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Abstract

The Recognition Heuristic (Gigerenzer & Goldstein, 1996|dstein & Gigerenzer, 2002) makes the counter-intuitive
prediction that a decision maker utilizing less informatroay do as well as, or outperform, an idealized decision make
utilizing more information. We lay a theoretical foundatifor the use of single-variable heuristics such as the Réeog
tion Heuristic as an optimal decision strategy within adinmodeling framework. We identify conditions under which
over-weighting a single predictor is a mini-max strategyoama class of a priori chosen weights based on decision
heuristics with respect to a measure of statistical lackt @fdicall “risk”. These strategies, in turn, outperform stard
multiple regression as long as the amount of data availablienited. We also show that, under related conditions,
weighting only one variable and ignoring all others produitee same risk as ignoring the single variable and weighting
all others. This approach has the advantage of generaligypond the original environment of the Recognition Heigrist
to situations with more than two choice options, binary artaaious representations of recognition, and to othelsing
variable heuristics. We analyze the structure of data usetine prior recognition tasks and find that it matches the
sufficient conditions for optimality in our results. Rathban being a poor or adequate substitute for a compensatory
model, the Recognition Heuristic closely approximates @imual strategy when a decision maker has finite data about
the world.

Keywords: improper linear models, recognition heuristingle-variable decision rules.

1 Introduction single-variable decision rules are descriptive for attlaas
subset of DMs with regard to both Take The Best (Broder,
Common sense would suggest that it is always beR000; Broder & Schiffer, 2003; Newell & Shanks, 2003)
ter to have more, rather than less, relevant informatioand the RH (Goldstein & Gigerenzer, 2002; Hertwig &
when making a decision. Most normative and prescripfodd, 2003; Pachur & Biele, 2007; Scheibehenne &
tive theories of multi-attribute decision making are comBroder, 2007; Serwe & Frings, 2006; Snook & Cullen,
pensatory models that incorporate all relevant variable8006). Questions remain, however, as to exactly when
This perspective was challenged by Gigerenzer and Goldnd why a single-variable rule will perform well.
stein (1996) and Gigerenzer, Todd, and the ABC Group Hogarth and Karelaia (2005) examined the relative per-
(1999), who proposed a theoretical framework of simformance of single-variable rules within a binary choice
ple decision rules, often referred to as “fast and fruframework where both predictor (independent) and cri-
gal” heuristics, suggesting that in some cases a decisiterion (dependent) variable were assumed to be contin-
maker (DM) utilizing less relevant information may ac-uous. Using a combination of analytic tools and simu-
tually outperform an idealized DM utilizing all relevant lations, they found that single-variable rules have strong
information. In fact, many of these heuristics use a singlpredictive accuracy when: 1) all predictors are highly and
cue selected among the many available for the predictigrositively inter-correlated, 2) the single predictor uged
task. Key among these single-variable decision rules lghly (and, typically, positively) correlated with theicr
the Recognition Heuristic (RH) (Gigerenzer & Goldsteinterion! Hogarth and Karelaia (2006) conducted a related
1996; Gigerenzer et al., 1999; Goldstein & Gigerenzegnalysis using binary rather than continuous cues (pre-
2002). dictors). Fasolo, McClelland, and Todd (2007) identified
A rapidly growing empirical literature suggests thatsimilar favorable conditions for single-variable rules us
ing a series of simulations. Shanteau and Thomas (2000)
*We would like to thank Dan Goldstein for generously provigin labeled environments with highly positively correlated
previously unpublished “German Cities” data on recognitand for

comments on an early draft. Address: Clintin P. Davis-Stobaiver- 1In keeping with the prior literature on the recognition hstic, we
sity of Missouri at Columbia, Department of PsychologicaleBces, use the term “criterion” to refer to the dependent varialflénterest,
Columbia, MO, 65211. Email: stoberc@missouri.edu. e.g., the population of German cities.
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predictors, “friendly” environments, and demonstrated imf statistical inaccuracy called “risk” (defined formally

a simulation that single-variable rules tended to undein section 2), which measures how close these heuristic
perform when the predictors in the model were negaweights are expected to be to the best weights;This
tively correlated, a finding that was later replicated by Fameasure of inaccuracy is particularly useful because it
solo et al. (2007) (see also Martignon & Hoffrage, 1999goes beyond optimizing within a single sample; the closer
and Payne, Bettman, & Johnson, 1993). In a similaa set of weights is to the best weights, the more robustly
vein, Baucells, Carrasco, and Hogarth (2008) presentédcross-validate in new samples. An advantage to cast-
a framework to analyze simple decision rules within théng the problem within the framework of the linear model
context of cumulative dominance (see also Katsikopoulds that the results can be generalized to accommodate a
& Martignon, 2006). broad range of situations, including choosing between

In this paper, we present results regarding the effe¢dore than two options, binary or continuous represen-
tiveness of single variable rules that diverge from previtations of recognition, and to evaluate the success of any
ous studies in two major ways. First, we show that whefingle variable rule, not just RH.

a single predictor, denoted without any loss of general- We show that under certain conditions, placing greater
ity, 1, is positively correlated with an array pmany weight on a single variable relative to all others repre-
other predictors, where each of the@senany predictors sents a form of optimization: It minimizes the maximum
are either uncorrelated or weakly positively correlatedvalue of risk over all choices of decision rules. As the
the optimal weighting scheme places greater weight onumber of cues becomes large, this mini-max strategy
x; than any of the remaining cues. This result is a masonverges to a rule that puts a large weight on a single
jor departure from previous studies (Fasolo et al., 200zue and minimally weights all others. We use the term
Hogarth & Karelaia, 2005; Shanteau & Thomas, 2000jover-weighting” to describe this effect of a single pre-
that identify favorable conditions for single-variablégsi  dictor cue receiving disproportionally more weight than
as “single-factor” models where all variables are highlyany other predictor cue according to an optimal weighting
positively correlated. Second, our results do not rely ogtrategy. Further, we show that weighting the single cue
any specific assumptions about thee validitiesdefined and ignoring all others produces the same risk as ignor-
as the correlations between the predictors (cues) and tig the single cue and weighting all others, regardless of
criterion. The only thing that matters is the sign on théhe number of cues. Previous research has shown that de-
correlation of the single cue. Some lexicographic singlesision heuristics applied in this manner outperform stan-
variable rules depend upon either the knowledge or estiard regression models until samples become very large
mation of all cue validities. For example, the Take ThéDavis-Stober, Dana, & Budescu, 2010). Thus we expect
Best rule (Gigerenzer & Goldstein, 1996; Gigerenzer ghat, under the right conditions, a single variable to be jus
al., 1999) depends on the identification of the single bests accurate a predictor as the full set of predictors.

cue. In our results, the validity of the single variable need While this framework could be used to justify any sin-
not be the highest among the available predictors. Wgle variable heuristic, we argue that the sufficient con-
apply the new results to the RH, for which Goldstein andlitions plausibly resemble environments in which one
Gigerenzer (2002) argue that the recognition validity, i.ewould use the RH, and where recognition is the single
the correlation between the criterion and recognition, isue. Indeed, we examine data used in prior recognition
inaccessible to the DM with the criterion variable influ-tasks (Goldstein, 1997) and show that it fits well our suf-
encing recognition through mediator variables in the erficient conditions. Our derivation does not assume a “cue
vironment. selection” process. In other words, we presuppose the

The divergence in our results stems from our somewh&M always utilizes the single cue of interest. The RH
different approach to answering the question “when dodBeory is a natural application of these results as this the-
less information lead to better performance?” First, w@ry also does not presuppose a cue selection process, i.e.,
characterize the RH within the framework of the lineaff one alternative is recognized and the other is not then
model — i.e., within the standard regression frameworkecognition is automatically the predictor cue of interest
— as an “estimator” that relies on a single predictor. As Why is recognition rational? Our results demonstrate
in the regression framework, we conceptualize the bethat when a single cue (recognition) is positively corre-
set of weights to assign to the cues, such that if one hdated with all other cues (knowledge), then it is a mini-
unlimited data and knowledge, they would maximize premax strategy to over-weight the recognition cue. Inter-
dictive accuracy and call this vector of weighis We  estingly, these results do not depend upon the validities
then consider the weights that would be placed on thef either the recognition or the knowledge cues.
cues by various decision heuristics (such as equal weight-This paper represents a convergence of two perspec-
ing) as if they were estimates ¢f Within this frame- tives. On the one hand, we validate the ecological ratio-
work, we can prove results with respect to a measumality of single variable rules by recasting them as robust
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statistical estimators that minimize maximal risk within ahis paper, we use the linear model interchangeably as ei-
linear model. From another perspective, our results sugher a representation of a criterion (target) variable with
gest that the heuristics could work for no other reasoanvironmental predictors or as a representation of a DM’s
than that they approximate an optimal statistical modedtility for choice alternative”; (Keeney & Raiffa, 1993),
albeit with an objective function that has heretofore beewhich can be expressed as:

unarticulated in this literature. Thus, while Goldsteiman

. +1
Gigerenzer (2002) see the RH approach as a contrast to N S o .
heuristics being used as “imperfect versions of optimal UlCi) = Z;ﬁjx” + e 2)
J=

statistical procedures,” it appears that the “Laplacean de
mon” (Gigerenzer & Goldstein, 1996; Todd, 1999) —In this case, the weightgj;, reflect a DM’s true under-
with unlimited computational power — would use a rulelying utility. The results in this paper are general and
much like the RH! can be applied to model either the environment (1) or the
The remainder of the paper is organized as followdndividual (2). The environmental case (1) is particularly
First, we summarize recent advances on the evaluapplicable to recognition. In this case, the performance of
tion of decision heuristics within the linear model andan individual DM is a function of the true underlying re-
make some simplifying assumptions. We then describationship between recognition, environmental cues, and
the sufficient conditions for the single-variable “over-the criterion of interest.
weighting” phenomenon, first considering the case of a For either case, we are interested in examining differ-
single variable correlated with an array of weakly posent estimators of, denoted by the vectat. We apply the
itively inter-correlated predictors followed by the morestandard statistical benchmark, risk, to assess the perfor
extreme case of a set of mutually uncorrelated predictorsance of an estimator of the “true” relationship between
within this array. We then present an application of this criterion and predictors. Risk for an estimatbis de-
theory to the RH and prove that under these conditiorfined as
a DM utilizing only recognition will perform at least as Risk(B) = E||3 - B, (3)

well as a DM utilizing only knowledge. We then examing, . . o 1 is the expectation of a random variable and

the inter-correlation matrix of an empirical study, finding G- 3||2 is the sum of squared differences between the

e ey o e<Soeticent o and. nformaly, 3 s a measure of
' y w “far” an estimator is expected to be to the “true”

discussion of these results and potential applications a(‘/ﬁlue of 3. Risk (also known in the literature as the
implications. Mean Squared Error or MSE) can be decomposed into

the squared bias of the estimates and their variance. Un-
2 Thelinear modéd like other criteria that focus on unbiasedness, risk mini-

mization provides a more flexible framework where bias
We consider decision heuristics as a set of weightingnd variability are traded off. In many cases estimates
schemes embedded within the linear model, a standafdth relatively low bias can reduce considerably the vari-
formulation when evaluating performance, e.g., when or@nce and would be considered superior with respect to
compares performance to that of regression (e_g_’ MdIheir overall risk. This definition of risk allows us to di-
tignon & Hoffrage, 2002; Hogarth & Karelaia, 2005). rectly compare fixed weighting schemes to other statisti-
Speciﬁca”y, we re-cast decision heuristics as “impropercal estimators, and to each other. Our definition of risk
linear models (Dawes, 1979) within a linear estimatiofPears some qualitative similarity to the “matching” index
framework, treating each weighting scheme as an estimgdammond, Hursch, & Todd, 1964) applied to the well-
tor of the true relationship between the criterion and thknown lens model (Brunswik, 1952). Itis a measure of fit
predictors. This formulation allows us to evaluate difpetween a person’s judgment, or choice of weights, and
ferent weighting schemes by a standard statistical me@b optimal weighting scheme within the environment.
sure of performance, risk, utilizing recent advances in

the evaluation of “improper” models (Davis-Stoberetal.2.1 An optimality result on weighting rules

2010).
The standard linear model is defined as: To compare various weighting schemes within the con-

text of the linear model, we use what are commonly
. L referred to as “improper” linear models (Dawes, 1979;
Yi= Z;ﬁﬂ” + e (1) Dawes & Corrigan, 1974). These are fixed and pre-
= determined weighting schemes which are chosen inde-
wheree; ~ (0,02). We includep + 1 predictors to dis- pendently of the data collected. Letienote an improper
tinguish between the single predictor and the otheln  weighting vector. An example would be “Dawes Rule,”

p+1
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wherea is a vector of all ones (Dawes, 1979). In this It is often useful, given a choice dX, to know the
example, the weights; in (1) and (2) are replaced with optimal choice of weighting vectoa. Davis-Stober et
ones, resulting in an equal weighting of all the predictoral. (2010) prove that the value of weighting veciathat
(these predictors are typically assumed to be standansinimizesmaximal risk is the eigenvector corresponding
ized and/or properly calibrated). When considered as e the largest eigenvalue in the matdX.

timators, improper models are clearly both biased and in-

consistent, yet many of these a priori weighting schemeseorem (Davis-Stober et al., 2010).Define Anae
have been shown to be surprisingly accurate. For exargs the largest eigenvalue of the mat3X. Assume
ple, Wainer (1976) and Dawes (1979) have demonstratef@H? < oo. The weighting vectad that is mini-max with
the excellent predictive accuracy of equally Weighting al espect to alkh € RP‘*‘l’ is the eigenvector Corresponding

predictors in a linear regression model. to the largest eigenvalue &'X.
We are interested in examining various choices of

weights,a, using the criterion of risk (see (3)). To pro-
ceed, we re-cast the weighting vectoras a statistical
estimator ofg. Davis-Stober et al. (2010) definecan-
strainedlinear estimatorﬁa, as

In other words, given a model of the matdX, it is
possible to identify the fixed weighting scheme that mini-
mizes maximal risk. Remarkably, this optimal weighting
scheme does not depend on the individual predictor cue
validities.

To summarize, each choice of weighting schemge,

whereX is the matrix that consists of the values of allcan be considered as an estimatogaf the linear model
p+1 predictors for all n cases, apds a series of, ob-  Using (4). We can compute an upper bound on the max-
servations of the criterion (target) variabiein (1) and imal risk that each choice af will incur using (5). Fi-
(). nally, given a model oX’X, we can calculate the op-
The constrained estimator (4) is a representation of trfémal choice of weighting vectaa using the above theo-
“improper” weighting schemeg, in the sense that it is f€m. In the next section, we apply these results to the case
the least-squares solution to the estimatiorBafubject of a single predictor cue positively inter-correlated with
to the constraints im. In other words, if the weighting @n array ofp-many other predictor cues, all of which are
schemea is a vector of ones (i.e., equal weights) therfveakly positively inter-correlated and, in the limit, mutu
Bay = Bay = Bag = ... = PBa,,,,- The reader should ally uncorrelated.
note that while data are being used to scale the weighting
vectora in (4), the resulting coefficient of determination,
R?, is the same as if only had been used (becauRg . . .
is invariant under linear transformation). Thus, this fOI’-3 Conditions for over-wel ghtmg a
mulation will not affect the outcomes in the binary choice  single predictor
task considered, nor would it ever change a DM’s ranking
of several objects on the criterion. The formulation in (4)3
however, allows us to define and compute an upper bound

on the maximal risk for arbitrary choices of the We'ght'ngHenceforth, assume that all the variables are standardized

vectora. . N _ _such thatX; = 0 ands%. = 1 for all i. This implies that
Given a choice of weighting vectarand design matrix X'X = (n — 1)Rxx wheren is the sample size and

X' Daws-_Stober et al. (2010) proved that the maxmahxx is the correlation matrix of the predictor variables.
risk of (4) is as follows, Let r;; denote the thei, j)'" entry of Rxx. For our
a/(X'X)%aa’a analysis of single variable rules, we are interested in the
W) case when there are a total @f + 1)-many predictors,
wherep-many predictors follow a “single-factor” design,
: (5) i.e., allp-many predictors in this array are assumed to be
a’X'Xa inter-correlated at’ with the remaining predictor equally
where ||3||2 denotes the sum of squared coefficients ofnter-correlated with all other predictorsat
3. Equation (5) allows us to measure the performancdeONDITION 1. Assume thaRxx is comprised op + 1
of a particular choice ofi. Davis-Stober et al. (2010) Predictor cuesp-many of which are inter-correlated at
provide an analysis of (5) for several well-known choiceg’ With the remaining predictor cue correlated with all
of a, including: equal weights (Dawes, 1979), weightingPthers at. Assumer > 0 andr’ > 0.
a subset of cues while ignoring others, and unit weighting For the case g = 5, Condition 1 specifies the follow-
(Einhorn & Hogarth, 1975). ing correlation matrix.

Ba = a(a’X'Xa) 'a'X'y, 4)

1 Thecaseof inter-correlated predictors

max RiSk(Ba) = Hﬂ”Q <

a’ac?
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ReEsuLT 2. AssumeRxx is defined as in Condition
1. Leta* be the mini-max choice of weighting scheme

T1 X2 X3 T4 Ts Te (Equation 6). Letz} denote the'” element of the vector

(1 r r r© 1 T a*. Thena} > a},Vi € {2,3,...,p+ 1}, if, and only if,
x|l r 1 7 r>rl.
x| r 7 1

RXX = ! ! / / . « % -
g | v 1 PROOF  Applying Result 1, af > af,Vi €
o Ti Ti rj ! r’ {(2,3,...,p+ 1}, if, and only if, p — Z(p — 1) > 1,
rg \r v v o1 which implies that- > /. L.

This structure is a special case of the two-factor Regylt 2 states that it is an optimal mini-max strategy,
oblique correlation .matrix presented in Davis—Stobegvith respect to risk, to overweight a single predictor
et al. (2010). Davis-Stober et al. (2010) provided §yhen that single predictor positively correlates with
closed-form solution for all eigenvalues and correspongpe other predictors, which are weakly positiviely
ing eigenvectors of this matrix. Applying those result§nier-correlated or mutually uncorrelated. Result 2 sug-
we obtain the maximum eigenvalue for matrices satisfygests that the overweighting effect of the first predictor
ing Condition 1 as becomes more pronounced as the ratibecomes small

1 and/or as the number of predictors increase. Figure 1
Amax = 5 (2 + -1+ ((p—Dr')* + 4]??2) . plotsthe raticX as a function of andr for a fixed value

_ _ _ _ of ' = .30. As expected, the relative weight placed on
with a corresponding (un)-normed eigenvector with thehe first predictor increases smoothly as a function of

first entry valued at bothp andr.
V(lp—Dr")? +4pr?2 — (p— )i As an example, lep = 5,7 = .6, = .25. This gives
2r ’ the following matrix for six predictors.
with the remaining-many entries valued at 1. Applying
the previous theorem, we can now state precisely the Ti T2 X3 T4 T5 Tp
mini-max choice of weighting scheme for matrices z (1 6 6 6 6 6
satisfying Condition 1. x| .6 1 .25 .25 .25 .25
R w3z | 6 25 1 .25 .25 .25
RESULT 1. Assume the matrix structure described in X7 a6 25 25 1 25 25
. . ( /((p—l)r’)2+4pr2—(p—1)r/)2 s 6 .25 .25 .25 1 .25
Condition 1. Letc = p + I : 26 \ .6 25 25 25 25 1

The normed choice of weighting vector that is mini-max
with respect to risk, denotedt, is:

Rxx has the following mini-max choice @f,
V((p=D)r")? +4pr? — (p — 1)’ > J

a’ = RN : a* = [.57 .37 .37 .37 .37 .37).
111 1 i] (6) In this example, the first element in the mini-max
Ve Vel el e et choice of weighting schemey?, is over one and half

Note that the relative weights of the predictors are unt_|mes as large as the remaining weights. This overweight-
o ing effect becomes even more pronounced when the pre-
changed by scalar multiplication.

. . i ictors in thisp-element array are mutually uncorrelated.
Result 1 presents the mini-max choice of a f|xec§j P Y y

weighting vector for the inter-correlation matrix speci-
fied in Condition 1. In other words, given a linear mode3-2 T he case of mutually uncorrelated pre-

structure as in (1)—(2) and assuming the inter-correlation dictors

matrix of the predictor cues follow the structure in Con-, . . L
o : : . .- In contrast to the conditions identified in Hogarth and
dition 1, then (6) is the best choice of fixed welghtmgK . )
. L . . “Karelaia (2005) and Fasolo et al. (2007), this over-
scheme with respect to minimizing maximal risk. This
leads to an important question. Assuming Condition 1 2Bothr andr’ are required to be non-negative (as described in Con-
ition 1). Once one or both of these correlations becomeativegthe

holds, when will it be a mini-max strategy to place mC'rée}ligenvalue described abovksax, is No longer maximal. See Davis-

weight on a single predictor cue (in our casg than any  stober et al. (2010) for the complete description of the resgstem of
other cue? The next result answers this question. the more general two-factor oblique correlation matrix.
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Figure 1: This figure displays the ratgé as a function of- andp under Condition 1 with’ = .3.

weighting effect becomes more pronounced as both thke number of mutually uncorrelated predictors increases.
number of predictors increase and the inter-correlations

of the p-many predictor array approach 0. In this section, As a numerical example, lget= 5,7’ = 0. This gives

we analyze the extreme case of a single cue positivetite following matrix for six predictors.

correlated withp-many predictors which are mutually
uncorrelated. This is a special case of Result 2 when

7 = 0. In the asymptotic case, where the number of 1 T2 ¥3 Ta Ts To

predictors is unbounded, the weights on thenany © (1 r r r r 7
predictors become arbitrarily small. x| r 1 0 0 0 O
R z3| r O 1 0 0 0

XX =
CONDITION 2. LetRxx be defined as in Condition 1 g 0 0 1 0 O
and assume’ = 0. zs|{r 0 0 O 1 O
zg\r O O O O 1

C_Zondmon 2isa speC|_aI case of Condition 1 so, ap- Rxx has the following mini-max choice of
plying Result 1, the maximal eigenvalue Bfxx under
Condition 2 is equal to a* = [.71 .32 .32 .32 .32 .32].

Amax = 1 +14/D, For this example, the weight an is more than double
) . _the weight of each of the other predictors. In general, the
and the gorrespondmg normed eigenvector (and the Ministio. Z_] — /b. Thus, if for examplep = 100, the
max choice oh) equals weight ‘onz; would be 10 times as large as the weight
. 1 1 1 1 1 1 on any other predictor. We emphasize that the mini-max

a = [ﬁ V20 V2 V2 V2 \/%]- (7)  choice of weighting under Condition 2 does not depend

upon the value.

It is easy to see that as the number of predictors The preceding results are a mathematical abstrac-
increases, i.e., ag becomes large, the weights on thetion, in the sense that typically all predictors are neither
p-many predictor cue entries come arbitrarily close tequally correlated, nor mutually uncorrelated. However,
0 while a remains constant. Put another way, wheiit is clear from these derivations that this over-weighting
r’ = 0, it is mini-max with respect to risk for a decision effect of a single variable, with respect to risk, will oc-
maker to heavily weight the single predictor. The effeceur whenever the single variable of interest is positively
tiveness of this strategy becomes more pronounced esrrelated with the other predictors and this correlation
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dominates the inter-correlations of the remaining predic- To apply the optimality results presented above, we

tors. In the next section we demonstrate how this ovemust first re-cast the RH within the linear model. Let

weighting effect applies to the performance of the Recogg;; be the recognition response variable with respect to

nition Heuristic, showing that under Condition 2 a DMthe RH theory. Let the remainingmany predictors cor-

using only recognition will perform as well as a DM us-respond to an array of predictors relevant to the criterion

ing only knowledge. under consideration. Within the RH framework, we shall
refer to thesep-many variables aknowledgevariables.

o o This gives the following model,
4 The Recognition Heuristic

p+1
The RH is arguably the simplest of the “fast and frugal” Yi= fiwa +Y Bm+ e (8)
heuristics that make up the “adaptive cognitive toolbox” recogniton  J 2 random error
(e.g., Gigerenzer et al., 1999). Quite simply, if a DM knowledge

is choosing between two alternatives based on a target
criterion, the recognized alternative is selected over the The recognition variabley;;, is typically conceptual-
one that is not. Goldstein and Gigerenzer (2002) statéed as a binary variable (e.g., Goldstein & Gigerenzer,
that a “less-is-more effect” will be encountered whenevef002). Pleskac (2007) presents an analysis of the recog-
the probabmty of a correct response using 0n|y recognpition heuriStiC in Wh|Ch recognition iS modeled as acon-
tion is greater than the probability of a correct responsénuous variable integrated into a signal detection frame-
using knowledge (equations (1) and (2) in Goldstein &vork (see also Schooler and Hertwig, 2005). Note that
Gigerenzer, 2002), in their words: “whenever the acOur general result on maximal risk (5) holds for an arbi-
curacy of mere recognition is greater than the accurad{@ry matrix, X, in which predictor cues can be binary,
achievable when both objects are recognized.” GoldstefiPntinuous or any combination of the two types.
and Gigerenzer's conditions for the success of the recog- We use maximal risk as the principal measure of per-
nition heuristic depend upon thecognition validityi.e., formance within the linear model, in contrast to previ-
the correlation between the target criterion and recognus studies that used percentage correct within a two-
tion, which is assumed not to be directly accessible to triternative forced choice framework as a measure of
DM. Other environmental variables, callegdiatorvari- ~ model performance (e.g., Goldstein & Gigerenzer, 2002;
ables, which are positively correlated with both the targddogarth & Karelaia, 2005). As such, we do not compare
criterion (theeco|ogica|C0rre|ation) and the probabmty individual values ofY” for different choice alternatives.
of recognition (thesurrogatecorrelation), influence the We instead make the assumption that a DM using “true”
DM as proxies for the target criterion. We build upon8 as a weighting scheme will outperform a DM using any
the recognition heuristic theory by defining a conditiorPther choice of weighting scheme. In our framework,
on the predictor cues that leads to a mini-max strategjpinimizing maximal risk corresponds to a DM using a
closely mirroring the recognition heuristic. Conditions 1fixed weighting scheme that is “closer” to the “trug”
and 2 depend only upon observable predictor cue intefompared to any other fixed weighting scheme.
correlations and do not require the estimation or assump- The Recognition Heuristic assumes that the DM can
tion of either a recognition Va"dity or Corresponding Sur_ﬁnd him/herself in one of three mutually exclusive cases,
rogate and ecological correlations. that induce different response strategies: 1) neither-alte
native is recognized and one must be selected at random,
. L L . 2) both alternatives are recognized and only knowledge
4.1 The Recognition Heuristic within alin-  ¢can be applied to choose one of them, and 3) only one
ear models framework alternative is recognized (the other is not), so the DM
selects the alternative that is recognized. To model this
rocess, we consider the following two choices of the
weighting vectom:

In this section we present a linear interpretation of th
recognition heuristic by defining weighting schemes re
resenting a DM using only recognition or only knowl-
edge. We present a proof (Result 3) thata DM using only . opjy Recognitionlet the first entry ofig be valued
recognition will incur precisely the same amountof max- one, all other entries are zero,

imal risk as a DM using only knowledge under Condition

2. This result states that a DM using only recognition will « Only Knowledgelet the first entry ohyk be valued
do at least as welhs using only knowledge with respect at zero, all other entries are one,

to maximal risk. We compare these weighting schemes

to each other, the optimal mini-max weighting, and Ordi- In the context of the linear model (8), the act of rec-
nary Least Squares (OLS). ognizing an item but having no knowledge of that item
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is modeled byag, i.e., recognizing one choice alterna-different weighting vectors as a function of sample size.
tive without applying knowledge to the decision. TheUnder our framework, sample size does not play a role
act of only using knowledge to select between items i determining the mini-max choice of fixed weighting
modeled by, corresponding to a DM recognizing bothscheme, however we must consider sample size when
choice alternatives and relying exclusively on knowledgeomparing values of risk to other estimators, in this case
to make the decision. We do not analyze the trivial cas@LS.
of neither alternative being recognized. To facilitate eom How do recognition and knowledge compare with the
parison of these weights, lats be the mini-max weight- mini-max choice of weighting scheme? Figure 2 displays
ing scheme from Result 1 and I&XLS be the ordinary the maximal risk forak, ar, anm, and OLS, under Con-
least squares estimate. diton 1 forp = 6, r = .6, ' = .25, ando? = 2. The
We can now describe and analyze when “less” inforthree panels of Figure 2 corresponddib = .3, .4, and
mation will lead to better performance in the languages.
of the linear model. When wilag perform as well ~ The performance of the knowledge, recognition, and
as, or better, thamk? Consider Condition 2, i.e., mini-max weighting are comparable in all three condi-
the case when thg-many predictor cues are mutually tions with the knowledge weightingg, coming closest
independent;” = 0. Under these circumstances theto the optimal weighting scheme. In the case of Condition
over-weighting effect of the mini-max vector is most1, recognition does not win out over knowledge, however
pronounced and, surprisingly, the weighting schemigs recognition wins out over OLS for sample sizes as large
andag incur exactly thesameamount of maximal risk. asn = 30 in the case of22 = .3 andn = 20 for the case
of R = 5.
REsSULT 3. LetRxx be defined as in Condition 2, i.e.,  Figure 3 displays a corresponding set of graphs under
" = 0. Letag andak be defined as above. ThenCondition 2 forp = 3, r = .3, v/ = 0, ando? = 2. As
max Risk(ar) = max Risk(ak). predicted by Result 3, recognition and knowledge have
precisely the same maximal risk. The mini-max weight-
PROOF. The proof follows by direct calculation using (5), ing scheme is quite comparable to knowledge/recognition
- (XX)? , p_e_rformange. The performance of_OLS impr_oves in Con-
max Risk(fag) = || 52 (aR aRaRaR) dition 2; this follows from the matri¥X'X having fewer
(ag X'Xag)? inter-correlated predictors.
To summarize, under Condition 1, both recognition

2

/
+w and knowledge compare favorably to OLS and to the
ap X'Xag mini-max choice of weighting. Here recognition does not
= 1812 (pr® + 1) + 02 perform as well as knowledge but is comparable. Under
o2 , , ) Condition 2, the maximal risk of recognition and knowl-
— 18I <aK(X X) aKaKaK) agago edge are identical, as shown in Result 3, and closely
(ag X' Xag)? ap X' Xag resemble the performance of the mini-max choice of

weighting vector. In all cases, the performance of the dif-
ferent weighting schemes are affected by the amount of
variance in the error termy, in agreement with Hogarth
and Karelaia (2005).

Result 3 provides a new perspective on the phe-
nomenon of “less” information leading to better perfor-

mance: A simple single-variable decision heuristic (e.gf"2 Empirical example

the recognition heuristic) is at least as good in terms ofs an empirical illustration of these analytic results, we
risk as equally weighting the remaining cues, €.9., knoWlsyamine previously unpublished pilot data collected dur-
edge. _ ing the dissertation research of Goldstein (1997). These
We can directly compare the performance Ofjata come from a study that uses the well-known “Ger-
ak,ar,am, and OLS by placing some weak as-man Cities” experimental stimuli. These stimuli were
sumptions on the intercorrelation matrix of the predictorggeq by Goldstein and Gigerenzer (2002) in a series of ex-
and the values ob* and ||3]|. First, we can bound periments to empirically validate the recognition heuris-
811> by applying the inequality|3|*> < £—, where tic, and in experiments that examined the Take The Best
R? is the coefficient of multiple determination of the heuristic (Gigerenzer & Goldstein, 1996; Gigerenzer, et
linear model and\,,;,, is the smallest eigenvalue of theal., 1999). These data (Goldstein, 1997) consist of recog-
matrix Rxx. Now, assuming values of?, R?, and a nition counts from 25 subjects who were asked to indi-

structure ofRxx we can compare the maximal risk for cate whether or not they recognized each of the 83 cities

= max Risk(Pay). O
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Figure 2: This figure displays the maximal risk as a functibsample size for four choices of weighting schemes:
ag (solely recognition)ak (solely knowledge)an (mini-max weighting), and LS (ordinary least squares). These
values are displayed under Condition 1, whefte= .25,7 = .6,p = 6, ando? = 2. The left-hand graph displays

these values assumifgf = .3. The center and right-hand graphs display these valueRToe .4 and R?

respectively.
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based on their names alone. Each city was assigneduae of Conditions 1 and 2. The nine predictor cues for the
recognition score based on the number of subjects (out oities appear to contribute “unique” pieces of information
a possible 25) who recognized it. In addition, we havéo the linear model (8), yet most of these predictors have
nine binary attributes for each city that serve as predidarge positive correlations with recognition. We conclude
tors — see Table 1 for a description of the predictor cuethat in the case of the “German Cities” stimuli, it is an
(Gigerenzer et al., 1999). The inter-correlation matrix obptimal mini-max strategy to “overweight” recognition.
the 10 predictors is presented in Table 2.

The data in Table 2 strongly resemble the optimality
conditions described in Conditions 1 and 2. Recognis Discussion
tion is significantly and positively correlated with 7 of

the 9 predictor cue variables at< .01. Twenty four of \we presented a condition on the predictor cue inter-
(9 8/2 =) 36 cue inter-correlations are not significantlycorrelation matrix under which it is optimal to over-
greater than 0, which strongly resembles Condition Zyeight a single-variable within a linear model, to opti-
Each of the nine predictors in the array;(xs, ..., 10)  mize risk. We demonstrated when this over-weighting
has its highest correlation with recognition with one ogondition occurs (Result 1) and what the optimal weight-
two exceptions in each column, i.es; > 74, Vk € ing scheme is (Result 2). To summarize, when a single
{2,3,...,10} holds for 7 of the 9 predictors with at most ¢e correlates with the other predictors more than they
one exception each. The average correlation of the recoger-correlated with each other, it is a mini-max strat-
nition variable with the other nine cue predictors is -2%gy with respect to risk, to over-weight the single cue.
and the average inter-correlation of the 9 predictors is . 1{ye applied these results to a prominent single-variable
To summarize, these data are consistent with the strudecision heuristic — the Recognition Heuristic (Gold-
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Figure 3: This figure displays the maximal risk as a functibsample size for four choices of weighting schemes:
ag (solely recognition)ak (solely knowledge)an (mini-max weighting), and LS (ordinary least squares). These
values are displayed under Condition 2, whefre= 0,7 = .3,p = 3, ando? = 2. The left-hand graph displays
these values assumifgf = .3. The center and right-hand graphs display these valueR¥oe .4 andR?> = .5

respectively.
Maximum Risk for R-Squared = .3 Maximum Risk for R-Squared = .4 Maximum Risk for R-Squared = .5
10 T T T 10 T T T 10 T T T
Knowledge Knowledge Knowledge
— % — Recognition — % — Recognition — % — Recognition
- OLS . - OLS . - OLS

9 Minimax 9 — Minimax [ 9 — Minimax [

8 — 8 — 8 —

s — s — - —

61 — 61 — 6 —
x x X
] 0 7
4 [+ x
£ £ €
3 5 — 3 5 — S 5 —
5 £ E
3 3 3
= = =

41 — ar — 4 —

3k

2L

1

0 1 1 0 1 1 0 1 1

1 1 1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Sample Size Sample Size Sample Size

stein & Gigerenzer, 2002) — and provided a conditioruse a less cognitively demanding strategy and not suf-
where a DM using solely recognition to choose betweefer any serious penalties for doing so. In such single-
two choice alternatives would incur precisely the samé&ctor environments the optimal weighting scheme may
maximal risk as a decision maker using only knowledgeot resemble a single-variable rule, but the differences
(Result 3). We illustrated these results by analyzing thim performance are so small that it doesn’t really mat-
inter-cue correlation matrix from an experimentusing théer. The DM is “rational” because he/she is balancing
well-known “German Cities” stimuli. This dataset pro-cognitive effort with the demands of the environment, the
vides empirical support for the descriptive accuracy oftwin-blades” of Simon’s scissors (Simon, 1990) or seek-
Conditions 1 and 2, and therefore for the over-weightingng to optimize the accuracy / effort tradeoff (Payne et al.,
of a single predictor cue. 1993).

The performance of single-variable decision heuristics This article provides a new perspective on the “ratio-
like the RH depends upon the complex interplay of aality” of single-variable rules such as the RH. The condi-
DM'’s cognitive capacities and the structure of the envitions we have identified are quite different than the condi-
ronment, i.e., the relationships among predictor cues atidns previously identified as favorable for single-valéab
the criterion variable. When all predictor cues are highlyules, e.g., all predictor cues highly positively corretht
positively correlated we have conditions for a “flat max-Surprisingly, the over-weighting effect becomes stronger
imum effect”; here a single-variable decision rule willas the inter-correlations in the predictor array become
do as well as any other simple weighting rule. In othelower, peaking when the predictor cues are mutually un-
words, any choice of weighting scheme utilizes, essercorrelated. A decision maker employing a single-variable
tially, the same information in the environment. The DMdecision heuristic in this environment is “rational” in the
benefits in such “single-factor” environments as he casense that he/she is using a decision strategy that is not
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Table 1: Predictor Cues for the “German Cities” Study (Gégeer et al., 1999; Goldstein, 1997).

Cue description Predictor Cue
Recognition T1
National capital (Is the city the national capital?) Zo
Exposition Site (Was the city once an exposition site?) x3
Soccer team (Does the city have a team in the major leagues?) x4
Intercity train (Is the city on the Intercity line?) x5
State capital (Is the city a state capital?) Zg
License plate (Is the abbreviation only one letter long?) X7
University (Is the city home to a university?) xg
Industrial belt (Is the city in the industrial belt?) X9
East Germany (Was the city formerly in East Germany?) 210

Table 2: Inter-correlation Matrix of Predictor Cues for ‘‘@ean Cities” Study (Goldstein, 1997). The variables are
labeled as in Table 1. Values denoted witare significant ap < .05, values with™ atp < .01, wherep denotes the
standard p-value.

1 2 T3 T4 Ts5 Ze 7 T T9 10

1 1 30T 39T —.04 —.23* ATT 36T 64T .28F 46T
) 30T 1 19 —.12 .02 A3 13 45T —.05 .20
T3 39T 19 1 .14 —.227 21 27" 37t .24* 14
T4 —.04 —.12 14 1 —.20 26" .02 —.11 —.05 —.25%
Ts5 —.23* .02 —.22% —.20 1 —.10 —.09 —.05 —.05 —-.17
T ATT A3 21 260 —.10 1 A7 54T 21 27
7 36T 13 27" .02 —.09 A7 1 .19 .06 49T
s 647 45T 37 =11 —.05 54% .19 1 .25* 37T
T .28% —.05 .24* —.05 —.05 21 .06 .25% 1 A1
Z10 46T .20 14 —.25* =17 27 49T 37T A1 1

cognitively demandin@nd one that resembles an opti- mation about all of the predictor cues than to weight, say
mal strategy in terms of minimizing risk. equally, all of the predictor cues taking the chance that

To clarify, we are not proposing a decision heuristicSome combination of them may not be at all predictive of

e.g., pick the most highly correlated predictor cue, buf'® c_riterion_. .In this way, we account for an infinity (_)f
point out that in certain decision environments singleP0SSiPle validity structures, even though our formulation
variable heuristics are almost optimal. Our definition ofl08S NOt réquire any specific assumptions on the validi-
risk, a common benchmark in the statistical literaturei€S themselves.
may help explain why our “favorable” conditions for a To solve for minimax risk, we only need to know the
single-variable rule differ from previous ones. Minimiz-predictor (cue) inter-correlation matrix and identify the
ing maximal risk is equivalent to choosing a weightingchoice of weighting vectas. With minimal assumptions,
scheme that is, on average, closest to the true state of tifis is tantamount to assuming a correlational structure on
nature,3. This definition accounts for an infinity of pos- the predictor cues and deciding on a decision heuristic.
sible relationships between the predictor cues and the cAs a result, we do not assume that the DM has knowl-
terion variable, focusing on the conditions that yield theedge of the individual validities nor that he/she has an
least favorable relationships. By this measure, it is bettability to estimate them, in contrast to the lexicographic
to over-weight a single variable that contagmneinfor-  single-variable heuristic Take The Best (e.g., Gigerenzer
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et al, 1999). We do assume in our analysis that the dedew physical activity. One possible explanation of their
sion maker always utilizes the single predictor that corfindings is that, historically, IQ tends to correlate to some
forms to our sufficient conditions. We do not assume angtegree with each of the remaining predictors (e.g., Batty,
other structure to predictor cue selection or applicatiorDeary, Schoon, & Gale, 2007; Ceci & Williams, 1997,
Thus, recognition is a natural application of these result&necht et al., 2008). In light of the results presented in
as the Recognition Heuristic does not presuppose a pradr paper, it is perhaps not so surprising that 1Q is a “ro-
dictor cue selection process. bust” predictor of heart disease.

Our results easily extend to recent generalizations of Our results do not imply that ordinary least squares
the RH. Several studies have extended the application of other statistical/machine-learning weighting proesss
the RH beyond simple 2-alternative forced choicexto are “sub-optimal.” Given an infinite amount of data,
alternative forced choice (Beaman, McCloy, & Smithweighting schemes derived from such processes would
2006; Frosch, Beaman, & McCloy, 2007; McCloy & indeed be optimal with respect to almost any measure.
Beaman, 2004; McCloy, Beaman, & Goddard, 2006)Qur results apply tdixedweighting schemes, which, in
see also Marewski, Gaissmaier, Schooler, Goldstein, #he context of small sample sizes tend to perform very
Gigerenzer (2010) for a related framework employingvell as they do not “over-fit” the observed data. In other
“consideration sets”. Our linear modeling frameworkwords, fixed weighting schemes cross-validate extremely
does not depend upon the number of choice alternativeell compared to other, more computationally intensive,
being considered. Our only assumption is that the DMstimation procedures for situations involving small sam-
differentially selects alternatives based on the value gfle sizes and/or large variances in the error terms.
the criterion as implied by his/her choice of predictor cue Gigerenezer et al., (1996; 1999) argue that “fast and
weights. Thus, moving from 2 ta alternatives under frugal” heuristics are a rational response to the “bounded”
consideration does not change our key results, a DM utdr “finite” computational mind of a decision maker. This
lizing our optimal weighting scheme to select among article raises many new questions regarding the rational-
setof alternatives will “on average” perform better thanity of simple decision heuristics. Given infinite compu-
another DM using a sub-optimal weighting scheme. Ouational might and a relatively small sample of data, a
framework also allows the predictors to be either binaryLaplacean Demon’s” choice of weighting scheme might
or continuous or any combination thereof. In this wayresemble that of a “fast and frugal” decision maker. In
our results easily extend tmntinuousepresentations of other words, DMs could be reasoning like a “Laplacean
recognition. Several authors have previously exploreBemon” would if the demon were given limited infor-
continuous representations of recognition within the cormation, but retained the assumption of infinite computa-
texts of both signal detection models (Pleskac, 2007) artabnal ability.
the ACT-R framework (Schooler & Hertwig, 2005).

Although we applied our model successfully in the
context of RH, we must remain silent on the psychologRefer ences
ical nature of some key concepts underlying the theory
in this domain. For example, we treat thisnany pre- Batty, G. D., Deary, |. J., Benzeval, M., & Der, G. (2010).
dictor cue “knowledge” array as an abstract quantity and Does IQ predict cardiovascular disease mortality as
subsequently do not place any special psychological re-strongly as established risk factors? Comparison of
strictions or assumptions upon these predictor cues. Weeffect estimates using the West of Scotland Twenty-
also recognize that there is an ongoing debate in the lit- 07 cohort studyEuropean Journal of Cardiovascular
erature as to the interplay between knowledge, learning, Prevention and Rehabilitation, 124-27.
and memory with regard to recognition and that there aatty, G. D., Deary, I. J., Schoon, ., & Gale, C. R. (2007).
many factors that influence whether DMs’ choices are Childhood mental ability in relation to food intake and
consistent with the RH (e.g., Newell & Fernandez, 2006; physical activity in adulthood: The 1970 British cohort
Pachur, Broder, & Marewski, 2008; Pachur & Hertwig, study.Pediatrics, 11938-45.

2006). However, our model is mute with respect to thesBaucells, M., Carrasco, J. A., & Hogarth, R. M. (2008).
debates. Cumulative dominance and heuristic performance in
The results we have presented are general, and whilebinary multiattribute choiceOperations Research, 56

we have restricted their application to the study of recog- 1289-1304.

nition, they could be applied to other domains. For exBeaman, C. P., McCloy, R., & Smith, P. T. (2006). When
ample, in a well-publicized study on heart disease, Batty, does ignorance make us smart? Additional factors
Deary, Benzeval, and Der (2010) found that IQ was a bet- guiding heuristic inference. In R. Sun & N. Miyake
ter predictor of heart disease than many other, more tra- (Eds.),Proceedings of the Twenty-Eighth Annual Con-
ditional, predictors such as: income, blood pressure, andference of the Cognitive Science Sociétillsdale, NJ:
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