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PROPERTY (G), REGULARITY, AND
SEMI-EQUICONTINUITY

BY
J. S. YANG (9

1. This note, motivated by [2], [3], and [4], is devoted to an investigation of
properties related to equicontinuity in function spaces of topological spaces. In
§2, we study the property (G) defined in [3], and the regularity defined in [4]. A
sufficient condition for the simultaneous continuity of a function of two variables,
which is analogous to a well known result in equicontinuity, is given at the end of
the section. In §3, we relate the regularity with the semi-equicontinuity defined in
[2], by localizing the semi-equicontinuity in an obvious way which leads us to
weaken some of the hypotheses used in [2]. By the way of constructing an example,
we also obtained a sufficient condition for a regular semitopological group to be a
topological group.

Throughout this note, X and Y are general topological spaces unless otherwise
specified. ¥ will denote the set of all functions on X to ¥ while (X, ¥) will be the
set of all continuous functions on X to Y. The reader is referred to [5] for definitions
and notations not defined here.

2. Property (G), and Regularity.

DErINITION 1 [3]. F = Y¥ is said to have the property (G) if for each open set
Uin Y and each pointwise closed subset G of F, (¢ f~2(U) is open in X.

DEFINITION 2 [4]. FCY¥ is said to be regularatxin X if for each openset Uin Y,

and G < Fsuch that G(x) < U, there exists an open neighborhood ¥ of x such that
f(¥V) < U for each fin G. F is said to be regular if it is regular at each point of X.

REMARK. Members of a regular family F < Y= or members of a family F < Y%
having property (G) are not necessary continuous as Example 1 shows. If Yis T3,
or regular, and if F < Y% is regular or has property (G), then each member of Fis
continuous.

ExaMpLE 1. Let X be the set of all reals with the usual topology, and Y be the
set {0, 1} endowed with the topology generated by {0}.
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(a) f F=Y X itis easy to see that F is regular at each point of X. But F is the
pointwise closure of the set {f}, where f(x)=0 for x € X, in ¥¥, and F contains
the noncontinuous function g, where g(x)=0 if x<0 and g(x)=1 otherwise.

(b) If H is the family {g, 4}, where 4(x)=0 if x<0 and h(x)=1 otherwise, then
the nonempty pointwise closed subsets of H are {h} and H, H has property (G),
but g is not continuous.

THEOREM 1. If F < (X, Y) has the property (G), then F is regular.

Proof. Suppose F < (X, Y) has property (G), and x in X. Let U be open in ¥,
and G < F such that (G—x) < U. If G is the pointwise closure of G in F, then
G(x) © G(x) = U. Thus N=[\,.cf~2(U)is open in X and contains x, so f(N) <
U for each f€ G, and F is regular at x.

ExAMPLE 2. Let X be the set of all reals with the usual topology. For each integer
n, let f,: X—X be defined by f,(x)=n+x, and let F={f, :n integers}. It is easy to
see that F is equicontinuous at every point of X, but F is not regular at every point
of X. To see it is not regular at p € X, let U=U,, U,,, where U,=@n+p—(/n),
n+p+(1/n)) for each n. Then FTP) < U but no neighborhood N of p exist such
that £, (N) < U for each n.

We recall that a family F < ¥~ is said to be evenly continuous at x € X if for
each y in Y and each neighborhood ¥ of y, there is a neighborhood U of x and a
neighborhood W of y such that f (U) = ¥ whenever f (x)isin W. A family F < Y¥
is said to be evenly continuous (on X) if F is evenly continuous at each point of X.

THEOREM 2. If Y is a regular space, and if F < Y= is regular at x, then F is evenly
continuous at x. There is an example of F < (X, Y) which is evenly continuous at
each point, but F is regular at no point of X.

Proof. The first half is Lemma (2.5) of [4].

ExampLE 3. Let X be the set of all reals with the topology having all intervals of
the form [a, b), a<b, as a base. For each ain X, let f,(x)=x+a, for x in X. Then it
is not hard to see that the family {f,:a in X} is evenly continuous, but is regular at
no point of X. To see this, for each positive integer n, let f,: X->X be defined by
fuX)=x+n.If pisin X, and U=, [n+p, n+p+(1/n)), then U is open in X,
and F(p) < U since the family {[n+p, n+p+(1/n)): n positive integers} is locally
finite, where F={f, :n positive integers}. In order that the family {f,:a in X} be
regular at p, we would have to have a neighborhood V'=[p, p+b), 56>0, of p such
thatf,([p, p+b))=[n+p, n+p+b) < [n+p, n+p+(1/n)) for each positive integer
n, but it is impossible. Thus the family {f,:a in X} is not regular at p. Note that
1—5(]7) is not compact for each p in X.
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REMARK. If Y is not regular, F = Y* may be regular at a point p in X without
being evenly continuous at p, as Example 1 has shown. If Yis a regular space, and
F = Y is regular, then the pointwise closure F of Fin Y* is contained in (X, ¥).
As pointed out in [5, p. 237], even if F < (X, Y)is evenly continuous and F(x) is a
totally bounded subset of a uniform space Y, F need not be equicontinuous at x.
The following theorem reflects the fact that the regularity is much stronger than
the even continuity in some sense.

THEOREM 3. If Y is a uniform space, F < (X, Y) is regular at x, and F(x) is a
totally bounded subset of Y, then F is equicontinuous at x. Conversely, if F is equi-
continuous at x and every two-element open cover for F(x) is uniform, then F is
regular at x.

Proof. Let U be an entourage of Y, V an open symmetric entourage of Y, and
W a closed entourage of Y such that V2 < Uand W < V. For y in F(x), if G,=
{feF:(y,f(x)) € W}, then G, is a nonempty subset of F and G,(x) = W[y] <
V[y]. Thus there is a neighborhood N, of x such that f(N) < V[y] for each fin G,.
By totally boundedness of F(x) there is a finite subset {y;, y,, . . . , ¥} of F(x) such
that F(x) < M- WIy;]. For each y,, define G, and N; as above, and let N=
N;-1 N;. Then N is a neighborhood of x. If fe F, then f(x) € W[y,] for some i,
hence f(N) < V[y,]. Thus, if z is in N, then (f(x), f(2)) € V2 = U. Hence F is
equicontinuous at x.

For the second part, let U be an open subset of ¥, and G = F such that 5(}5 <

U IfU={U,Y —G—(x-)}, U is a two-element open cover for %, so there is an
entourage ¥ of Y such that V[f(x)] is contained in one of the member of U
whenever f € G. Hence, for each fin G, V[f(x)] < U. By the equicontinuity of F
at x, there is a neighborhood N of x such that f(N) = V[f(x)] for each fin G.
This shows that F is regular at X.

COROLLARY. If Y is a uniform space, and F < (X, Y) such that F(x) is compact,
then F is equicontinuous at x if and only if F is regular at x.

THEOREM 4. If a family F of functions on a topological space X to a Hausdorff or
regular space Y is compact relative to a jointly continuous topology =, then F has the

property (G).

Proof. If Y is Hausdorff, the pointwise topology for F is Hausdorff and is
smaller than 7, thus it coincides with =. If Y is regular, F is regular by Theorem
(2.1) of [4], thus Fis evenly continuous by Theorem 2 above, the pointwise topology
for F is jointly continuous Theorem 7.19 [5], and F is compact relative to the point-
wise topology. Hence, if either Y is Hausdorff or regular, F is compact relative to
the jointly continuous pointwise topology.
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Let G be any pointwise closed subset of F and let U be any open subset of Y. We
need to show that (. f~(U)is open in X. For this purpose, let x € ¢ (V).
The compact set G X {x} of F x X is contained in p~1(U), where P is the function
from E x X to Y such that P(f, x)= f(x), and p~*(U) is open since the pointwise
topology for F is jointly continuous. Therefore, there exists an open neighbor-
hood ¥V of x such that P(GX V) < U, i.e. f(V) < Uforall fin G. Hence ;o f*
(U) is open and the family F has property (G).

THEOREM 5. A family F of continuous functions on a k-space X to a regular space
Y has a compact closure F in (X, Y) relative to the compact-open topology if and

only if (1) F(x) is compact for every x in X, and (2) F has the property (G).

Proof. If (2) is satisfied, F is evenly continuous by Theorem 1 and Theorem 2
above, thus F has the same closure Fin ¥ relative to the compact-open and point-
wise topologies by the Lemma of [6, p. 20], F = (X, Y) and two topologies for F
coincide. Since F is a closed subset of the compact space X{F‘(E :xe X}, Fis
compact in the compact-open topology.

Conversely, suppose F has a compact closure Fin (X, Y)relative to the compact-
open topology. By Theorem A of [1], the compact-open topology for F is jointly
continuous on compacta. But Fx X is a k-space, the compact-open topology for
F is jointly continuous, thus F has the property (G) by Theorem 4. Thus the com-
pact-open and the pointwise topologies for F coincide, and that FE is compact
follows easily.

Werecall that a topological space X is called a P-space if every G set in X is open.

THEOREM 6. Assume Y is a regular space, and F < (X, Y) is evenly continuous at
x in X. If either (a) F(x) is compact, or (b) X is a P-space and F(x) is Lindelof, then
F is regular at x.

Proof. Part (a) is a part of Theorem A [4].
For the second part, assume X is a P-space, and F(x) is Lindelof. Let U be an

open subset of Y, and G < F such that G(x) < U. For each y in G(x), there is a
neighborhood ¥, of x and an open neighborhood W, of y, W, < U, such that

f(V,) = U whenever fe€ F with f(x) € W,. The family {W,:y e G(x)} forms an
open cover for G—(J—c—), so there is a countable subcover {W,, W,,... W, ...}
corresponding to a countable subset {y,, y,,...y,} of G(x). For each i, i=1,
2,...n,...let V; be the neighborhood of x associated with W, as stated above,
and let V=2, V;. Then V is a neighborhood of x, and f (V) = U for each f € G.
Thus F is regular at x.

Example 3 shows that if either F(x) is not compact, or X is not a P-space,
Theorem 6 is false.
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COROLLARY. If Y is regular, and if F(x) is compact for each x € X, then the
property (G), regularity, and even continuity of F < (X, Y) are equivalent.

Proof. The equivalence of regularity and even continuity follows from Theorem
6, and the equivalence of the property (G) and even continuity follows from
Theorem B of [6] and Theorems 1 and 4 above.

If X, Y, and Z are sets, and if fis a function from X X Y to Z, we define functions
f® and f, for each a€ X and b€ Y as follows: f*(y)=f(a, y), for y in Y, and
fy(xX)=f(x, b), for xin X. If 4 = Y then f; denotes the family {f,:y € 4}.

THEOREM 7. Let X, Y, and Z be topological spaces, a and b be points of X and Y
respectively, and suppose that fis a function from X X Y to Z satisfying the following
conditions:

(1) The function f* is continuous at b.

(2) The family of functions fy is evenly continuous at a. Then f is continuous at
(a, b).

Proof. Let U be an open neighborhood of f(a, b). By even continuity, there is a
neighborhood V of f(a, b) with f(a, b)) € V = U, and a neighborhood U, of ain X
such that f,(U,) = U whenever f(a, y) € V. There is a neighborhood U, of b such
that f*(U,) < V. Note that y e U,, f(a, y) € V, thus f(x, y) € U for each x € U,.
Hence if x € U, and y € U,, then f(x, y) € U, i.e. fis continuous at (g, b).

CoROLLARY. If the function f® is continuous at b, Y is regular, and fy is regular at
a, then f is continuous at (a, b).

3. Semi-equicontinuity vs regularity.

DEFINITION 3. [2] A collection #” of two-element open covers for a topological
space X is said to be a semi-uniformity for X is for each point x in X, and each
neighborhood U of x, there is {V;, V,}in¥ " such that xe V; « Uand X — V, is
a neighborhood of x.

It is remarked in [2] that a topological space has a semi-uniformity if and only
if it is regular, and that every uniform space (X, %) has a semi-uniformity con-
sisting of all two-element uniform open covers of X, called the uniform semi-
uniformity for X.

The following definition is a localization of the one given in [2].

DErFINITION 4. Let F be a family of functions from a topological space X to a
semi-uniform space (Y, ¥"). F is said to be semi-equicontinuous at x in X if for
each {V;, V,} in ¥ there is a neighborhood U of x such that f(U) < V;or f(U) <
V, for each f € F. Fis said to be semi-equicontinuous if F is semi-equicontinuous at
each point of X.
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REMARK. F is semi-equicontinuous at x in X if and only if for each {V;, V5} in
" and each pointwise closed subset G of F, there is a neighborhood U of x such
that f(U) < ¥, or f(U) < V, for each fe G.

ReMARK. If a family F of functions from a topological space to a semi-uniform
space (Y,¥") is semi-equicontinuous at x, then each f€ F is continuous at x.

REMARK. It is easy to see that if a family of functions F from a topological space
X to a uniform space (Y, %) is equicontinuous at x € X, then F is semi-equicon-
tinuous at x relative to the uniform semi-uniformity of Y. Therefore Example 2 is
an example of a family F of functions which is semi-equicontinuous at x but is not
regular at x.

THEOREM 8. If a family of functions F from a topological space X to a semi-uni-
form space (Y,¥") is semi-equicontinuous at x, then F is evenly continuous at X.

Proof. Let y be a point in Y, and U a neighborhood of y in Y. If y ¢ F(x),
then there is a neighborhood W of y such that W N F(x)=, and the conclusion
is vacuously satisfied in this case. If y € 1—7@, let {V, Vo}in¥ such thatye V; <
U and X—V, is a closed neighborhood of y. If W=X—V,, then W NF(x)*# .
Let N be a neighborhood of x such that f(N) < V; < U or f(N) < V,. But if
f € Fwith f(x) e W, then f(x) ¢ V5, thus f(N) = U. Hence F is evenly continuous
at x.

COROLLARY. [2] If a family F of functions from a topological space to a semi-
uniform space is semi-equicontinuous, then F is evenly continuous.

REMARK. If Y is a regular space, the set ¥"y of all two-element open covers for
Y is a semi-uniformity for Y, called the natural semi-uniformity for Y. It is easy to
see that if a family F of functions from a topological space X to a regular space Y is
semi-equicontinuous at x in X relative to the natural semi-uniformity ¥ for Y,
then F is regular at x.

The following generalizes Theorem 2 of [2].

THEOREM 9. If a family F of continuous functions from a topological space X to a
semi-uniform space (Y, ¥") is compact relative to a jointly continuous topology, then
F is semi-equicontinuous.

Proof. It follows from Theorem (2.1) of [4] that F is regular, and thus is evenly
continuous and the pointwise topology for F is jointly continuous since Y is
regular. Note also that F is compact relative to the pointwise toplogy.
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Now let {V}, V,} € ,andlet xe Xand y € Y. If f € Fand if f (x) € V3, we can
find open sets U, in F with the pointwise topology and U, in X such that fe U, and
xeU,and P(U,x U, < V; where again P(f, x)=f(x); if fe F with f(x) ¢ V3,
then f(x) € V, and we also can find open neighborhoods U, and U, of f and x
respectively such that P(U, X U,) < V,. The family {U,:f € F}forms an open cover
for F in the pointwise topology, thus there are f}, f;, . . . f, in F and corresponding
U,,i=1,2,...n,suchthat F < U, U t If N is the intersection of the open sets
U,, which are associated with the open sets U, , then N is a neighborhood of x.
For each f€ F, fe U,, for some i, thus f(N) < V; or f(N) < V,, and F is semi-
equicontinuous at x.

RemARrk. Using Theorem 9 we may also obtain an Ascoli type theorem similar
to Theorem 5.

Recall that a semitopological group is a group endowed with a topology under
which the group multiplication is continuous separately.

ExAMPLE 4. Let X be a regular semitopological group in which every open cover
of X by left translates of neighborhoods of the identity has a refinement by left
translates of a neighborhood of the identity, and let Y be any regular space, and
suppose fis a continuous function of X into Y. For each ain X, let f, be the function
on X defined by f, (x)=f (ax), and let F={f :a € X}. Then F is semi-equicontinuous
relative to every semi-uniformity of Y. To see this let ¥~ be a semi-uniformity of
Y, let pe X, and let {Vy, V,} €. If f, € F such that f,(p) € V7, then, by the
continuity of fat ap, there is a neighborhood U, of theidentity esuch that f (aU,p) <
Vy; if f, € F such that f,(p) ¢ V3, then f,(p) € V,, so there is a neighborhood U, of
the identity e such that f (aU,p) < V,. The family {aU, :a € X} forms an open cover
for X, thus there is a neighborhood U of e such that, for each a € X, aU is contained
in bU, for some b e X. Now if ae X, f, (Up)=f(aUp) < f(bU,p) = V; or V.

Thus F is semi-equicontinuous at p € X.

THEOREM 10. If X is a regular semitopological group in which each open cover of X
by left translates of neighborhoods of the identity has a refinement by left translates of
a neighborhood of the identity, then X is a topological group.

Proof. In the above Example 4 take Y to be X, and take the continuous function
f to be the identity map. Then each f, will then be a left translation of X, and the
conclusion then follows from Theorem 7 of [2].

ReMARK. The property stated in Theorem 10 implies paracompactness of X,
but, however, Theorem 10 is false if we simply assume X to be paracompact as
Example 3 shows. The group of all reals with usual addition endowed with the
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topology having all intervals of the form [a, b), a<b, as a base is a semitopological
group but is not a topological group since inversion is not continuous.

AckNOWLEDGMENT. The author is indebted to the referee for Example 1(b) and pointing out
some errors in the early version of this paper.
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