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Abstract

Quantitative methods have been used to: (1) better predict civil conflict onset; and (2) understand causal
mechanisms to inform policy intervention and theory. However, an exploration of individual conflict
onset cases illustrates great variation in the characteristics describing the outbreak of civil war, suggesting
that there is not one single set of factors that lead to intrastate war. In this article, we use descriptive sta-
tistics to explore persistent clusters in the drivers of civil war onset, finding evidence that some arrange-
ments of structural drivers cluster robustly across multiple model specifications (such as young, poorly
developed states with anocratic regimes). Additionally, we find that approximately one-fifth of onset
cases cannot be neatly clustered across models, suggesting that these cases are difficult to predict and mul-
tiple methods for understanding civil conflict onset (and state failure more generally) may be necessary.
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Civil wars cause humanitarian crises and change the course of state development, with gener-
ational effects (Acemoglu and Robinson 2012; Black 2013; Englehart 2009; Herbst 1996).
As these events can be so catastrophic, many have sought to better understand the drivers of
civil war to anticipate their onset, using a range of methodologies (Fearon, Kasara, and Laitin
2007; Goldsmith and Butcher 2018; Goldstone et al. 2010; Hegre et al. 2017). Quantitative pre-
dictive methods have shown that models are able to generate better-than-random predictions
about future conflict onset, an important finding for researchers and policymakers (Goldstone
et al. 2010; Hegre, Nygéird, and Landsverk 2021), though temporal variability in predictive
accuracy should contextualize model application (Bowlsby et al. 2019).

Civil war onset has various established “drivers,” including patterns of human development
(Fearon and Laitin 2003; Fox and Hoelscher 2012; Goldstone 2008), economic development
(Alesina and Rodrik 1994; Muller and Seligson 1987; Sambanis 2004), horizontal inequality
(Cederman, Weidmann, and Gleditsch 2011; Forsberg 2014; Riiegger 2019), and political institu-
tions (Goldstone 2002; Gurr 1993; Saideman et al. 2002). These variables are typically used to
predict conflict civil war onset by using a “single model” approach that relies upon a set of inde-
pendent variables with a temporal lag.

However, an examination of onset cases used in quantitative models shows that civil war cases
are caused by a wide range of factors (Marshall, Gurr, and Harff 2021). For example, the UK
experienced civil conflict in 1971 driven by state-led discrimination against Irish Catholics by
Ulster paramilitaries and British armed forces (Loyle, Sullivan, and Davenport 2014). Contrast
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this with the roles of agitated youth and regional instability in the 2011 Egyptian Revolution
(Salih 2013) or the 1996 insurgency in Nepal, partly attributable to high rural inequalities
(Murshed and Gates 2005).

While global quantitative models have demonstrated utility in predicting civil war onset, the
wide variation in drivers suggests that there may be unique patterns or risk profiles that are com-
mon to some, but not all, onset cases. It may be that there is not one set of universal structural
factors driving instability, but alternative sets of factors that drive vulnerability, depending on a
particular constellation of factors. Rather than identifying the “gas on the rag” (O’Brien 2002), it
may be the case that there are different types of flammable substances that lead to civil war onset
that are particular to levels of development, or a confluence of factors unique in some cases but
not others, rather than universal factors that explain all failures.

In this article, we use cluster analysis to identify patterns in factors that may correlate with civil
war onset. We ask: is there evidence that persistent and unique clusters of drivers of civil war
exist, calling into question the use of “single models” to predict onset? If we find no persistent
driver clusters, that provides further evidence that “single model” approaches to predicting
onset should continue to be the focus of research in this field, possibly strengthening their prom-
inence in both research and policymaking communities.

We begin by creating a “base” model, using agglomerative clustering on six theoretically moti-
vated variables that have been shown historically to predict civil war onset, finding three persist-
ent clusters. We test how persistent these clusters are by using alternative model specifications.
We find a persistent cluster of drivers of civil war onset associated with young, poorly developed,
and anocratic countries, a grouping of onset cases that is persistent across all model specifications.
We also find a cluster of countries with above-average levels of development in consolidated
regimes that suffer moderately higher levels of horizontal inequalities. This suggests that wealth-
ier, politically consolidated states more commonly have civil conflict onset associated with minor-
ity repression. Our third cluster is characterized by higher neighborhood conflicts, younger
populations, and higher levels of horizontal inequalities.

Research Design

Clustering is an unsupervised quantified classification technique that aims to discover patterns
within data based on the similarity of attributes between observations. All clustering techniques
follow similar steps: (1) scaling input data; (2) calculating the “distance” between observations; (3)
using clustering algorithms, which help determine how clusters are constructed based on the “dis-
tance” between observations; and (4) using the output of the preceding analyses to identify an
appropriate number of clusters. Each step can be completed using several techniques. For our
base model, we elected to normalize the data using a min-max, 0-1 scale. Next, we used
Euclidean distance to measure the similarity between each onset case in a multivariate space.
Euclidean distance calculates the square root of the sum of the squared differences between
input variables for any two observation pairs and is particularly appropriate for noncategorical
variables (Abbott 2014).

Thirdly, we used an agglomerative hierarchical clustering algorithm (more commonly,
“Agnes”) to group observations. Agnes clustering identifies local patterns in observations,
building from the “ground up” by identifying smaller groups of observations that are then
merged into bigger groups at each clustering stage (Kaufman and Kousseeuw 2009).
Alongside the Agnes clustering algorithm, we used Ward’s (1963) linkage method to deter-
mine the distance between clusters because it produces more refined and balanced clusters
(Wolfson, Madjd-Sadjadi, and James 2004).

Determining the appropriate number of clusters can be achieved using various approaches,
including visual heuristics, quantitative indices, and confirmation through domain knowledge
(Abbott 2014; Kodinariya and Makwana 2013). We primarily relied upon an approach that
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creases thirty indices that evaluate different aspects of model behavior using the NbClust R package
(Charrad et al. 2020)." The output consistently pointed to the use of three clusters in this analysis.

We used the Political Instability Task Force’s (PITF) event data for our onset cases (Marshall,
Gurr, and Harff 2021). Our case selection criteria included ethnic wars, revolutionary wars, and
genocides/politicide, and excluded cases that were exclusively adverse regime change.” We then
reduced the overall sample to first-year onset (avoiding conflict continuation years) with a min-
imum of two years of peace prior to the civil war onset year.

We selected variables measuring theoretically supported drivers of civil war onset, intentionally
selecting from a range of competing alternative explanations in the literature: economic develop-
ment (Buhaug, Cederman, and Gleditsch 2014; Collier and Hoeffler 2004; Van de Walle 2004),
human development (Badie 2000; Rotberg 2002; Urdal 2005), demographics (Bricker and Foley
2013; Dyson 2012; Mesquida and Wiener 1999; Weber 2019), governance (Bogaards 2009; Cook
and Savun 2016; Dahl 1971; Mansfield and Snyder 1995), neighborhood effects (Buhaug and
Gleditsch 2008; Cederman et al. 2013; Wolft 2011), and state-led discrimination/horizontal inequal-
ities (Gurr 1970; @stby, Nordas, and Red 2009; Reynal-Querol 2002). The sample covers 191 coun-
tries from 1960 to 2012 (see Table 1).” The final dataset for the base model includes 76 onset cases.”

We pursued various strategies to test the sensitivity of model assumptions to our results.” First,
we altered the distance metric to use Gower’s (1971) measure of distance, which accounts for
mixed-type data inputs. We also tested an alternative clustering algorithm called “partitioning
around medoids” (PAM) and tested alternative data, including the Varieties of Democracy
(V-Dem) liberal democracy index (Coppedge et al. 2021) and civil conflict onset sample data
from the Uppsala Conflict Data Program / Peace Research Institute Oslo (UCDP/PRIO)
(Gleditsch et al. 2002; Gleditsch et al. 2021). Finally, we added two additional variables that
have been identified as drivers of civil war onset but are less policy-relevant: population size
and peace years. This analysis validates our findings.

Results and Discussion

Table 2 and Figure 1 summarize the base model. Radar plots show the clusters’ mean value by
variable, the full civil conflict onset sample mean value, and the full sample mean for both
onset and non-onset cases.’

The top-left cluster in Figure 1 highlights civil war onset cases where the state has low levels of
economic development, high infant mortality, young populations, low levels of state-led discrim-
ination, few neighboring conflicts, and anocratic governance. The onset case that best represents
the conditions described in this cluster is Guatemala in 1966, when communist insurgents
launched a protracted guerilla conflict against the ruling military regime (Johnson 1966). This
cluster is the second largest of the three, containing 39.47 per cent of civil conflict onset cases
(N'=30). We describe this cluster as: Anocratic-Younger-Less Developed.

"Each index evaluates a different number of clusters based on a specific quantitative threshold. This includes the CH index
(Calinski and Harabasz 1974) which evaluates cluster validity based on the ratio of the sum of between-cluster dispersion and
of intercluster dispersion for all clusters. Gap statistics (Tibshirani, Walther, and Hastie 2001) compare the total intra-cluster
variation between observed data and reference data with a random uniform distribution (a distribution with no obvious clus-
tering) for different number of clusters. For further confirmation, we also visualized the suggested number of clusters through
a dendrogram and a scatter plot based on the first two principal components of the data (Kassambara and Mundt 2020; Lé,
Josse, and Husson 2008).

*For the full list of PITF cases included in our sample, see Table 1.1 in the Online Appendix.

*For a detailed description of variables, see Table 2 in the Online Appendix.

*For descriptive statistics of variables for onset cases, see Table 3 in the Online Appendix.

>For model and data specifications used for sensitivity analysis, see Table 5 in the Online Appendix.

®Boundaries of radar plots represent minimum and maximum mean values among all five sample groups, including the
full civil conflict sample, the global sample for both onset and non-onset cases, and three identified clusters.
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Table 1. Variable descriptive statistics (1960-2012, missing values removed, unnormalized)

Associated theory of

Predictor state fragility N Mean S.D. Min Max Source

Regime type (squared) Governance 6,260 55.32 3191 0 100 Marshall, Gurr, and
Jaggers (2016)

Youth bulge, 15+ (%) Demographics 6,260 41.34 8.92 17.89 56.41 UN Procurement
Division (2021)

GDP/capita (In) Economic development 6,260 8.67 1.29  2.04 12.37 IMF (2022)

Borders in conflict (ratio) Neighborhood effects 6,260 0.26 030 O 1 Marshall, Gurr, and Harff
(2021)

Infant mortality rate Human development 6,260 3.80 42.46 —84.44 136.06 WDI (2021)

(%, annual, mean centered)
State-led discrimination State-led discrimination 6,260 7.71 876 0 57  Marshall and Asal (2007)

(sum political and economic)

Table 2. Descriptive clusters of civil conflict onset

Cluster characteristics Observations Most central case
Anocratic-Younger-Less Developed 30 (39.5%) Guatemala, 1966
Older-Wealthier-Moderate Discrimination 13 (17.1%) China, 2009
Higher Discrimination-Worse Neighborhood-Younger 33 (43.4%) Sudan, 1983

The top-right cluster in Figure 1 includes cases where the state has consolidated governance
(either democracy or autocracy), gross domestic product (GDP) per capita above the global
mean, low infant mortality, older populations, and more peaceful neighborhoods. However, it
is notable that state-led discrimination in these states is somewhat high relative to the global
mean, as well as the conflict-onset mean. This cluster is the smallest of the three in terms of
onset cases grouped within it (17.11 per cent [N =13]). The most central conflict case here is
China in 2009, where Uyghur minorities launched violent actions against the government and
Han Chinese residents in and around the Xinjiang province, such as the Urumgi riots
(Hastings 2011). The characteristics of the states in this cluster at the time of their civil conflict
onset can be described as: Older-Wealthier-Moderate Discrimination.

The final cluster in Figure 1 is characterized by states with younger populations, severe levels of
neighborhood conflict, and very high levels of state-led discrimination. This cluster is the largest
of the three that we found among our PITF sample of civil conflict onset cases, containing 43.42
per cent of total cases (N =33). The most central onset case in this cluster is Sudan in 1983,
wherein the Sudan People’s Liberation Army in the country’s more Christian southern regions
launched an insurgent war against the majority Muslim Arab government in Khartoum, which
sanctioned genocidal actions by progovernment militias in the region (Scott 1985). This cluster’s
descriptive characteristics motivate us to describe the group as: Higher Discrimination-Worse
Neighborhood-Younger.”

These three clusters are persistent across various model specifications, with the Older-
Wealthier-Moderate Discrimination cluster showing the lowest level of case variation across
alternative clustering methods. The Anocratic-Younger-Less Developed cluster was the second
most robust across model specifications, followed by the Higher Discrimination-Worse
Neighborhood-Younger cluster.®

"More detailed summary statistics can be found in Table 5 in the Online Appendix C.

8For results of each cluster analysis, see Table 6 in the Online Appendix; for a summary of the persistence of each cluster-
ing approach, see Table 7 in the Online Appendix; and for visualizations of the sensitivity analysis, see Figures 1-4 in the
Online Appendix.
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Fig. 1. Base model results.

We also examine how individual onset cases behave across models by comparing the cluster
assignment of cases across all eight model specifications. For forty-four of the seventy-six cases
(57.9 per cent), there is uniform agreement on cluster assignment, regardless of model specifica-
tion. Conversely, in 19.7 per cent of cases (fifteen of seventy-six), onset cases do not neatly cluster
for at least two out of eight model specifications, indicating broad disagreement (see Table 8 in
the Online Appendix). For all robustness and sensitivity checks, see the Online Appendix.

Discussion and Conclusion

Do states experience civil conflicts for similar reasons? Or, are there diverse, yet persistent, sets of
conditions under which they arise? We find evidence that persistent clusters do appear to exist
but that these are not uniformly applied to all cases. In our analysis, we found that nearly
one-fifth of onset cases move substantially across clusters when using different techniques.
These hard-to-anticipate cases of civil conflict may be some of the most challenging for policy-
makers to respond to, as they display few signs of impending danger and can be difficult to react
to without prior contingency plans in place. Conflicts like these, which may appear without clear
structural warnings, can lead to significant humanitarian crises, destabilizing regions as neighbors
are taken by surprise.

However, while not all civil conflict onset cases neatly cluster across single or multiple meth-
ods, we can point to persistent patterns of characteristics across model specifications. Such
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persistence shows that although states do not descend into civil conflict for the same set of rea-
sons, there are common characteristics across geography and time. These clusters may provide
new insights for scholars as to the descriptive conditions of fragility and shine a light on why
some cases descended into civil conflict, even if they did not appear fragile in the ways high-
lighted in prior literature.

We find that well-established drivers of civil conflict onset feature prominently in this analysis,
but they are contextualized in relationship with other drivers of civil war onset. For example, ano-
cratic states are particularly vulnerable to civil war (Goldstone et al. 2010), and recent research
has highlighted how contemporary democratic backsliding could make the United States vulner-
able to civil war in the near future (Walter 2022). However, this article shows that anocracy is
associated with civil war onset when coupled with such factors as a high youth population in
poorly developed states, while civil wars in relatively wealthier states are driven not by mixed
regimes, but instead by minority discrimination. Persistent clusters of characteristics across
civil conflict onset help demonstrate that failures can be understood not only as multidimen-
sional, but also as neither unique nor uniform in the structural features present when they
occur. This finding should lend aid to future works studying state failure, while also building a
better understanding of the dynamics of these events and encouraging more robust efforts at
anticipating them.

The next generation of civil war studies should be sensitive to the limitations of single global
models to predict onset, which may be improved with better understanding of concurrent struc-
tural drivers. If states do, in fact, fail for distinct reasons, future studies may benefit from mod-
eling distinct “risk profiles” and blending multiple methods of exploration to further unpack the
assorted nuanced explanations for civil war onset. As we find that while some onset cases cluster
neatly and consistently, a large portion (about 20 per cent) are more difficult to classify, suggest-
ing that researchers exploring civil war should expect the unexpected. Future work may wish to
keep this finding in mind, as it could affect both prediction and policy prescriptions for antici-
pated conflicts.

We recognize that the study of civil conflict onset will remain a complex and contentious
space. Using slowly moving structural factors to predict rare events will raise substantive research
issues related to causality, endogeneity, and levels of analysis. While these challenges will persist,
we hope to create a space that bridges a gap between rigorous models that predict conflict onset
and case-study approaches that trace causal mechanisms. We hope this “liminal” space can be
used creatively to further the study of conflict onset to reduce its prevalence and destructive cap-
acity in the future.
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