups that is equal to the number
of nodes, i.e. an extreme overfitting. This is similar to what happens when we
fit a polynomial to a set of one-dimensional data points by varying its degree:
for a degree equal to the number of points we can fit any set of points perfectly,
but we are guaranteed to be overfitting the data. In other words, if we do not
account for model complexity explicitly, we cannot separate randomness from
structure.
In the literature we often see mentions of Bayesian posterior inference, mini-

mum description length (MDL) [17, 18], as well as likelihood penalty schemes
such as Bayesian Information Criterion (BIC) [128] and Akaike’s Information
Criterion (AIC)[129], as being equally valid alternatives that can be used to
solve this problem. It is sometimes said that the choice between them is philo-
sophical and often simply reflects the culture that a researcher stems from. As
we show here, this is demonstrably incorrect, since Bayes, MDL, and BIC are
in fact the same criterion, where BIC is simply an (arguably crude) approxi-
mation of the first two, which are in fact identical. AIC is indeed a different
criterion, but, like BIC, it involves approximations that are known to be invalid
for community detection.
The exact equivalence betweenMDL and Bayesian inference is easy to dem-

onstrate [16, 67], as we have already done already in Sec. 2.3. Namely, the
posterior distribution of the community detection problem is given by

P(bbb|AAA) = P(AAA|bbb)P(bbb)
P(AAA) , (56)

=
2−Σ(AAA,bbb)

P(AAA) , (57)

where the numerator of Eq. 56 is related to the description length Σ(AAA,bbb) via

Σ(AAA,bbb) = − log2 P(AAA|bbb) − log2 P(bbb). (58)

Therefore, maximizing Eq. 56 is identical to minimizing Eq. 58. Although this
is already sufficient to demonstrate their equivalence, we can go in even more
detail and show that the marginal integrated likelihood,

P(AAA|bbb) =
∫

P(AAA|ω,κ,bbb)P(ω,κ |bbb) dω dκ, (59)

where ω and κ are the parameters of the canonical DC-SBM [15], is identi-
cal to the marginal likelihood of the microcanonical SBM we have used in
Eq. 2. This is proved in Ref. [16]. Therefore, the MDL criterion is simply an
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information-theoretical interpretation of the Bayesian approach, and the two
methods coincide in their implementation.31

The BIC criterion is based on the exact same framework, but it amounts to
an approximation of the integrated marginal likelihood of a generic model M,
P(DDD|θ,M), where DDD is a data vector of size n and θ is a parameter vector of
size k, given by

P(DDD|M) =
∫

P(DDD|θ,M)P(θ) dθ, (60)

≈
(
2π
n

)k/2 ��I(θ̂)�� L̂ × P(θ̂), (61)

≈ exp(−BIC/2), (62)

where [I(θ)]ij =
∫
(∂ lnP(D|θ)/∂θi)(∂ lnP(D|θ)/∂θj)P(D|θ) dθ is the Fisher

information matrix, and the values of the likelihood and parameters are
obtained at the maximum,

L̂ = max
θ

P(DDD|θ,M), θ̂ = argmax
θ

P(DDD|θ,M), (63)

and finally the BIC score is obtained from Eq. 61 by assuming n ≫ k,

BIC = k ln n − 2 ln L̂. (64)

The BIC method consists of employing the equation above as criterion to
decide which model to select, applicable even if they have different number
of parameters k, with the first term functioning as penalty for larger models.
Eq. 61 corresponds to an approximation of the likelihood obtained via Laplace’s
method, which involves a second-order Taylor expansion of the log-likelihood.
Therefore, it requires the likelihood function to be well approximated by a mul-
tivariate Gaussian distribution with respect to the parameters at the vicinity of
its maximum. However, as demonstrated by Yan et al. [27], this assumption is
invalid for SBMs, however large the networks are, as long as they are sparse,
i.e. with an average degree much smaller than the number of nodes. This is
because for sparse SBMs we have both the number of parameters k = O(N)
[or even larger, since for B groups we a matrix ω of size O(B2), and in prin-
ciple we could have B = O(N)] and effective data size n = O(N) where N
is the number of nodes, therefore the “sufficient data” limit required for the
approximation to hold is never realized for any N. Furthermore, the BIC pen-
alty completely neglects the contribution of the prior P(θ) in the regularization,

31 In general, it is possible to construct particular MDL formulations of “universal codes” that do
not have a clear Bayesian interpretation [18]. However, these formulations are typically intrac-
table and seldom find an application. All MDL uses encountered in practice for the community
detection problem are equivalent to Bayesian methods.
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which cannot be ignored outside of this limit. Since the vast majority of empir-
ical networks of interest are sparse, this renders this method unreliable, and
in fact it will tend to overfit in most cases when employed with the SBM.
We emphasize that the approximation of Eq. 61 is unnecessary, since we can
compute the marginal likelihood of Eq. 59 exactly for most versions of the
SBM [16, 54, 67, 130, 131]. When we compare the BIC penalty with the exact
values of the integrated likelihoods we see that they in general produce sig-
nificantly different regularizations, even asymptotically, and also even if we
add ad hoc parameters, e.g. λk ln n−2 ln L̂. This is because simply counting the
number of parameters is too crude an estimation of the model complexity, since
it is composed of different classes of parameters occupying different volumes
which need (and can) be more carefully computed. Therefore the use of BIC
for model selection in community detection should be in general avoided.
Akaike’s Information Criterion (AIC) [129], on the other hand, actually starts

out from a different framework. The idea is assume that the data are sampled
from a true generative model P(DDD|Mtrue), and a candidate model M with its
parameter estimates θ̂(DDD) is evaluated according to its Kullback-Leibler (KL)
divergence with respect to the true model,∫

P(DDD′ |Mtrue) ln
P(DDD′ |θ̂(DDD),M)
P(DDD′ |Mtrue)

dDDD′. (65)

Of course, whenever it is relevant to employ model selection criteria we do not
have access to the true model, which means we cannot compute the quantity in
Eq. (65). We can, however, estimate the following upper bound, corresponding
to the average over all data DDD,∫

P(DDD|Mtrue)P(DDD′ |Mtrue) ln
P(DDD′ |θ̂(DDD),M)
P(DDD′ |Mtrue)

dDDD′ dDDD. (66)

In this case, for sufficiently large data DDD, the quantity in Eq. (66) can be
estimated making use of a series of Laplace approximations [132], resulting
in

lnP(DDD|θ̂(DDD)) − tr
[
J(θ0)I(θ0)−1

]
, (67)

where θ0 is the point around which we compute the quadratic approxima-
tion in Laplace’s method, and Jij(θ0) =

∫
P(DDD′ |Mtrue)Iij(DDD,θ0) dDDD, Iij(θ0) =∫

P(DDD′ |θ0,M)Iij(DDD,θ0) dDDD, with

Iij(DDD, θ̂) =
∂

∂θi
lnP(DDD′ |θ,M)

����
θi=θ̂i

× ∂

∂θj
lnP(DDD′ |θ,M)

����
θj=θ̂j

. (68)
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TheAIC criterion is finally obtained by heuristically assuming tr
[
J(θ0)I(θ0)−1

]
≈ k, yielding

AIC = 2k − 2 lnP(DDD|θ̂(DDD)), (69)

where the overall sign and multiplicative factor is a matter of convention. It is
also possible to recover AIC from BIC by making a choice of prior P(M) ∝
exp(k ln n/2−k) [132], which makes it clear that it favors more complexmodels
over BIC. Independently of how one judges the suitability of the fundamental
criterion of Eq. 66, just like BIC, AIC involves several approximations that
are known to be invalid for sparse networks. Together with its heuristic nature
and crude counting of parameters, it is safe to conclude that the use of AIC is
ill-advised for community detection, specially considering the more principled
and exact alternatives of Bayes/MDL.

5 Conclusion
We have framed the problem of community detection under two different
paradigms, namely that of “inference” and “description.” We argued that sta-
tistical inference is unavoidable when the objective is to draw inferential
interpretations from the communities found, and we provided a simple “lit-
mus test” to help deciding when this is indeed the case. Under this framing,
we showed that descriptive methods always come with hidden inferential
assumptions, and reviewed the dangers of employing descriptive methods with
inferential aims, focusing on modularity maximization as a representative (and
hence not unique) case.
We covered a series of pitfalls encountered in community detection, as well

as myths and half-truths commonly believed, and attempted to clarify them
under the same lenses, focusing on simple examples and conceptual arguments.
Although it is true that community detection in general involves diverse

aims, and hence it is difficult to argue for an one-size-fits-all approach, here we
have taken amore opinionated stance, since it is also not true that all approaches
are used in a manner consistent with their intended aims. We have clearly
favored inferential methods, since they are more theoretically grounded, are
better aligned with well-defined scientific questions (whenever those involve
inferential queries), are more widely applicable, and can be used to develop
more robust algorithms.
Inferential methodology for community detection has reached a level of

maturity, both in our understanding of them and in the efficiency of availa-
ble implementations, that should make it the preferred choice when analysing
network data, whenever the ultimate goal has an inferential nature.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


References
[1] Santo Fortunato, “Community detection in graphs,” Physics Reports

486, 75–174 (2010).
[2] Santo Fortunato and Darko Hric, “Community detection in networks: A

user guide,” Physics Reports (2016).
[3] Cristopher Moore, “The Computer Science and Physics of Com-

munity Detection: Landscapes, Phase Transitions, and Hardness,”
arXiv:1702.00467 (2017).

[4] Emmanuel Abbe, “Community detection and stochastic block models:
recent developments,” arXiv:1703.10146 [cs, math, stat] (2017).

[5] Tiago P. Peixoto, “Bayesian Stochastic Blockmodeling,” in Advances
in Network Clustering and Blockmodeling, edited by P. Doreian, V.
Batagelj, and A. Ferligoj (John Wiley & Sons, Ltd, 2019) pp. 289–332.

[6] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka
Zdeborová, “Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications,” Physical Review
E 84, 066106 (2011).

[7] Lenka Zdeborová and Florent Krzakala, “Statistical physics of infer-
ence: thresholds and algorithms,” Advances in Physics 65, 453–552
(2016).

[8] Michael T. Schaub, Jean-Charles Delvenne, Martin Rosvall, and Re-
naud Lambiotte, “The many facets of community detection in complex
networks,” Applied Network Science 2, 1–13 (2017).

[9] Tiago P. Peixoto, “The graph-tool python library,” figshare (2014),
10.6084/m9.figshare.1164194, available at https://graph-tool
.skewed.de.

[10] R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd
ed. (Wiley-IEEE Press, Piscataway, NJ : Hoboken, NJ, 2010).

[11] Brian Wilson Kernighan, Some graph partitioning problems related to
program segmentation (Princeton University, 1969).

[12] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell System Technical Journal 49, 291–307 (1970).

[13] Charles-Edmond Bichot and Patrick Siarry, Graph partitioning (John
Wiley & Sons, 2013).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://graph-tool.skewed.de
https://graph-tool.skewed.de
https://doi.org/10.1017/9781009118897


References 67

[14] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt,
“Stochastic blockmodels: First steps,” Social Networks 5, 109–137
(1983).

[15] Brian Karrer and M. E. J. Newman, “Stochastic blockmodels and com-
munity structure in networks,” Physical Review E 83, 016107 (2011).

[16] Tiago P. Peixoto, “Nonparametric Bayesian inference of the micro-
canonical stochastic block model,” Physical Review E 95, 012317
(2017).

[17] J. Rissanen, “Modeling by shortest data description,” Automatica 14,
465–471 (1978).

[18] Peter D. Grünwald, The Minimum Description Length Principle (The
MIT Press, 2007).

[19] Jorma Rissanen, Information and Complexity in Statistical Modeling,
1st ed. (Springer, 2010).

[20] David J. C. MacKay, Information Theory, Inference and Learning
Algorithms, first edition ed. (Cambridge University Press, 2003).

[21] C. E Shannon, “A mathematical theory of communication,” Bell Syst
Tech. J 27, 623 (1948).

[22] Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec,
“Evolution of resilience in protein interactomes across the tree of life,”
Proceedings of the National Academy of Sciences 116, 4426–4433
(2019), publisher: National Academy of Sciences Section: PNAS Plus.

[23] Tiago P. Peixoto, “Disentangling Homophily, Community Structure,
and Triadic Closure in Networks,” Physical Review X 12, 011004
(2022).

[24] Lizhi Zhang and Tiago P. Peixoto, “Statistical inference of assortative
community structures,” Physical Review Research 2, 043271 (2020).

[25] Romualdo Pastor-Satorras, Eric Smith, and Ricard V. Solé, “Evolv-
ing protein interaction networks through gene duplication,” Journal of
Theoretical Biology 222, 199–210 (2003).

[26] Tiago P. Peixoto, “Revealing Consensus and Dissensus between Net-
work Partitions,” Physical Review X 11, 021003 (2021).

[27] Xiaoran Yan, Cosma Shalizi, Jacob E. Jensen, Florent Krzakala, Cristo-
pher Moore, Lenka Zdeborová, Pan Zhang, and Yaojia Zhu, “Model
selection for degree-corrected block models,” Journal of Statistical
Mechanics: Theory and Experiment 2014, P05007 (2014).

[28] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka
Zdeborová, “Phase transition in the detection of modules in sparse
networks,” 1102.1182 (2011).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


68 References

[29] ThomasM. Cover and Joy A. Thomas, Elements of Information Theory,
99th ed. (Wiley-Interscience, 1991).

[30] Ming Li and Paul M. B. Vitányi, An Introduction to Kolmogorov
Complexity and Its Applications, 3rd ed. (Springer, New York, 2008).

[31] Tom A. B. Snijders and Krzysztof Nowicki, “Estimation and Prediction
for Stochastic Blockmodels for Graphs with Latent Block Structure,”
Journal of Classification 14, 75–100 (1997).

[32] Krzysztof Nowicki and Tom A. B Snijders, “Estimation and Predic-
tion for Stochastic Blockstructures,” Journal of the American Statistical
Association 96, 1077–1087 (2001).

[33] Christian Tallberg, “A Bayesian Approach to Modeling Stochastic
Blockstructures with Covariates,” The Journal of Mathematical Soci-
ology 29, 1–23 (2004).

[34] M. B. Hastings, “Community detection as an inference problem,” Phys-
ical Review E 74, 035102 (2006).

[35] Martin Rosvall and Carl T. Bergstrom, “An information-theoretic
framework for resolving community structure in complex networks,”
Proceedings of the National Academy of Sciences 104, 7327–7331
(2007).

[36] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P.
Xing, “Mixed Membership Stochastic Blockmodels,” J. Mach. Learn.
Res. 9, 1981–2014 (2008).

[37] Aaron Clauset, Cristopher Moore, and M. E. J. Newman, “Hierarchical
structure and the prediction of missing links in networks,” Nature 453,
98–101 (2008).

[38] JakeM.Hofman andChris H.Wiggins, “BayesianApproach toNetwork
Modularity,” Physical Review Letters 100, 258701 (2008).

[39] Morten Mørup and Lars Kai Hansen, “Learning latent structure in com-
plex networks,” inNIPSWorkshop on AnalyzingNetworks and Learning
with Graphs (2009).

[40] Marián Boguñá andRomualdo Pastor-Satorras, “Class of correlated ran-
dom networks with hidden variables,” Physical Review E 68, 036112
(2003).

[41] Béla Bollobás, Svante Janson, and Oliver Riordan, “The phase tran-
sition in inhomogeneous random graphs,” Random Structures & Algo-
rithms 31, 3–122 (2007).

[42] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi, “Bench-
mark graphs for testing community detection algorithms,” Physical
Review E 78, 046110 (2008).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


References 69

[43] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences
99, 7821 –7826 (2002).

[44] Andrea Lancichinetti and Santo Fortunato, “Community detection al-
gorithms: A comparative analysis,” Physical Review E 80, 056117
(2009).

[45] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zde-
borová, “Inference and Phase Transitions in the Detection of Modules
in Sparse Networks,” Physical Review Letters 107, 065701 (2011).

[46] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences 103, 8577–8582
(2006).

[47] Martin Rosvall and Carl T. Bergstrom, “Maps of random walks on com-
plex networks reveal community structure,” Proceedings of the National
Academy of Sciences 105, 1118–1123 (2008).

[48] R. Lambiotte, J. C. Delvenne, and M. Barahona, “RandomWalks, Mar-
kov Processes and the Multiscale Modular Organization of Complex
Networks,” IEEE Transactions on Network Science and Engineering 1,
76–90 (2014).

[49] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson,
Aki Vehtari, and Donald B. Rubin, Bayesian Data Analysis, 3rd ed.
(Chapman and Hall/CRC, Boca Raton, 2013).

[50] Christopher M. Bishop, Pattern Recognition and Machine Learning
(Springer, 2011).

[51] M. E. J. Newman, “Network structure from rich but noisy data,” Nature
Physics 14, 542–545 (2018).

[52] Travis Martin, Brian Ball, and M. E. J. Newman, “Structural inference
for uncertain networks,” Physical Review E 93, 012306 (2016).

[53] Tiago P. Peixoto, “Reconstructing Networks with Unknown and Heter-
ogeneous Errors,” Physical Review X 8, 041011 (2018).

[54] Roger Guimerà and Marta Sales-Pardo, “Missing and spurious interac-
tions and the reconstruction of complex networks,” Proceedings of the
National Academy of Sciences 106, 22073 –22078 (2009).

[55] Till Hoffmann, Leto Peel, Renaud Lambiotte, and Nick S. Jones,
“Community detection in networks without observing edges,” Science
Advances 6, eaav1478 (2020), publisher: American Association for the
Advancement of Science Section: Research Article.

[56] Tiago P. Peixoto, “Network Reconstruction and Community Detection
from Dynamics,” Physical Review Letters 123, 128301 (2019).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


70 References

[57] B. Fosdick, D. Larremore, J. Nishimura, and J. Ugander, “Configuring
Random Graph Models with Fixed Degree Sequences,” SIAM Review
60, 315–355 (2018).

[58] Fan Chung and Linyuan Lu, “Connected Components in Random
Graphs with Given Expected Degree Sequences,” Annals of Combina-
torics 6, 125–145 (2002).

[59] Roger Guimerà, Marta Sales-Pardo, and Luís A. Nunes Amaral, “Mod-
ularity from fluctuations in random graphs and complex networks,”
Physical Review E 70, 025101 (2004).

[60] Santo Fortunato and Marc Barthélemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences 104, 36–
41 (2007).

[61] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset,
“Performance of modularity maximization in practical contexts,” Phys-
ical Review E 81, 046106 (2010).

[62] M. E. J. Newman, “Mixing patterns in networks,” Phys. Rev. E 67,
026126 (2003).

[63] Maria A. Riolo and M. E. J. Newman, “Consistency of community
structure in complex networks,” Physical ReviewE 101, 052306 (2020).

[64] Lizhi Zhang and T. P. Peixoto, “Large-scale assessment of overfitting,
underfitting and model selection for modular network structures,” in
preparation.

[65] T. P. Peixoto, “The Netzschleuder network catalogue and repository.”
(2020), accessible at https://networks.skewed.de.

[66] Amir Ghasemian, Homa Hosseinmardi, and Aaron Clauset, “Evaluat-
ing Overfit and Underfit in Models of Network Community Structure,”
IEEE Transactions on Knowledge and Data Engineering , 1–1 (2019).

[67] Tiago P. Peixoto, “Hierarchical Block Structures and High-Resolution
Model Selection in Large Networks,” Physical Review X 4, 011047
(2014).

[68] Daniel B. Larremore, Aaron Clauset, and Abigail Z. Jacobs, “Effi-
ciently inferring community structure in bipartite networks,” Physical
Review E 90, 012805 (2014).

[69] Xiao Zhang, Travis Martin, and M. E. J. Newman, “Identification of
core-periphery structure in networks,” Physical Review E 91, 032803
(2015).

[70] Pan Zhang and Cristopher Moore, “Scalable detection of statistically
significant communities and hierarchies, using message passing for
modularity,” Proceedings of the National Academy of Sciences 111,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://networks.skewed.de
https://doi.org/10.1017/9781009118897


References 71

18144–18149 (2014), publisher: National Academy of Sciences Sec-
tion: Physical Sciences.

[71] M. E. J. Newman, “Equivalence between modularity optimization and
maximum likelihood methods for community detection,” Physical Re-
view E 94 (2016), 10.1103/PhysRevE.94.052315.

[72] Jörg Reichardt and Stefan Bornholdt, “Statistical mechanics of commu-
nity detection,” Physical Review E 74, 016110 (2006).

[73] A. Arenas, A. Fernández, and S. Gómez, “Analysis of the structure
of complex networks at different resolution levels,” New Journal of
Physics 10, 053039 (2008).

[74] Peter J. Bickel and Aiyou Chen, “A nonparametric view of network
models and Newman–Girvan and other modularities,” Proceedings of
the National Academy of Sciences 106, 21068–21073 (2009).

[75] M. E. J. Newman, “Spectralmethods for community detection and graph
partitioning,” Physical Review E 88, 042822 (2013).

[76] Claire P. Massen and Jonathan P. K. Doye, “Thermodynamics of
Community Structure,” arXiv:cond-mat/0610077 (2006).

[77] Andrea Lancichinetti and Santo Fortunato, “Consensus clustering in
complex networks,” Scientific Reports 2, 1–7 (2012), number: 1 Pub-
lisher: Nature Publishing Group.

[78] Jörg Reichardt and Stefan Bornholdt, “When are networks truly modu-
lar?” Physica D: Nonlinear Phenomena 224, 20–26 (2006).

[79] Dandan Hu, Peter Ronhovde, and Zohar Nussinov, “Phase transitions in
random Potts systems and the community detection problem: spin-glass
type and dynamic perspectives,” Philosophical Magazine 92, 406–445
(2012).

[80] Alec Kirkley and M. E. J. Newman, “Representative community divi-
sions of networks,” Communications Physics 5, 1–10 (2022), number:
1 Publisher: Nature Publishing Group.

[81] David V. Foster, Jacob G. Foster, Peter Grassberger, and Maya
Paczuski, “Clustering drives assortativity and community structure in
ensembles of networks,” Physical Review E 84, 066117 (2011).

[82] Andrea Lancichinetti and Santo Fortunato, “Limits of modularity max-
imization in community detection,” Physical Review E 84, 066122
(2011).

[83] Clara Granell, Sergio Gómez, and Alex Arenas, “Hierarchical mul-
tiresolution method to overcome the resolution limit in complex net-
works,” International Journal of Bifurcation and Chaos 22, 1250171
(2012).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


72 References

[84] Tatsuro Kawamoto and Martin Rosvall, “Estimating the resolution limit
of the map equation in community detection,” Physical Review E 91,
012809 (2015).

[85] Tiago P. Peixoto, “Parsimonious Module Inference in Large Networks,”
Physical Review Letters 110, 148701 (2013).

[86] Michael J Barber, “Modularity and community detection in bipartite
networks,” 0707.1616 (2007).

[87] Mel MacMahon and Diego Garlaschelli, “Community Detection for
Correlation Matrices,” Physical Review X 5, 021006 (2015).

[88] V. A. Traag and Jeroen Bruggeman, “Community detection in networks
with positive and negative links,” Physical Review E 80, 036115 (2009).

[89] Paul Expert, Tim S. Evans, Vincent D. Blondel, and Renaud Lambiotte,
“Uncovering space-independent communities in spatial networks,” Pro-
ceedings of the National Academy of Sciences 108, 7663–7668 (2011),
publisher: National Academy of Sciences Section: Physical Sciences.

[90] Darko Hric, Tiago P. Peixoto, and Santo Fortunato, “Network Struc-
ture, Metadata, and the Prediction of Missing Nodes and Annotations,”
Physical Review X 6, 031038 (2016).

[91] M. E. J. Newman and Aaron Clauset, “Structure and inference in
annotated networks,” Nature Communications 7, 11863 (2016).

[92] Leto Peel, Daniel B. Larremore, and Aaron Clauset, “The ground
truth about metadata and community detection in networks,” Science
Advances 3, e1602548 (2017).

[93] Y. Hu, “Efficient, high-quality force-directed graph drawing,” Mathe-
matica Journal 10, 37–71 (2005).

[94] Andreas Noack, “Modularity clustering is force-directed layout,” Phys-
ical Review E 79, 026102 (2009).

[95] David H. Wolpert and William G. Macready, No free lunch theorems
for search, Tech. Rep. (Technical Report SFI-TR-95-02-010, Santa Fe
Institute, 1995).

[96] DavidH.Wolpert, “The Lack of A Priori Distinctions Between Learning
Algorithms,” Neural Computation 8, 1341–1390 (1996).

[97] David H. Wolpert and William G. Macready, “No free lunch theorems
for optimization,” IEEE transactions on evolutionary computation 1,
67–82 (1997).

[98] Cullen Schaffer, “A Conservation Law for Generalization Perfor-
mance,” inMachine Learning Proceedings 1994, edited by William W.
Cohen and HaymHirsh (Morgan Kaufmann, San Francisco (CA), 1994)
pp. 259–265.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


References 73

[99] Matthew J. Streeter, “Two Broad Classes of Functions for Which a
No Free Lunch Result Does Not Hold,” in Genetic and Evolution-
ary Computation — GECCO 2003, Lecture Notes in Computer Sci-
ence, edited by Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb,
LawrenceDavid Davis, Rajkumar Roy, Una-MayO’Reilly, Hans-Georg
Beyer, Russell Standish, Graham Kendall, Stewart Wilson, Mark Har-
man, Joachim Wegener, Dipankar Dasgupta, Mitch A. Potter, Alan C.
Schultz, Kathryn A. Dowsland, Natasha Jonoska, and Julian Miller
(Springer, Berlin, Heidelberg, 2003) pp. 1418–1430.

[100] Simon McGregor, “No free lunch and algorithmic randomness,” in
GECCO, Vol. 6 (2006) pp. 2–4.

[101] Tom Everitt, “Universal induction and optimisation: No free lunch?”
unpublished master’s thesis, Stockholms Universitet (2013).

[102] Tor Lattimore and Marcus Hutter, “No Free Lunch versus Occam’s Ra-
zor in Supervised Learning,” in Algorithmic Probability and Friends.
Bayesian Prediction and Artificial Intelligence: Papers from the Ray
Solomonoff 85th Memorial Conference, Melbourne, VIC, Australia,
November 30 – December 2, 2011, Lecture Notes in Computer Sci-
ence, edited by David L. Dowe (Springer, Berlin, Heidelberg, 2013) pp.
223–235.

[103] Gerhard Schurz, Hume’s Problem Solved: The Optimality of Meta-
Induction, illustrated edition ed. (The MIT Press, Cambridge, Mas-
sachusetts, 2019).

[104] E. T. Jaynes, Probability Theory: The Logic of Science, edited by
G. Larry Bretthorst (Cambridge University Press, Cambridge, UK; New
York, NY, 2003).

[105] R. J. Solomonoff, “A formal theory of inductive inference. Part I,”
Information and Control 7, 1–22 (1964).

[106] Marcus Hutter, “On universal prediction and Bayesian confirmation,”
Theoretical Computer Science Theory and Applications of Models of
Computation, 384, 33–48 (2007).

[107] Marcus Hutter, “Open Problems in Universal Induction & Intelligence,”
Algorithms 2, 879–906 (2009), number: 3 Publisher: Molecular Diver-
sity Preservation International.

[108] George D. Montanez, “Why machine learning works,” unpublished
Ph.D. thesis, Carnegie Mellon University, Pittsburgh (2017).

[109] Toni Vallès-Català, Tiago P. Peixoto, Marta Sales-Pardo, and Roger
Guimerà, “Consistencies and inconsistencies between model selection
and link prediction in networks,” Physical Review E 97, 062316 (2018).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


74 References

[110] Amir Ghasemian, Homa Hosseinmardi, Aram Galstyan, Edoardo M.
Airoldi, and Aaron Clauset, “Stacking models for nearly optimal link
prediction in complex networks,” Proceedings of the National Academy
of Sciences 117, 23393–23400 (2020).

[111] Sofia C. Olhede and Patrick J. Wolfe, “Network histograms and uni-
versality of blockmodel approximation,” Proceedings of the National
Academy of Sciences 111, 14722–14727 (2014).

[112] Jean-Gabriel Young, Guillaume St-Onge, Patrick Desrosiers, and
Louis J. Dubé, “Universality of the stochastic block model,” Physical
Review E 98, 032309 (2018).

[113] Peter D Hoff, Adrian E Raftery, and Mark S Handcock, “Latent Space
Approaches to Social Network Analysis,” Journal of the American
Statistical Association 97, 1090–1098 (2002).

[114] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory 23, 337–343
(1977).

[115] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian,
Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-
Christian Bürkner, and Martin Modrák, “Bayesian Workflow,” (2020),
arXiv:2011.01808.

[116] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and
Etienne Lefebvre, “Fast unfolding of communities in large networks,”
Journal of Statistical Mechanics: Theory and Experiment 2008, P10008
(2008).

[117] V. A. Traag, L. Waltman, and N. J. van Eck, “From Louvain to Leiden:
guaranteeing well-connected communities,” Scientific Reports 9, 5233
(2019).

[118] Tiago P. Peixoto, “Efficient Monte Carlo and greedy heuristic for the
inference of stochastic block models,” Physical Review E 89, 012804
(2014).

[119] Tiago P. Peixoto, “Merge-split Markov chain Monte Carlo for commu-
nity detection,” Physical Review E 102, 012305 (2020).

[120] Florent Krzakala, CristopherMoore, ElchananMossel, Joe Neeman, Al-
lan Sly, Lenka Zdeborová, and Pan Zhang, “Spectral redemption in
clustering sparse networks,” Proceedings of the National Academy of
Sciences, 110, 20935–20940 (2013).

[121] Tatsuro Kawamoto, “Algorithmic detectability threshold of the stochas-
tic block model,” Physical Review E 97, 032301 (2018).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


References 75

[122] Daniel A. Spielman and Shang-Hua Teng, “Spectral partitioning works:
planar graphs and finite element meshes,” Linear Algebra and its
Applications 421, 284–305 (2007).

[123] Ulrike von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing 17, 395–416 (2007).

[124] Karl Rohe, “Spectral clustering and the high-dimensional stochastic
blockmodel,” The Annals of Statistics 39, 1878–1915 (2011).

[125] R. B. Lehoucq and D. C. Sorensen, “Deflation Techniques for an Im-
plicitly Restarted Arnoldi Iteration,” SIAM Journal on Matrix Analysis
and Applications 17, 789–821 (1996).

[126] Michael Fire, Rami Puzis, and Yuval Elovici, “Link Prediction in
Highly Fractional Data Sets,” in Handbook of Computational Ap-
proaches to Counterterrorism, edited by V.S. Subrahmanian (Springer,
New York, NY, 2013) pp. 283–300.

[127] Richard B. Lehoucq, Danny C. Sorensen, and Chao Yang, ARPACK
users’ guide: solution of large-scale eigenvalue problems with implicitly
restarted Arnoldi methods (SIAM, 1998).

[128] Gideon Schwarz, “Estimating the Dimension of a Model,” The Annals
of Statistics 6, 461–464 (1978).

[129] H. Akaike, “A new look at the statistical model identification,” IEEE
Transactions on Automatic Control 19, 716–723 (1974).

[130] Etienne Côme and Pierre Latouche, “Model selection and clustering in
stochastic block models based on the exact integrated complete data
likelihood,” Statistical Modelling 15, 564–589 (2015).

[131] M. E. J. Newman and Gesine Reinert, “Estimating the Number of
Communities in a Network,” Physical Review Letters 117, 078301
(2016).

[132] Kenneth P. Burnham and David R. Anderson, eds., Model Selection
andMultimodel Inference: A Practical Information-Theoretic Approach
(Springer, New York, NY, 2002).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


The Structure and Dynamics of Complex
Networks

Guido Caldarelli
Ca’ Foscari University of Venice

Guido Caldarelli is Full Professor of Theoretical Physics at Ca’ Foscari University of Venice.
Guido Caldarelli received his Ph.D. from SISSA, after which he held postdoctoral

positions in the Department of Physics and School of Biology, University of Manchester,
and the Theory of Condensed Matter Group, University of Cambridge. He also spent
some time at the University of Fribourg in Switzerland, at École Normale Supérieure in

Paris, and at the University of Barcelona. His main scientific activity (interest?) is the study
of networks, mostly analysis and modelling, with applications from financial networks to
social systems as in the case of disinformation. He is the author of more than 200 journal
publications on the subject, and three books, and is the current President of the Complex

Systems Society (2018 to 2021).

About the Series
This cutting-edge series provides authoritative and detailed coverage of the underlying
theory of complex networks, specifically their structure and dynamical properties. Each
Element within the series will focus upon one of three primary topics: static networks,

dynamical networks, and numerical/computing network resources.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009118897


The Structure and Dynamics of Complex
Networks

Elements in the Series
Reconstructing Networks

Giulio Cimini, Rossana Mastrandrea and Tiziano Squartini
Higher-Order Networks

Ginestra Bianconi
The Shortest Path to Network Geometry: A Practical Guide to Basic Models and

Applications
M. Ángeles Serrano and Marián Boguñá

Weak Multiplex Percolation
Gareth J. Baxter, Rui A. da Costa, Sergey N. Dorogovtsev and José F. F. Mendes

Modularity and Dynamics on Complex Networks
Renaud Lambiotte and Michael Schaub

Percolation in Spatial Networks
Bnaya Gross and Shlomo Havlin

Multilayer Network Science
Oriol Artime, Barbara Benigni, Giulia Bertagnolli, Valeria d’Andrea, Riccardo
Gallotti, Arsham Ghavasieh, Sebastian Raimondo and Manlio De Domenico
Gillespie Algorithms for Stochastic Multiagent Dynamics in Populations and

Networks
Naoki Masuda and Christian L. Vestergaard

Descriptive vs. Inferential Community Detection in Networks
Tiago P. Peixoto

A full series listing is available at: www.cambridge.org/SDCN

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
11

88
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.cambridge.org/SDCN
https://doi.org/10.1017/9781009118897

	Cover
	Title Page

	Copyright Page 

	Descriptive vs. Inferential Community Detection in Networks

	Contents

	1 Introduction

	2 Descriptive vs. inferential community detection

	2.1 Describing vs. explaining
	2.2 To infer or to describe? A litmus test

	2.3 Inferring, explaining, and compressing

	2.4 Role of inferential approaches in community detection

	2.5 Behind every description there is an implicit generative model

	2.6 Caveats and challenges with inferential methods

	3 Modularity maximization considered harmful

	4 Myths, pitfalls, and half-truths

	4.1 ``Modularity maximization and SBM inference are equivalent methods.'' 

	4.2 ``Consensus clustering can eliminate overfitting.''

	4.3 ``Overfitting can be tackled by doing a statistical significance test of the quality function.'' 

	4.4 ``Setting the resolution parameter of modularity maximization can remove the resolution limit.'' 

	4.5 ``Modularity maximization can be fixed by replacing the null model.'' 

	4.6 ``Descriptive approaches are good enough when the community structure is obvious.''

	4.7 ``The no-free-lunch theorem means that every community detection method is equally good.''

	4.8 ``Statistical inference requires us to believe the generative model being used.''

	4.9 ``Inferential approaches are prohibitively expensive.''

	4.10 ``Belief propagation outperforms MCMC.''

	4.11 ``Spectral clustering outperforms likelihood-based methods.''

	4.12 ``Bayesian posterior, MDL, BIC and AIC are different but equally valid model selection criteria.''


	5 Conclusion

	References


