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Abstract

The Recognition Heuristic (Gigerenzer & Goldstein, 1996; Goldstein & Gigerenzer, 2002) makes the counter-intuitive
prediction that a decision maker utilizing less information may do as well as, or outperform, an idealized decision maker
utilizing more information. We lay a theoretical foundation for the use of single-variable heuristics such as the Recogni-
tion Heuristic as an optimal decision strategy within a linear modeling framework. We identify conditions under which
over-weighting a single predictor is a mini-max strategy among a class of a priori chosen weights based on decision
heuristics with respect to a measure of statistical lack of fit we call “risk”. These strategies, in turn, outperform standard
multiple regression as long as the amount of data available is limited. We also show that, under related conditions,
weighting only one variable and ignoring all others produces the same risk as ignoring the single variable and weighting
all others. This approach has the advantage of generalizingbeyond the original environment of the Recognition Heuristic
to situations with more than two choice options, binary or continuous representations of recognition, and to other single
variable heuristics. We analyze the structure of data used in some prior recognition tasks and find that it matches the
sufficient conditions for optimality in our results. Ratherthan being a poor or adequate substitute for a compensatory
model, the Recognition Heuristic closely approximates an optimal strategy when a decision maker has finite data about
the world.

Keywords: improper linear models, recognition heuristic,single-variable decision rules.

1 Introduction

Common sense would suggest that it is always bet-
ter to have more, rather than less, relevant information
when making a decision. Most normative and prescrip-
tive theories of multi-attribute decision making are com-
pensatory models that incorporate all relevant variables.
This perspective was challenged by Gigerenzer and Gold-
stein (1996) and Gigerenzer, Todd, and the ABC Group
(1999), who proposed a theoretical framework of sim-
ple decision rules, often referred to as “fast and fru-
gal” heuristics, suggesting that in some cases a decision
maker (DM) utilizing less relevant information may ac-
tually outperform an idealized DM utilizing all relevant
information. In fact, many of these heuristics use a single
cue selected among the many available for the prediction
task. Key among these single-variable decision rules is
the Recognition Heuristic (RH) (Gigerenzer & Goldstein,
1996; Gigerenzer et al., 1999; Goldstein & Gigerenzer,
2002).

A rapidly growing empirical literature suggests that
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single-variable decision rules are descriptive for at least a
subset of DMs with regard to both Take The Best (Bröder,
2000; Bröder & Schiffer, 2003; Newell & Shanks, 2003)
and the RH (Goldstein & Gigerenzer, 2002; Hertwig &
Todd, 2003; Pachur & Biele, 2007; Scheibehenne &
Bröder, 2007; Serwe & Frings, 2006; Snook & Cullen,
2006). Questions remain, however, as to exactly when
and why a single-variable rule will perform well.

Hogarth and Karelaia (2005) examined the relative per-
formance of single-variable rules within a binary choice
framework where both predictor (independent) and cri-
terion (dependent) variable were assumed to be contin-
uous. Using a combination of analytic tools and simu-
lations, they found that single-variable rules have strong
predictive accuracy when: 1) all predictors are highly and
positively inter-correlated, 2) the single predictor usedis
highly (and, typically, positively) correlated with the cri-
terion.1 Hogarth and Karelaia (2006) conducted a related
analysis using binary rather than continuous cues (pre-
dictors). Fasolo, McClelland, and Todd (2007) identified
similar favorable conditions for single-variable rules us-
ing a series of simulations. Shanteau and Thomas (2000)
labeled environments with highly positively correlated

1In keeping with the prior literature on the recognition heuristic, we
use the term “criterion” to refer to the dependent variable of interest,
e.g., the population of German cities.
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predictors, “friendly” environments, and demonstrated in
a simulation that single-variable rules tended to under-
perform when the predictors in the model were nega-
tively correlated, a finding that was later replicated by Fa-
solo et al. (2007) (see also Martignon & Hoffrage, 1999;
and Payne, Bettman, & Johnson, 1993). In a similar
vein, Baucells, Carrasco, and Hogarth (2008) presented
a framework to analyze simple decision rules within the
context of cumulative dominance (see also Katsikopoulos
& Martignon, 2006).

In this paper, we present results regarding the effec-
tiveness of single variable rules that diverge from previ-
ous studies in two major ways. First, we show that when
a single predictor, denoted without any loss of general-
ity, x1, is positively correlated with an array ofp-many
other predictors, where each of thesep-many predictors
are either uncorrelated or weakly positively correlated,
the optimal weighting scheme places greater weight on
x1 than any of the remaining cues. This result is a ma-
jor departure from previous studies (Fasolo et al., 2007;
Hogarth & Karelaia, 2005; Shanteau & Thomas, 2000)
that identify favorable conditions for single-variable rules
as “single-factor” models where all variables are highly
positively correlated. Second, our results do not rely on
any specific assumptions about thecue validities, defined
as the correlations between the predictors (cues) and the
criterion. The only thing that matters is the sign on the
correlation of the single cue. Some lexicographic single-
variable rules depend upon either the knowledge or esti-
mation of all cue validities. For example, the Take The
Best rule (Gigerenzer & Goldstein, 1996; Gigerenzer et
al., 1999) depends on the identification of the single best
cue. In our results, the validity of the single variable need
not be the highest among the available predictors. We
apply the new results to the RH, for which Goldstein and
Gigerenzer (2002) argue that the recognition validity, i.e.,
the correlation between the criterion and recognition, is
inaccessible to the DM with the criterion variable influ-
encing recognition through mediator variables in the en-
vironment.

The divergence in our results stems from our somewhat
different approach to answering the question “when does
less information lead to better performance?” First, we
characterize the RH within the framework of the linear
model — i.e., within the standard regression framework
— as an “estimator” that relies on a single predictor. As
in the regression framework, we conceptualize the best
set of weights to assign to the cues, such that if one had
unlimited data and knowledge, they would maximize pre-
dictive accuracy and call this vector of weightsβ. We
then consider the weights that would be placed on the
cues by various decision heuristics (such as equal weight-
ing) as if they were estimates ofβ. Within this frame-
work, we can prove results with respect to a measure

of statistical inaccuracy called “risk” (defined formally
in section 2), which measures how close these heuristic
weights are expected to be to the best weights,β. This
measure of inaccuracy is particularly useful because it
goes beyond optimizing within a single sample; the closer
a set of weights is to the best weights, the more robustly
it cross-validate in new samples. An advantage to cast-
ing the problem within the framework of the linear model
is that the results can be generalized to accommodate a
broad range of situations, including choosing between
more than two options, binary or continuous represen-
tations of recognition, and to evaluate the success of any
single variable rule, not just RH.

We show that under certain conditions, placing greater
weight on a single variable relative to all others repre-
sents a form of optimization: It minimizes the maximum
value of risk over all choices of decision rules. As the
number of cues becomes large, this mini-max strategy
converges to a rule that puts a large weight on a single
cue and minimally weights all others. We use the term
“over-weighting” to describe this effect of a single pre-
dictor cue receiving disproportionally more weight than
any other predictor cue according to an optimal weighting
strategy. Further, we show that weighting the single cue
and ignoring all others produces the same risk as ignor-
ing the single cue and weighting all others, regardless of
the number of cues. Previous research has shown that de-
cision heuristics applied in this manner outperform stan-
dard regression models until samples become very large
(Davis-Stober, Dana, & Budescu, 2010). Thus we expect
that, under the right conditions, a single variable to be just
as accurate a predictor as the full set of predictors.

While this framework could be used to justify any sin-
gle variable heuristic, we argue that the sufficient con-
ditions plausibly resemble environments in which one
would use the RH, and where recognition is the single
cue. Indeed, we examine data used in prior recognition
tasks (Goldstein, 1997) and show that it fits well our suf-
ficient conditions. Our derivation does not assume a “cue
selection” process. In other words, we presuppose the
DM always utilizes the single cue of interest. The RH
theory is a natural application of these results as this the-
ory also does not presuppose a cue selection process, i.e.,
if one alternative is recognized and the other is not then
recognition is automatically the predictor cue of interest.

Why is recognition rational? Our results demonstrate
that when a single cue (recognition) is positively corre-
lated with all other cues (knowledge), then it is a mini-
max strategy to over-weight the recognition cue. Inter-
estingly, these results do not depend upon the validities
of either the recognition or the knowledge cues.

This paper represents a convergence of two perspec-
tives. On the one hand, we validate the ecological ratio-
nality of single variable rules by recasting them as robust
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statistical estimators that minimize maximal risk within a
linear model. From another perspective, our results sug-
gest that the heuristics could work for no other reason
than that they approximate an optimal statistical model,
albeit with an objective function that has heretofore been
unarticulated in this literature. Thus, while Goldstein and
Gigerenzer (2002) see the RH approach as a contrast to
heuristics being used as “imperfect versions of optimal
statistical procedures,” it appears that the “Laplacean de-
mon” (Gigerenzer & Goldstein, 1996; Todd, 1999) —
with unlimited computational power — would use a rule
much like the RH!

The remainder of the paper is organized as follows.
First, we summarize recent advances on the evalua-
tion of decision heuristics within the linear model and
make some simplifying assumptions. We then describe
the sufficient conditions for the single-variable “over-
weighting” phenomenon, first considering the case of a
single variable correlated with an array of weakly pos-
itively inter-correlated predictors followed by the more
extreme case of a set of mutually uncorrelated predictors
within this array. We then present an application of this
theory to the RH and prove that under these conditions
a DM utilizing only recognition will perform at least as
well as a DM utilizing only knowledge. We then examine
the inter-correlation matrix of an empirical study, finding
preliminary support for the descriptive accuracy of these
sufficient conditions. We conclude with a summary and
discussion of these results and potential applications and
implications.

2 The linear model

We consider decision heuristics as a set of weighting
schemes embedded within the linear model, a standard
formulation when evaluating performance, e.g., when one
compares performance to that of regression (e.g., Mar-
tignon & Hoffrage, 2002; Hogarth & Karelaia, 2005).
Specifically, we re-cast decision heuristics as “improper”
linear models (Dawes, 1979) within a linear estimation
framework, treating each weighting scheme as an estima-
tor of the true relationship between the criterion and the
predictors. This formulation allows us to evaluate dif-
ferent weighting schemes by a standard statistical mea-
sure of performance, risk, utilizing recent advances in
the evaluation of “improper” models (Davis-Stober et al.,
2010).

The standard linear model is defined as:

Yi =

p+1
∑

j=1

βjxij + ǫi, (1)

whereǫi ∼ (0, σ2). We includep + 1 predictors to dis-
tinguish between the single predictor and the otherp. In

this paper, we use the linear model interchangeably as ei-
ther a representation of a criterion (target) variable with
environmental predictors or as a representation of a DM’s
utility for choice alternativeCi (Keeney & Raiffa, 1993),
which can be expressed as:

U(Ci) =

p+1
∑

j=1

βjxij + ǫi. (2)

In this case, the weights,βj , reflect a DM’s true under-
lying utility. The results in this paper are general and
can be applied to model either the environment (1) or the
individual (2). The environmental case (1) is particularly
applicable to recognition. In this case, the performance of
an individual DM is a function of the true underlying re-
lationship between recognition, environmental cues, and
the criterion of interest.

For either case, we are interested in examining differ-
ent estimators ofβ, denoted by the vector̂β. We apply the
standard statistical benchmark, risk, to assess the perfor-
mance of an estimator of the “true” relationship between
a criterion and predictors. Risk for an estimatorβ̂ is de-
fined as

Risk(β̂) = E‖β̂ − β‖2, (3)

where E is the expectation of a random variable and
‖β̂ − β‖2 is the sum of squared differences between the
coefficients ofβ̂ andβ. Informally, (3) is a measure of
how “far” an estimator is expected to be to the “true”
value of β. Risk (also known in the literature as the
Mean Squared Error or MSE) can be decomposed into
the squared bias of the estimates and their variance. Un-
like other criteria that focus on unbiasedness, risk mini-
mization provides a more flexible framework where bias
and variability are traded off. In many cases estimates
with relatively low bias can reduce considerably the vari-
ance and would be considered superior with respect to
their overall risk. This definition of risk allows us to di-
rectly compare fixed weighting schemes to other statisti-
cal estimators, and to each other. Our definition of risk
bears some qualitative similarity to the “matching” index
(Hammond, Hursch, & Todd, 1964) applied to the well-
known lens model (Brunswik, 1952). It is a measure of fit
between a person’s judgment, or choice of weights, and
an optimal weighting scheme within the environment.

2.1 An optimality result on weighting rules

To compare various weighting schemes within the con-
text of the linear model, we use what are commonly
referred to as “improper” linear models (Dawes, 1979;
Dawes & Corrigan, 1974). These are fixed and pre-
determined weighting schemes which are chosen inde-
pendently of the data collected. Leta denote an improper
weighting vector. An example would be “Dawes Rule,”
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wherea is a vector of all ones (Dawes, 1979). In this
example, the weightsβj in (1) and (2) are replaced with
ones, resulting in an equal weighting of all the predictors
(these predictors are typically assumed to be standard-
ized and/or properly calibrated). When considered as es-
timators, improper models are clearly both biased and in-
consistent, yet many of these a priori weighting schemes
have been shown to be surprisingly accurate. For exam-
ple, Wainer (1976) and Dawes (1979) have demonstrated
the excellent predictive accuracy of equally weighting all
predictors in a linear regression model.

We are interested in examining various choices of
weights,a, using the criterion of risk (see (3)). To pro-
ceed, we re-cast the weighting vectora as a statistical
estimator ofβ. Davis-Stober et al. (2010) define acon-
strainedlinear estimator,̂βa, as

β̂a = a(a′X′Xa)−1a′X′y, (4)

whereX is the matrix that consists of the values of all
p+1 predictors for all n cases, andy is a series ofn ob-
servations of the criterion (target) variableY in (1) and
(2).

The constrained estimator (4) is a representation of the
“improper” weighting scheme,a, in the sense that it is
the least-squares solution to the estimation ofβ subject
to the constraints ina. In other words, if the weighting
schemea is a vector of ones (i.e., equal weights) then
β̂a1 = β̂a2 = β̂a3 = . . . = β̂a(p+1)

. The reader should
note that while data are being used to scale the weighting
vectora in (4), the resulting coefficient of determination,
R2, is the same as if onlya had been used (becauseR2

is invariant under linear transformation). Thus, this for-
mulation will not affect the outcomes in the binary choice
task considered, nor would it ever change a DM’s ranking
of several objects on the criterion. The formulation in (4),
however, allows us to define and compute an upper bound
on the maximal risk for arbitrary choices of the weighting
vectora.

Given a choice of weighting vectora and design matrix
X, Davis-Stober et al. (2010) proved that the maximal
risk of (4) is as follows,

max Risk(β̂a) = ‖β‖2

(
a′(X′X)2aa′a

(a′X′Xa)2

)

+

a′aσ2

a′X′Xa
, (5)

where‖β‖2 denotes the sum of squared coefficients of
β. Equation (5) allows us to measure the performance
of a particular choice ofa. Davis-Stober et al. (2010)
provide an analysis of (5) for several well-known choices
of a, including: equal weights (Dawes, 1979), weighting
a subset of cues while ignoring others, and unit weighting
(Einhorn & Hogarth, 1975).

It is often useful, given a choice ofX, to know the
optimal choice of weighting vectora. Davis-Stober et
al. (2010) prove that the value of weighting vectora that
minimizesmaximal risk is the eigenvector corresponding
to the largest eigenvalue in the matrixX′X.

THEOREM (Davis-Stober et al., 2010).Define λmax

as the largest eigenvalue of the matrixX′X. Assume
‖β‖2

< ∞. The weighting vectora that is mini-max with
respect to alla ∈ R

p+1, is the eigenvector corresponding
to the largest eigenvalue ofX′X.

In other words, given a model of the matrixX′X, it is
possible to identify the fixed weighting scheme that mini-
mizes maximal risk. Remarkably, this optimal weighting
scheme does not depend on the individual predictor cue
validities.

To summarize, each choice of weighting scheme,a,
can be considered as an estimator ofβ in the linear model
using (4). We can compute an upper bound on the max-
imal risk that each choice ofa will incur using (5). Fi-
nally, given a model ofX′X, we can calculate the op-
timal choice of weighting vectora using the above theo-
rem. In the next section, we apply these results to the case
of a single predictor cue positively inter-correlated with
an array ofp-many other predictor cues, all of which are
weakly positively inter-correlated and, in the limit, mutu-
ally uncorrelated.

3 Conditions for over-weighting a
single predictor

3.1 The case of inter-correlated predictors

Henceforth, assume that all the variables are standardized
such thatXi = 0 ands2

Xi
= 1 for all i. This implies that

X′X = (n − 1)RXX, wheren is the sample size and
RXX is the correlation matrix of the predictor variables.
Let rij denote the the(i, j)th entry of RXX. For our
analysis of single variable rules, we are interested in the
case when there are a total of(p + 1)-many predictors,
wherep-many predictors follow a “single-factor” design,
i.e., allp-many predictors in this array are assumed to be
inter-correlated atr′ with the remaining predictor equally
inter-correlated with all other predictors atr.
CONDITION 1. Assume thatRXX is comprised ofp + 1
predictor cues,p-many of which are inter-correlated at
r′ with the remaining predictor cue correlated with all
others atr. Assumer > 0 andr′ ≥ 0.

For the case ofp = 5, Condition 1 specifies the follow-
ing correlation matrix.
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RXX =











x1 x2 x3 x4 x5 x6

x1 1 r r r r r
x2 r 1 r′ r′ r′ r′

x3 r r′ 1 r′ r′ r′

x4 r r′ r′ 1 r′ r′

x5 r r′ r′ r′ 1 r′

x6 r r′ r′ r′ r′ 1











This structure is a special case of the two-factor
oblique correlation matrix presented in Davis-Stober
et al. (2010). Davis-Stober et al. (2010) provided a
closed-form solution for all eigenvalues and correspond-
ing eigenvectors of this matrix. Applying those results
we obtain the maximum eigenvalue for matrices satisfy-
ing Condition 1 as

λmax =
1

2

(

2 + (p − 1)r′ +
√

((p − 1)r′)2 + 4pr2
)

,

with a corresponding (un)-normed eigenvector with the
first entry valued at

√

((p − 1)r′)2 + 4pr2 − (p − 1)r′

2r
,

with the remainingp-many entries valued at 1. Applying
the previous theorem, we can now state precisely the
mini-max choice of weighting scheme for matrices
satisfying Condition 1.

RESULT 1. Assume the matrix structure described in

Condition 1. Letc = p +
(
√

((p−1)r′)2+4pr2−(p−1)r′)2

4r2 .
The normed choice of weighting vector that is mini-max
with respect to risk, denoteda∗, is:

a∗ = [

√

((p − 1)r′)2 + 4pr2 − (p − 1)r′

2r
√

c
,

1√
c
,

1√
c
,

1√
c
,

1√
c
, . . .

1√
c
]. (6)

Note that the relative weights of the predictors are un-
changed by scalar multiplication.

Result 1 presents the mini-max choice of a fixed
weighting vector for the inter-correlation matrix speci-
fied in Condition 1. In other words, given a linear model
structure as in (1)–(2) and assuming the inter-correlation
matrix of the predictor cues follow the structure in Con-
dition 1, then (6) is the best choice of fixed weighting
scheme with respect to minimizing maximal risk. This
leads to an important question. Assuming Condition 1
holds, when will it be a mini-max strategy to place more
weight on a single predictor cue (in our casex1) than any
other cue? The next result answers this question.

RESULT 2. AssumeRXX is defined as in Condition
1. Let a∗ be the mini-max choice of weighting scheme
(Equation 6). Leta∗

i denote theith element of the vector
a∗. Thena∗

1 > a∗

i , ∀i ∈ {2, 3, . . . , p + 1}, if, and only if,
r > r′.

PROOF. Applying Result 1, a∗

1 > a∗

i , ∀i ∈
{2, 3, . . . , p + 1}, if, and only if, p − r′

r
(p − 1) > 1,

which implies thatr > r′. �.

Result 2 states that it is an optimal mini-max strategy,
with respect to risk, to overweight a single predictor
when that single predictor positively correlates with
the other predictors, which are weakly positively2

inter-correlated or mutually uncorrelated. Result 2 sug-
gests that the overweighting effect of the first predictor
becomes more pronounced as the ratior′

r
becomes small

and/or as the number of predictors increase. Figure 1
plots the ratioa∗

1

a∗

i

as a function ofp andr for a fixed value

of r′ = .30. As expected, the relative weight placed on
the first predictor increases smoothly as a function of
bothp andr.

As an example, letp = 5, r = .6, r′ = .25. This gives
the following matrix for six predictors.

RXX =











x1 x2 x3 x4 x5 x6

x1 1 .6 .6 .6 .6 .6
x2 .6 1 .25 .25 .25 .25
x3 .6 .25 1 .25 .25 .25
x4 .6 .25 .25 1 .25 .25
x5 .6 .25 .25 .25 1 .25
x6 .6 .25 .25 .25 .25 1











RXX has the following mini-max choice ofa,

a∗ = [.57 .37 .37 .37 .37 .37].

In this example, the first element in the mini-max
choice of weighting scheme,a∗

1, is over one and half
times as large as the remaining weights. This overweight-
ing effect becomes even more pronounced when the pre-
dictors in thisp-element array are mutually uncorrelated.

3.2 The case of mutually uncorrelated pre-
dictors

In contrast to the conditions identified in Hogarth and
Karelaia (2005) and Fasolo et al. (2007), this over-

2Bothr andr
′ are required to be non-negative (as described in Con-

dition 1). Once one or both of these correlations becomes negative the
eigenvalue described above,λmax, is no longer maximal. See Davis-
Stober et al. (2010) for the complete description of the eigensystem of
the more general two-factor oblique correlation matrix.
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Figure 1: This figure displays the ratioa
∗

1

a∗

i

as a function ofr andp under Condition 1 withr′ = .3.
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weighting effect becomes more pronounced as both the
number of predictors increase and the inter-correlations
of thep-many predictor array approach 0. In this section,
we analyze the extreme case of a single cue positively
correlated withp-many predictors which are mutually
uncorrelated. This is a special case of Result 2 when
r′ = 0. In the asymptotic case, where the number of
predictors is unbounded, the weights on thep-many
predictors become arbitrarily small.

CONDITION 2. Let RXX be defined as in Condition 1
and assumer′ = 0.

Condition 2 is a special case of Condition 1 so, ap-
plying Result 1, the maximal eigenvalue ofRXX under
Condition 2 is equal to

λmax = 1 + r
√

p,

and the corresponding normed eigenvector (and the mini-
max choice ofa) equals

a∗ = [
1√
2

1√
2p

1√
2p

1√
2p

1√
2p

. . .
1√
2p

]. (7)

It is easy to see that as the number of predictors
increases, i.e., asp becomes large, the weights on the
p-many predictor cue entries come arbitrarily close to
0 while a∗

1 remains constant. Put another way, when
r′ = 0, it is mini-max with respect to risk for a decision
maker to heavily weight the single predictor. The effec-
tiveness of this strategy becomes more pronounced as

the number of mutually uncorrelated predictors increases.

As a numerical example, letp = 5, r′ = 0. This gives
the following matrix for six predictors.

RXX =











x1 x2 x3 x4 x5 x6

x1 1 r r r r r
x2 r 1 0 0 0 0
x3 r 0 1 0 0 0
x4 r 0 0 1 0 0
x5 r 0 0 0 1 0
x6 r 0 0 0 0 1











RXX has the following mini-max choice ofa,

a∗ = [.71 .32 .32 .32 .32 .32].

For this example, the weight onx1 is more than double
the weight of each of the other predictors. In general, the
ratio, a∗

1

a∗

i

=
√

p. Thus, if for example,p = 100, the
weight onx1 would be 10 times as large as the weight
on any other predictor. We emphasize that the mini-max
choice of weighting under Condition 2 does not depend
upon the valuer.

The preceding results are a mathematical abstrac-
tion, in the sense that typically all predictors are neither
equally correlated, nor mutually uncorrelated. However,
it is clear from these derivations that this over-weighting
effect of a single variable, with respect to risk, will oc-
cur whenever the single variable of interest is positively
correlated with the other predictors and this correlation

https://doi.org/10.1017/S1930297500003478 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500003478


Judgment and Decision Making, Vol. 5, No. 4, July 2010 Why recognition is rational 222

dominates the inter-correlations of the remaining predic-
tors. In the next section we demonstrate how this over-
weighting effect applies to the performance of the Recog-
nition Heuristic, showing that under Condition 2 a DM
using only recognition will perform as well as a DM us-
ing only knowledge.

4 The Recognition Heuristic

The RH is arguably the simplest of the “fast and frugal”
heuristics that make up the “adaptive cognitive toolbox”
(e.g., Gigerenzer et al., 1999). Quite simply, if a DM
is choosing between two alternatives based on a target
criterion, the recognized alternative is selected over the
one that is not. Goldstein and Gigerenzer (2002) state
that a “less-is-more effect” will be encountered whenever
the probability of a correct response using only recogni-
tion is greater than the probability of a correct response
using knowledge (equations (1) and (2) in Goldstein &
Gigerenzer, 2002), in their words: “whenever the ac-
curacy of mere recognition is greater than the accuracy
achievable when both objects are recognized.” Goldstein
and Gigerenzer’s conditions for the success of the recog-
nition heuristic depend upon therecognition validity, i.e.,
the correlation between the target criterion and recogni-
tion, which is assumed not to be directly accessible to the
DM. Other environmental variables, calledmediatorvari-
ables, which are positively correlated with both the target
criterion (theecologicalcorrelation) and the probability
of recognition (thesurrogatecorrelation), influence the
DM as proxies for the target criterion. We build upon
the recognition heuristic theory by defining a condition
on the predictor cues that leads to a mini-max strategy
closely mirroring the recognition heuristic. Conditions 1
and 2 depend only upon observable predictor cue inter-
correlations and do not require the estimation or assump-
tion of either a recognition validity or corresponding sur-
rogate and ecological correlations.

4.1 The Recognition Heuristic within a lin-
ear models framework

In this section we present a linear interpretation of the
recognition heuristic by defining weighting schemes rep-
resenting a DM using only recognition or only knowl-
edge. We present a proof (Result 3) that a DM using only
recognition will incur precisely the same amount of max-
imal risk as a DM using only knowledge under Condition
2. This result states that a DM using only recognition will
do at least as wellas using only knowledge with respect
to maximal risk. We compare these weighting schemes
to each other, the optimal mini-max weighting, and Ordi-
nary Least Squares (OLS).

To apply the optimality results presented above, we
must first re-cast the RH within the linear model. Let
xi1 be the recognition response variable with respect to
the RH theory. Let the remainingp-many predictors cor-
respond to an array of predictors relevant to the criterion
under consideration. Within the RH framework, we shall
refer to thesep-many variables asknowledgevariables.
This gives the following model,

Yi = β1xi1
︸ ︷︷ ︸

recognition

+

p+1
∑

j=2

βjxij

︸ ︷︷ ︸

knowledge

+ ǫi
︸︷︷︸

random error

. (8)

The recognition variable,xi1, is typically conceptual-
ized as a binary variable (e.g., Goldstein & Gigerenzer,
2002). Pleskac (2007) presents an analysis of the recog-
nition heuristic in which recognition is modeled as a con-
tinuous variable integrated into a signal detection frame-
work (see also Schooler and Hertwig, 2005). Note that
our general result on maximal risk (5) holds for an arbi-
trary matrix,X, in which predictor cues can be binary,
continuous or any combination of the two types.

We use maximal risk as the principal measure of per-
formance within the linear model, in contrast to previ-
ous studies that used percentage correct within a two-
alternative forced choice framework as a measure of
model performance (e.g., Goldstein & Gigerenzer, 2002;
Hogarth & Karelaia, 2005). As such, we do not compare
individual values ofY for different choice alternatives.
We instead make the assumption that a DM using “true”
β as a weighting scheme will outperform a DM using any
other choice of weighting scheme. In our framework,
minimizing maximal risk corresponds to a DM using a
fixed weighting scheme that is “closer” to the “true”β
compared to any other fixed weighting scheme.

The Recognition Heuristic assumes that the DM can
find him/herself in one of three mutually exclusive cases,
that induce different response strategies: 1) neither alter-
native is recognized and one must be selected at random,
2) both alternatives are recognized and only knowledge
can be applied to choose one of them, and 3) only one
alternative is recognized (the other is not), so the DM
selects the alternative that is recognized. To model this
process, we consider the following two choices of the
weighting vectora:

• Only Recognition: let the first entry ofaR be valued
at one, all other entries are zero,

• Only Knowledge: let the first entry ofaK be valued
at zero, all other entries are one,

In the context of the linear model (8), the act of rec-
ognizing an item but having no knowledge of that item
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is modeled byaR, i.e., recognizing one choice alterna-
tive without applying knowledge to the decision. The
act of only using knowledge to select between items is
modeled byaK, corresponding to a DM recognizing both
choice alternatives and relying exclusively on knowledge
to make the decision. We do not analyze the trivial case
of neither alternative being recognized. To facilitate com-
parison of these weights, letaM be the mini-max weight-
ing scheme from Result 1 and letOLS be the ordinary
least squares estimate.

We can now describe and analyze when “less” infor-
mation will lead to better performance in the language
of the linear model. When willaR perform as well
as, or better, thanaK? Consider Condition 2, i.e.,
the case when thep-many predictor cues are mutually
independent,r′ = 0. Under these circumstances the
over-weighting effect of the mini-max vector is most
pronounced and, surprisingly, the weighting schemesaR

andaK incur exactly thesameamount of maximal risk.

RESULT 3. LetRXX be defined as in Condition 2, i.e.,
r′ = 0. Let a

R
and aK be defined as above. Then

maxRisk(aR) = maxRisk(aK).

PROOF. The proof follows by direct calculation using (5),

maxRisk(β̂aR
) = ‖β‖2

(
a′

R
(X′X)2a

R
a′

R
a
R

(a′

R
X′Xa

R
)2

)

+
a′

R
a
R

σ2

a′

R
X′Xa

R

= ‖β‖2(pr2 + 1) + σ2

= ‖β‖2

(
a′

K
(X′X)2a

K
a′

K
a
K

(a′

K
X′Xa

K
)2

)

+
a′

K
a
K

σ2

a′

K
X′Xa

K

= maxRisk(β̂aK
). �

Result 3 provides a new perspective on the phe-
nomenon of “less” information leading to better perfor-
mance: A simple single-variable decision heuristic (e.g.,
the recognition heuristic) is at least as good in terms of
risk as equally weighting the remaining cues, e.g., knowl-
edge.

We can directly compare the performance of
aK,aR,aM, and OLS by placing some weak as-
sumptions on the intercorrelation matrix of the predictors
and the values ofσ2 and ‖β‖. First, we can bound
‖β‖2 by applying the inequality‖β‖2 ≤ R2

λmin
, where

R2 is the coefficient of multiple determination of the
linear model andλmin is the smallest eigenvalue of the
matrix RXX. Now, assuming values ofσ2, R2, and a
structure ofRXX we can compare the maximal risk for

different weighting vectors as a function of sample size.
Under our framework, sample size does not play a role
in determining the mini-max choice of fixed weighting
scheme, however we must consider sample size when
comparing values of risk to other estimators, in this case
OLS.

How do recognition and knowledge compare with the
mini-max choice of weighting scheme? Figure 2 displays
the maximal risk foraK,aR,aM, and OLS, under Con-
dition 1 for p = 6, r = .6, r′ = .25, andσ2 = 2. The
three panels of Figure 2 corresponds toR2 = .3, .4, and
.5.

The performance of the knowledge, recognition, and
mini-max weighting are comparable in all three condi-
tions with the knowledge weighting,aK, coming closest
to the optimal weighting scheme. In the case of Condition
1, recognition does not win out over knowledge, however
recognition wins out over OLS for sample sizes as large
asn = 30 in the case ofR2 = .3 andn = 20 for the case
of R2 = .5.

Figure 3 displays a corresponding set of graphs under
Condition 2 forp = 3, r = .3, r′ = 0, andσ2 = 2. As
predicted by Result 3, recognition and knowledge have
precisely the same maximal risk. The mini-max weight-
ing scheme is quite comparable to knowledge/recognition
performance. The performance of OLS improves in Con-
dition 2; this follows from the matrixX′X having fewer
inter-correlated predictors.

To summarize, under Condition 1, both recognition
and knowledge compare favorably to OLS and to the
mini-max choice of weighting. Here recognition does not
perform as well as knowledge but is comparable. Under
Condition 2, the maximal risk of recognition and knowl-
edge are identical, as shown in Result 3, and closely
resemble the performance of the mini-max choice of
weighting vector. In all cases, the performance of the dif-
ferent weighting schemes are affected by the amount of
variance in the error termǫi, in agreement with Hogarth
and Karelaia (2005).

4.2 Empirical example

As an empirical illustration of these analytic results, we
examine previously unpublished pilot data collected dur-
ing the dissertation research of Goldstein (1997). These
data come from a study that uses the well-known “Ger-
man Cities” experimental stimuli. These stimuli were
used by Goldstein and Gigerenzer (2002) in a series of ex-
periments to empirically validate the recognition heuris-
tic, and in experiments that examined the Take The Best
heuristic (Gigerenzer & Goldstein, 1996; Gigerenzer, et
al., 1999). These data (Goldstein, 1997) consist of recog-
nition counts from 25 subjects who were asked to indi-
cate whether or not they recognized each of the 83 cities
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Figure 2: This figure displays the maximal risk as a function of sample size for four choices of weighting schemes:
aR (solely recognition),aK (solely knowledge),aM (mini-max weighting), andOLS (ordinary least squares). These
values are displayed under Condition 1, wherer′ = .25, r = .6, p = 6, andσ2 = 2. The left-hand graph displays
these values assumingR2 = .3. The center and right-hand graphs display these values forR2 = .4 andR2 = .5
respectively.
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based on their names alone. Each city was assigned a
recognition score based on the number of subjects (out of
a possible 25) who recognized it. In addition, we have
nine binary attributes for each city that serve as predic-
tors — see Table 1 for a description of the predictor cues
(Gigerenzer et al., 1999). The inter-correlation matrix of
the 10 predictors is presented in Table 2.

The data in Table 2 strongly resemble the optimality
conditions described in Conditions 1 and 2. Recogni-
tion is significantly and positively correlated with 7 of
the 9 predictor cue variables atp < .01. Twenty four of
(9×8/2 =) 36 cue inter-correlations are not significantly
greater than 0, which strongly resembles Condition 2.
Each of the nine predictors in the array (x2, x3, . . . , x10)
has its highest correlation with recognition with one or
two exceptions in each column, i.e.,r1j > rkj , ∀k ∈
{2, 3, . . . , 10} holds for 7 of the 9 predictors with at most
one exception each. The average correlation of the recog-
nition variable with the other nine cue predictors is .29
and the average inter-correlation of the 9 predictors is .11.

To summarize, these data are consistent with the struc-

ture of Conditions 1 and 2. The nine predictor cues for the
cities appear to contribute “unique” pieces of information
to the linear model (8), yet most of these predictors have
large positive correlations with recognition. We conclude
that in the case of the “German Cities” stimuli, it is an
optimal mini-max strategy to “overweight” recognition.

5 Discussion

We presented a condition on the predictor cue inter-
correlation matrix under which it is optimal to over-
weight a single-variable within a linear model, to opti-
mize risk. We demonstrated when this over-weighting
condition occurs (Result 1) and what the optimal weight-
ing scheme is (Result 2). To summarize, when a single
cue correlates with the other predictors more than they
inter-correlated with each other, it is a mini-max strat-
egy, with respect to risk, to over-weight the single cue.
We applied these results to a prominent single-variable
decision heuristic — the Recognition Heuristic (Gold-
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Figure 3: This figure displays the maximal risk as a function of sample size for four choices of weighting schemes:
aR (solely recognition),aK (solely knowledge),aM (mini-max weighting), andOLS (ordinary least squares). These
values are displayed under Condition 2, wherer′ = 0, r = .3, p = 3, andσ2 = 2. The left-hand graph displays
these values assumingR2 = .3. The center and right-hand graphs display these values forR2 = .4 andR2 = .5
respectively.
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stein & Gigerenzer, 2002) — and provided a condition
where a DM using solely recognition to choose between
two choice alternatives would incur precisely the same
maximal risk as a decision maker using only knowledge
(Result 3). We illustrated these results by analyzing the
inter-cue correlation matrix from an experiment using the
well-known “German Cities” stimuli. This dataset pro-
vides empirical support for the descriptive accuracy of
Conditions 1 and 2, and therefore for the over-weighting
of a single predictor cue.

The performance of single-variable decision heuristics
like the RH depends upon the complex interplay of a
DM’s cognitive capacities and the structure of the envi-
ronment, i.e., the relationships among predictor cues and
the criterion variable. When all predictor cues are highly
positively correlated we have conditions for a “flat max-
imum effect”; here a single-variable decision rule will
do as well as any other simple weighting rule. In other
words, any choice of weighting scheme utilizes, essen-
tially, the same information in the environment. The DM
benefits in such “single-factor” environments as he can

use a less cognitively demanding strategy and not suf-
fer any serious penalties for doing so. In such single-
factor environments the optimal weighting scheme may
not resemble a single-variable rule, but the differences
in performance are so small that it doesn’t really mat-
ter. The DM is “rational” because he/she is balancing
cognitive effort with the demands of the environment, the
“twin-blades” of Simon’s scissors (Simon, 1990) or seek-
ing to optimize the accuracy / effort tradeoff (Payne et al.,
1993).

This article provides a new perspective on the “ratio-
nality” of single-variable rules such as the RH. The condi-
tions we have identified are quite different than the condi-
tions previously identified as favorable for single-variable
rules, e.g., all predictor cues highly positively correlated.
Surprisingly, the over-weighting effect becomes stronger
as the inter-correlations in the predictor array become
lower, peaking when the predictor cues are mutually un-
correlated. A decision maker employing a single-variable
decision heuristic in this environment is “rational” in the
sense that he/she is using a decision strategy that is not
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Table 1: Predictor Cues for the “German Cities” Study (Gigerenzer et al., 1999; Goldstein, 1997).

Cue description Predictor Cue

Recognition x1

National capital (Is the city the national capital?) x2

Exposition Site (Was the city once an exposition site?) x3

Soccer team (Does the city have a team in the major leagues?)x4

Intercity train (Is the city on the Intercity line?) x5

State capital (Is the city a state capital?) x6

License plate (Is the abbreviation only one letter long?) x7

University (Is the city home to a university?) x8

Industrial belt (Is the city in the industrial belt?) x9

East Germany (Was the city formerly in East Germany?) x10

Table 2: Inter-correlation Matrix of Predictor Cues for “German Cities” Study (Goldstein, 1997). The variables are
labeled as in Table 1. Values denoted with∗ are significant atp < .05, values with+ at p < .01, wherep denotes the
standard p-value.



















x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1 .30+ .39+ −.04 −.23∗ .47+ .36+ .64+ .28+ .46+

x2 .30+ 1 .19 −.12 .02 .13 .13 .45+ −.05 .20
x3 .39+ .19 1 .14 −.22∗ .21 .27∗ .37+ .24∗ .14
x4 −.04 −.12 .14 1 −.20 .26∗ .02 −.11 −.05 −.25∗

x5 −.23∗ .02 −.22∗ −.20 1 −.10 −.09 −.05 −.05 −.17
x6 .47+ .13 .21 .26∗ −.10 1 .17 .54+ .21 .27∗

x7 .36+ .13 .27∗ .02 −.09 .17 1 .19 .06 .49+

x8 .64+ .45+ .37+ −.11 −.05 .54+ .19 1 .25∗ .37+

x9 .28+ −.05 .24∗ −.05 −.05 .21 .06 .25∗ 1 .11
x10 .46+ .20 .14 −.25∗ −.17 .27∗ .49+ .37+ .11 1



















cognitively demandingand one that resembles an opti-
mal strategy in terms of minimizing risk.

To clarify, we are not proposing a decision heuristic,
e.g., pick the most highly correlated predictor cue, but
point out that in certain decision environments single-
variable heuristics are almost optimal. Our definition of
risk, a common benchmark in the statistical literature,
may help explain why our “favorable” conditions for a
single-variable rule differ from previous ones. Minimiz-
ing maximal risk is equivalent to choosing a weighting
scheme that is, on average, closest to the true state of the
nature,β. This definition accounts for an infinity of pos-
sible relationships between the predictor cues and the cri-
terion variable, focusing on the conditions that yield the
least favorable relationships. By this measure, it is better
to over-weight a single variable that containssomeinfor-

mation about all of the predictor cues than to weight, say
equally, all of the predictor cues taking the chance that
some combination of them may not be at all predictive of
the criterion. In this way, we account for an infinity of
possible validity structures, even though our formulation
does not require any specific assumptions on the validi-
ties themselves.

To solve for minimax risk, we only need to know the
predictor (cue) inter-correlation matrix and identify the
choice of weighting vectora. With minimal assumptions,
this is tantamount to assuming a correlational structure on
the predictor cues and deciding on a decision heuristic.
As a result, we do not assume that the DM has knowl-
edge of the individual validities nor that he/she has an
ability to estimate them, in contrast to the lexicographic
single-variable heuristic Take The Best (e.g., Gigerenzer
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et al, 1999). We do assume in our analysis that the deci-
sion maker always utilizes the single predictor that con-
forms to our sufficient conditions. We do not assume any
other structure to predictor cue selection or application.
Thus, recognition is a natural application of these results,
as the Recognition Heuristic does not presuppose a pre-
dictor cue selection process.

Our results easily extend to recent generalizations of
the RH. Several studies have extended the application of
the RH beyond simple 2-alternative forced choice ton-
alternative forced choice (Beaman, McCloy, & Smith,
2006; Frosch, Beaman, & McCloy, 2007; McCloy &
Beaman, 2004; McCloy, Beaman, & Goddard, 2006);
see also Marewski, Gaissmaier, Schooler, Goldstein, &
Gigerenzer (2010) for a related framework employing
“consideration sets”. Our linear modeling framework
does not depend upon the number of choice alternatives
being considered. Our only assumption is that the DM
differentially selects alternatives based on the value of
the criterion as implied by his/her choice of predictor cue
weights. Thus, moving from 2 ton alternatives under
consideration does not change our key results, a DM uti-
lizing our optimal weighting scheme to select among a
setof alternatives will “on average” perform better than
another DM using a sub-optimal weighting scheme. Our
framework also allows the predictors to be either binary
or continuous or any combination thereof. In this way,
our results easily extend tocontinuousrepresentations of
recognition. Several authors have previously explored
continuous representations of recognition within the con-
texts of both signal detection models (Pleskac, 2007) and
the ACT-R framework (Schooler & Hertwig, 2005).

Although we applied our model successfully in the
context of RH, we must remain silent on the psycholog-
ical nature of some key concepts underlying the theory
in this domain. For example, we treat thisp-many pre-
dictor cue “knowledge” array as an abstract quantity and
subsequently do not place any special psychological re-
strictions or assumptions upon these predictor cues. We
also recognize that there is an ongoing debate in the lit-
erature as to the interplay between knowledge, learning,
and memory with regard to recognition and that there are
many factors that influence whether DMs’ choices are
consistent with the RH (e.g., Newell & Fernandez, 2006;
Pachur, Bröder, & Marewski, 2008; Pachur & Hertwig,
2006). However, our model is mute with respect to these
debates.

The results we have presented are general, and while
we have restricted their application to the study of recog-
nition, they could be applied to other domains. For ex-
ample, in a well-publicized study on heart disease, Batty,
Deary, Benzeval, and Der (2010) found that IQ was a bet-
ter predictor of heart disease than many other, more tra-
ditional, predictors such as: income, blood pressure, and

low physical activity. One possible explanation of their
findings is that, historically, IQ tends to correlate to some
degree with each of the remaining predictors (e.g., Batty,
Deary, Schoon, & Gale, 2007; Ceci & Williams, 1997;
Knecht et al., 2008). In light of the results presented in
our paper, it is perhaps not so surprising that IQ is a “ro-
bust” predictor of heart disease.

Our results do not imply that ordinary least squares
or other statistical/machine-learning weighting processes
are “sub-optimal.” Given an infinite amount of data,
weighting schemes derived from such processes would
indeed be optimal with respect to almost any measure.
Our results apply tofixedweighting schemes, which, in
the context of small sample sizes tend to perform very
well as they do not “over-fit” the observed data. In other
words, fixed weighting schemes cross-validate extremely
well compared to other, more computationally intensive,
estimation procedures for situations involving small sam-
ple sizes and/or large variances in the error terms.

Gigerenezer et al., (1996; 1999) argue that “fast and
frugal” heuristics are a rational response to the “bounded”
or “finite” computational mind of a decision maker. This
article raises many new questions regarding the rational-
ity of simple decision heuristics. Given infinite compu-
tational might and a relatively small sample of data, a
“Laplacean Demon’s” choice of weighting scheme might
resemble that of a “fast and frugal” decision maker. In
other words, DMs could be reasoning like a “Laplacean
Demon” would if the demon were given limited infor-
mation, but retained the assumption of infinite computa-
tional ability.
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