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1. Introduction. Locally compact group algebras are rather well investigated and
play very important role in mathematics [10, 12, 13, 15, 16, 18, 26]. Left centralizers
of locally compact group algebras were studied in [29]. In all those works, Haar
measures on locally compact groups were used. Haar measures are invariant or quasi-
invariant relative to left or right shifts of the entire locally compact group [6, 10, 13, 26].
According to the A.Weil theorem, if a topological group has a non-trivial borelian
measure quasi-invariant relative to left or right shifts of the entire group, then it is
locally compact. Moreover, it is well-known that the compactification of a topological
group may have no group structure so that the theory of non-locally compact groups
cannot be reduced to that of compact or locally compact groups.

On the other hand, the theory of non-locally compact groups and their
representations differ drastically from that of the locally compact case (see [2, 3, 11,
20, 21, 23] and references therein). Measures on non-locally compact groups quasi-
invariant relative to proper dense subgroups were constructed in [4, 7, 8, 20, 21, 22, 23,
25].

This article continues investigations of non-locally compact group algebras [19, 21,
24]. The present paper is devoted to centralizers of non-locally compact group algebras,
which are substantially different from that of locally compact groups. Their definition
in the non-locally compact groups setting is rather specific and they are already called
meta-centralizers. Theorems about their representations with the help of families of
generalized measures are proved. Isomorphisms of group algebras are investigated in
relation with meta-centralizers. The main results of this paper are Theorems 8-10 and
14. They are obtained for the first time.

Henceforth, definitions and notations of [19] are used.

2. Group algebra. To avoid misunderstandings, we first present our definitions
and notations.
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DEFINITION 1. Let A be a directed set and let {G,, : @ € A} be afamily of topological
groups with completely regular (i.e. 77 N 751 31 ) topologies 7, satisfying the following
restrictions:

(1) 6# : Gy — G, is a continuous algebraic embedding, 67(Gy) is a proper subgroup
in G, foreacha < B € A;

(2) 7, NOL(Gp) C 08(1p) and 08(Gy) is dense in G, for each @ < B € A; then (6£)7! :
05(Gg, t5) — (G, 1p) is considered as the continuous homomorphism;

(3) G, is complete relative to the left uniformity with entourages of the diagonal of
the form U = {(h,g) : h, g € G,;h~'g € U} with neighbourhoods U of the unit
element e, in Gy, U € 1, ¢, € U;

(4) for each o € A with B =¢(x) the embedding 6F :(Gg, 15) = (Gu, 1) is
precompact, that is by our definition for every open set U in Gg containing the
unit element ez a neighbourhood V' € 14 of ¢4 exists so that ¥ C U and 08(V) is
precompact in G, i.. its closure c/(6£(V)) in G, is compact, where ¢ : A — A is
an increasing marked mapping.

ConDITIONS 2. Henceforward, it is supposed that Conditions (1 — 5) are satisfied:

(1) we : B(Gy) — [0, 1] is a probability measure on the Borel o-algebra B(G,) of a
group G, from Section 1 with u,(G,) = 1 so that

(2) e is quasi-invariant relative to the right and left shifts on /2 € 6#(Gp) for each @ <
B € A, where p}, (h, g) = (uh)(dg)/u(dg) and p!, (h, g) = (14e.n)(dg)/n(dg) denote
quasi-invariance i, -integrable factors, u/(S) = w(Sh™") and e i(S) = po(h~'S)
for each Borel subset S in G;

(3) a density ¥, (2) = 1o(dg™")/1ne(dg) relative to the inversion exists and it is -
integrable;

(4) a subset W, € A(G,) exists such that p;, (h, g) and pLa(h, g) are continuous on
05(Gg) x W, and v,(g) is continuous on W, with ue(W,) =1 for each & € A
with B = ¢(a);

(5) each measure u, is Borel regular and radonian,
where the completion of B(G,) by all u,-zero sets is denoted by A(G,).

NOTATION 3. Denote by L1G§ (Gy, ta, F) the subspace in L'(Gy, po, F), which is the
completion of the linear space L°(Gy, F) of all ( juq-measurable) simple functions

f(x) = Zb]xB (x),

where b; € ¥, B; € A(Gy), B;N By =1 for each j # k, xp denotes the characteristic
ﬁmctlon of a subset B, XB(X) =1 for each x € B and xg(x) = 0 for every x € G, \ B,
neN, where F=R or F=C. A norm on L} ﬂ(G ) is by our definition given by the

formula:

”f”LG G "= sup Wfilloie,) < oo, (D
hedt (Gy)
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where fi,(g) := f(h™'g) for h,g € Gy, L'(Gy, uo, F) is the usual Banach space of all
Wo-measurable functions u : G, — F such that

Mm@=LhQMW@<w @

Suppose that

(3) ¢ : A — A is an increasing mapping, a < ¢(«) for each a € A. We consider the
space,

@) LY (Guoptan ) ia < e A i={f = (u i € A fu € Lb (Gar jta F)
Joreach a € A; ||floo := SUPyecp MxIlLIGﬁ(Ga) < 0o, where B = ¢(a)}.

When measures |1, are specified, spaces are denoted shortly by LlGﬂ(GO,, F) and
Lw(LlGﬂ(Ga, F):a < B € A) respectively.

DEFINITION 4. Let the algebra £ := LW(L};ﬂ(Ga, o, F) i o < B € A) be supplied
with the multiplication f%u = w such that

%@=wwmw=ﬁﬁ®w@@mmwx ()
B

forevery fue £andg e G=[],., Go, Where F=RorF=C, g = ¢(@), o € A.
If a bounded linear transformation 7' : £ — & satisfies Conditions (2, 3):
Q) Tf = (Tufy e A), T, : Llcﬁ(Ga, e, F) — L};ﬂ(Ga, Wo, F) foreach a € A,
(3) T(f*u) = f*(Tu),

for each f, u € £, then T is called a left meta-centralizer.

DEeFINITION 5. Let X be a topological space, let C(X,R) be the space of
all continuous functions f : X — R, while C,(X, R) be the space of all bounded
continuous functions with the norm

(D) 11l = supey ()] < 0.
Suppose that F is the least o-algebra on X containing the algebra Z of all
functionally closed subsets 4 = f~1(0), f € Cy(X,R). A finitely additive non-
negative mapping m : F — [0, oo) such that

(2) m(A) =sup{m(B) : Be Z, B C A},
for each 4 € F is called (a finitely additive) measure. A generalized measure is
the difference of two measures. Denote by M(X) = M(X, R) the family of all
generalized (finitely additive) measures.

For short “generalized" may be omitted, when m is considered with values in R.

THEOREM 6 (A.D. Alexandroff [28]). M(X) is the topologically dual space to
Cp(X, R), that is for each bounded linear functional J on Cp(X, R) there exists a unique
generalized (finitely additive) measure m € M(X) such that

(1) J(f) = [yfdm for eachf € Cy(X,R),
each measure m € M(X) defines a unique continuous linear functional by Formula
(1). Moreover,

(2) 11 = llm]|.

DEFINITIONS 7. A bounded linear functional J on Cp(X, R) is called o-smooth, if
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for each sequence f, in Cp(X, R) such that 0 < f,,,1(x) < f,(x) and lim,, f,,(x) = 0 for
each point x € X. The linear space of all o-smooth linear functionals is denoted by
M,(X) = M,(X,R).

A bounded linear functional J on C,(X, R) is called tight, if Formula (1) is fulfilled
for each net f;, in C,(X, R) such that ||f, || < 1 for each « and f, tends to zero uniformly
on each compact subset K in X. The space of all tight linear functionals is denoted by
M(X) = M/(X,R).

If my,my € M(X), then m =m; +im, is a complex-valued measure, their
corresponding spaces are denoted by M(X, C), M,(X,C)= M,(X) + iM,(X) and
M(X,C) = M,(X)+iM,(X).

THEOREM 8. Let &€ be a real F = R or complex F = C algebra (see Section 4), let
also T be a left meta-centralizer on £. Then there exists a family v = (v, : @ € A) of
generalized F-valued measures vy, on G, of bounded variation such that

If = v, (1)
where
(Tofa) () = (vpxfa)(g) = /G va(dh)fo (0L (h)g) ()

foreacho € A and g € G, with B = ¢().

Proof. For each g € A and a neutral element eg € Gg, we consider a basis of its
neighbourhoods {V, s : a € Wz} such that clg,08(V, ) is compact in (G, 74), Where
W is a set, c/yA denotes the closure of a set 4 in a topological space X. The set Wy is
directed by the inclusion: @ < b € Wg ifand only if V5 € V.

There is a natural continuous linear restriction mapping pY : C,(U, F) — Cy(V, F)
for each closed subsets U and V in Gg such that V' C U, where pg(f) = f|y for
each f € Cp(U, F). At the same time, if U is compact, then each continuous bounded
function g on ¥ with values in F has a continuous extension 7/;(g) on U with values
in F such that

Iglc,rm < Ixi@lcywm < 2lglc,mm,

due to Tietze-Uryson Theorem 2.1.8 [9], since Gy is Ty and hence, completely regular
by Theorem 8.4 [13] and each Huasdorff compact space is normal by Theorems 5.1.1
and 5.1.5

[9]. Thus, there exists a linear continuous embedding 7, : Cp(V, F) < Cy(U, F).

The probability measure pg on Gg is Borel regular and radonian. Hence, there
exists a o-compact subset X in Gg such that 1z(Xs) = 1,1.e. X is the countable union
of compact subsets Xj , in (Gg, t5) with Xg , C Xp 41 for each natural number 7.

We put

dap = XVup/MB(Vap): 3)
where x4 denotes the characteristic function of a subset 4 in Gg, x4(x) =1 for each

x € A, while x4(x) =0 for each x ¢ 4. In view of Proposition 17.7 [21] (see also
Lemma 13 [19]), the net {g,p : @ € Wg} is an approximation of the identity relative to
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the convolution:
lim g, 3 = /o )
foreach f, € Llcﬁ (G, 1q, F). From Formulas (2, 4) and 4(1-3), it follows that
Tofa = Tollim g p3e) = lim gu sHTofu. s)

Then q, g*[T,] : Ll@ (Gy) — LIG,; (Ge) is a continuous linear operator for each a € Wy
and @ € A, particularly, for each f, in the space C,(G,, F) of all bounded continuous
functions on G, with values in the field F, where

Wallc, := sup [fu(x)] < o0, (6)

xeGy

for each f, € Cy(Gy, F). The restriction of each f, € C5(G,, F) on 0#(Gp) is bounded
and continuous, while Cy(Gg, F) is dense in L1GV(G5, wp, F) with y = ¢(B) (see also
Lemma 17.8 and Proposition 17.9 [21]).

This implies that an adjoint operator B = T* exists relative to the * multiplication
according to the formula:

(AT D) = fG osWITT 1O (W)s(dh)
B

- fG (Bsvs) Mo (6L R )pes (dh), ™
B

for each v, f € &, where x € G,, z denotes the complex conjugated number of z € C.
The operator By is bounded and linear from LIGV(Gﬁ) into itself, since from Formula
(7) the estimate follows:

I Bgll < sup
S€03(Gy). 1€07(Gp). 0#vpeL, (Gp). 0fucLl; (G

| Jo, Ja, vs(MITafo)OF (Mix)up(dh)pa(dx)|

llvg ”LIGV ) e ”ngﬂ(Gu)

= Tl < oo. ®)

The family of bounded linear operators {(Bgq,,p)* : a € Wg} from Lgﬂ (Gy) into
L};ﬂ(Ga) is pointwise bounded and hence by the Banach-Steinhaus Theorem (11.6.1)
[27] it is uniformly bounded:

sup [(Bgqa,p)*|l < oo. (B1)
ae\IJf;

Therefore, inequality (8) leads to the conclusion that Bgq, g =: h.g € Lgy (Gg, ug, F)
for every a € Wg and B € A. Each function 4, g induces the linear functional

Foplgs) = fG 25 (a5 (Ip15 (). )

B
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Without loss of generality, we choose V, g such that c/g, V, g is compact in (G, 7y)
for each a € Wg. Certainly, if / € LIGV(G/g, wp, F), then f € LY(Gg, g, F) and

LGy b < |lf||L16y(Gﬂ,M,F) < 0. (10)
There is the embedding Cy(Gg, F) C LIGV(Gﬂ, g, F) and
|lf||L,13V(Gﬂ,;L,3,F) < fllcyGs by < 00, (11)

for each f € C(Gg, F), since ug is the probability measure on Gg.
Iff e LIGV(G,g), then s — f*s is a continuous linear operator from C(Gg, F) into
Cy(Gg, F). This follows from the formulas:

(f3s)(g) = / FWsthg)s(dh), (12)
Gp
where g € Gg and

sup [(f*s)(g)] < ||s||c,,/ VMlp(dh) < lIsllc, If 1y = Islc, Iz, (6y)-
g Gg 4

It remains to verify that the function (f*s)(g) is continuous for each f and s as just
above. For the proof consider the term

(F*s)(g1) — (f*s)(g2)] = ‘ /G S(Ws(hgr) — s(hg2)lip(dh))| . (13)

From f € Llcy(Gﬂ) and s € Cp(Gg, F), it follows that for each € > 0 there exists a
compact subset V in Gy such that |, G, [f(Wp(dh) < € and hence /. o F(Is(hg) —

s(hg)llnp(dh) < 6, where 0 < § = €2||s||¢,. Indeed, for each § > 0, there exists a simple
function ¢ € LIGV (Gp) such that ||f" — ¢ Ll Gy < 8 and hence the measure |f(h)|g(dh)
is radonian together with |g(h)|us(dh). At the same time, certainly, [}, |f(h)|up(dh) <
LGy

On the other hand, [s(kg|) — s(hg>)] is uniformly continuous on V' by the variable
h, since V' is compact and s is the continuous function. For each symmetric open
neighbourhood U = U~! of the neutral element ¢4 in G, there exists a finite family
of elements py,...,p, € Ggsuchthat V C pyUU... Up,U, since V is compact. Thus
VU C pyU?U... Up,U? Consider a family of symmetric open neighbourhoods U, =
Uk_l of eg such that {p; Uy : k € w}is acovering of V' and |s(hg1) — s(hg»)| < € for each
h e prUiand g, g» € Uy, where p; € Gg foreach k, whilst w is an ordinal. The covering
pr Ui of V has a finite subcovering for k € M, where M is a finite subset in w. Thus
for each € > 0 there exists a symmetric neighbourhood U C (", Uk of eg such that
|s(hg1) — s(hgn)| < € foreach h € V and g1, g» € U. Therefore,

[(F*)(g1) — (f*s)(g)l < 8 +€llf [l = e(lf I + 2lsllc,)
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for each g1, g, € U. Thus
f*s € Cp(Gg, F) (14)

for each f e LIGV(G,S, F) and s € Gy(Gg, F).
This implies that

Cy(Gp. F) 3 s> (f*s)(ep) € F, (15)

is the continuous linear functional on Cy(Gg, F). In particular each operator (Bgg,, p)*
indices the continuous linear functional

Jap(8) = [(Bpqa,p)*sl(ep)onCy(Gp., F). (16)

There are the inclusions M,(X) C M,(X) C M(X) (see Section 1.4 [28] and
Definitions 5, 7 and Theorem 6 above) and for X = G4 in particular. On the other
hand, each w, g(dx) := (Bgqa,p)(x)up(dx) is the radonian measure on Gy, i.e. belongs
to the space M,(Gg, F) of radonian measures on Gg.

Let &g be a family of all left-invariant pseudo-metrics on (Gg, tg) providing its
left uniformity denoted by Lz (see Section 8.1.7 [9] and Condition 1(3)). This means
that each k € @y satisfies the restrictions:

(PD) k(x,y) =0,

(P2) k(x,x) =0,

(P3) k(x,y) = k(y, x),

(P4) k(x,p) < k(x,2) +k(z, ),

(PS) k(zx, zy) = k(x, y) for each x, y, z € Gg.

The family ®; is directed: k1 < k € ®y if and only if x1(x, y) < k(x, y) for each
X,y € Gg; without loss of generality for each «, «; € &g, there exists k; € ®g such
that k¥ < «k» and k| < k», since « + k; € ®g. Each pseudo-metric k € $g defines the
equivalencerelation: xE, y ifand only if « (x, y) = 0. Then as the uniform space (Gg, Lg)
has the projective limit decomposition (i.e. the limit of the inverse mapping system)

Gﬂ = llm {Gﬂy,(, JTZ, q)'g},

where, Gg  := Gg/ E, denotes the quotient uniform space with the quotient uniformly,
7. 1s a uniformly continuous mapping from G4 onto Gg ., 7% are uniformly continuous
mappings from Gg, onto Gg, for each w <« € Wg such that 7y’ oy =7y and
T, =7 om, for each € <w <« € g (see Sections 8.2.B, 2.5.F and Proposition
2.4.2 [9] or [14]). Moreover, the equality is satisfied: {y € Gg : xE,y} = xQg, with
Qp. =1y € Gg: egE,}, since k(x, y) = 0 if and only if k(eg, x~'y) = 0 by Property
(PS), where eg denotes the neutral element in the group Gg. That is, Gg , is called the
homogeneous quotient uniform space.

At the same time the o-compact subset Xp is dense in Gg, since ug(U) > 0 for
each open subset U in Gg, but ug(Xg) = ng(Gp) = 1 (see the proof above). Therefore,
m(Xpg) is dense in Gg . Then m,(Xp ,) is compact for each k € g as the continuous
image of the compact space according to Theorem 3.1.10 [9], consequently, 7, (X3) =
UE; 7(Xg,,) is o-compact. On the other hand, Gg , is metrizable and complete, since
(Gg, Lp) is complete. Therefore, the topological space m,(Xp) is separable, since each
7(Xp ) is separable by Theorems 4.3.5 and 4.3.27 [9] and 7, (X3) = U~ | 7 (Xp.0).
This implies that each metrizable space Gg . is separable and complete.
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The spaces C(Gg, F) and Cj(Gg, F) form the dual pair (see Sections 9.1 and
9.2 [27]). Then we get that the space of bounded continuous functions Cp(Gg, F)
has the inductive limit representation Cy(Gg, F) = ind — limg, Cp(Gp,,, F), while its
topologically dual space has the projective limit decomposition Cj(Gg, F) = pr —
limg, C;(Gg., F) (see Sections 9.4, 9.9, 12.2, 12.202 [27] and also the note after
Theorem 2.5.14 in [9]). This implies that vg € M(Gpg, F) if and only if

Vg =lim{v,3,,<,nt’f),cbﬂ}, (Ml)
where, vg . € M(Gg,, F) for each « € ®g so that
vp(1,(€)) = v5.0(C) and vy () (€)) = v5.u(C) (M2)

for every C € B(Gg,,) and w < k € Pg.

Then we consider the measure net {w, g, : a € Wg} foreach« € &g corresponding
to measures w, g(dx) = (Bgqa,p)(x)1g(dx) according to Formula (M2), where x € Gg.
Since the measure w, g(dx) is absolutely continuous relative to the radonian measure
ug, then w, g is also radonian. Therefore, there is the inclusion {wyp . : @ € Wg} C
M(Gg,,F) and it is known that M,(Y,F) C M,(Y,F) C M(Y,F) for a completely
regular topological space Y. Thus the measure net {w, g : @ € Wz} weakly converges to
some measure vg in M(Gg, F) if and only if the net {w, g : a € Wg} weakly converges
in M(Gg, F) for each k € ®g according to Theorem 2.5.6 and Corollary 2.5.7 [9]. The
net {w, g : a € Wg} is norm bounded, since

1BsdaplliiGy < supll(Bsdap)¥ullzy, G, ¢ fo € L, (Gods el Gy = 1)
= sup{”qa,ﬂ;(Tocfa)”Llcﬂ(Ga) Do € Lé;ﬁ(Gal Hfa”Lgﬁ(Gu) <I}=
I Tall suplliga p3gallzy G, * 8« € L, (Ga)s Igallzy G,y = 1)

< | T|l < oo, since

lup*gally 6. = Ul lgallLy 6.,

foreachu € L'(Gg)and g, € LlGﬁ (Gy) (see Lemma 17.2 [21]). This implies that for each
€ > 0and k € ®g there exists a compact set K.  in Gg , such that w g (G \ Ke ) <
e foreach a € Wg, since ug  as the image of 1 is the radonian measure on the complete
separable metric space G, and each measure w, g, is absolutely continuous relative
to g, (see also Theorem 1.2 [7] and Formulas (M1, M2)).

Applying theorems either 2.24 and 2.27 or 2.30 [28], we get that a measure vg . €
M (G, F) exists such that the net w, g , weakly converges to vg . for each 8 € A and
k € ®g. Thus, using Formulas (M1, M2) we have deduced that

limJup() = [ S (1)

for each f € Cp(Gg, F). The variation of vy is finite and M(Gyg, F) is the Banach space
relative to the variation norm according to Theorems 1.2 and 1.3 [28].
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Let x € Cy(Gg, F) and y € Cp(G,, F), we consider the function
)= [ x(6} (e (18)

It evidently exists and is jg-measurable, since u, (G,) = 1, consequently,

sup

< yllcye, pllxlc,Gsm-
8€Gy

fG VDO (h)g) ity (dh)

Moreover, z € Cp(Gg, F) C LIGV (Gg) due to the latter inequality and Properties (11, 14)
(see above). Since vg is the weak limit of the net J, g, then for each € > 0, there exists
b € Wg such that

’ / “(g)vy(dg) — / 29)(Badap)@s(dg)| < €. (19)
Gy Gy

for each @ > b. In view of the Fubini theorem the latter inequality implies that
‘ | sty tany [ 6w
v B

- fG (), (dh) /G X0 (1g)(Bydup)@iip(dg)| < e (20)

for each a>b. Therefore, T,x(g)= (vgxx)(g) for each xe G(Gg F)N
[(65)~1(Cp(Gy, F))] and g € Gp. If f, € Cy(G,, F), then its restriction f&|9£(cﬂ) is
continuous and bounded, that is £, o (9#)~! is continuous and bounded on (G, 75)

due to 1(2). Moreover, the function v, (h) := 1, (6 (h)g) is continuous and bounded by
h € Gg for each g € G,. Hence,

(s3e)(s) = /G 108 (hs)g)vs(dh) = [v3£:](6F ()g). 1)
B

is defined for each s € Gg and g € G,, particularly for s = eg.
By the conditions of this theorem T, : Llcﬂ(Ga) — Ll@(Ga) is a continuous linear

operator. There is also the inclusion Cy(Gy, F) C Lgﬂ (G, 1q, F) so that Cp(G, F) is
dense in Llcﬂ(Ga, e, F), since py(Xy) = ne(Gy) = 1 with the o-compact subset X,

in G, (see also Lemma 17.8 and Proposition 17.9 [21] and Property (14) above).
Let f, € LIG’S(GQ, e, F) and we take any sequence of bounded continuous functions

Jan € Cp(Gy, F) converging to f, in L165(Ga, o, F). We have
Um(Bgqa p)*fan = fo and limf, , = fo, (22)
a n
in Ll@ (Gy, tta, F). Then

”(BﬂQa,ﬂ);fa,n - (Bﬂqbﬁ);fa,m”Lbﬁ(Ga)
< ”(Bﬂqu,ﬂ - BﬂQb,ﬁ);fa,n”L};ﬁ(Ga) + ”(BﬁCIb,ﬁ)‘;” “fot,n _f(x,m||L16ﬁ(Gu)a (23)
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consequently, for each € > 0 there exist agp € Wg and ny € N such that
1(Bsqa,p)*fon — (BﬂQb,ﬂ)‘;fa,m”Lbﬂ(Ga) <e, (24)

for each a,b > ay and n,m > ny (see Lemma 17.2 and Proposition 17.7 [21] and
Formula (B1) above). That is the net {(Bgq,,g)*fa,n : (@, n)} is fundamental (i.e. of the
Cauchy type) in the Banach space Lgﬂ(Ga), where (a,n) < (b,m)if a < band n < m.
Therefore the limit exists

Tofoe = i(Bya p)¥fun = i lim(Bygo p)¥on = i vk = viife.  (25)
Thus

Tofa = Vﬂ;fa,
foreach f, € Lth; (Gy) as well, that is, Formulas (1, 2) are fulfilled.

THEOREM 9. Let the assumptions of Theorem 8 be satisfied. Then the statement of
Theorem 8 is equivalent to the following:

(1) relative to the strong operator topology the set of all convolution operators of the
form8(1,2)on & = L"O(Llcﬂ(Ga, o, F) i o < B € A) with values in £ is a closed subset
of the ring of all bounded linear operators from & into £.

Proof. (8 =9). Let v, g% be a net of convolution operators converging to an
operator T, : LIGE(GQ) — Llcﬁ (Gy) in the strong operator topology for each o € A,
hence T is the left meta-centralizer on &, since each operator {v, g* : « € A, B = ¢(a)}
is the left meta-centralizer.

(9 = 8). From the proof of Theorem 8, we analogously get

Taf;x = hm Va,ﬁ;'fot,

foreacha € Aandf, € LIGI;(GQ, e, F) with 8 = ¢(ar), where v, g € M(Gg, F) for each
B € A and a € Wg consequently, T = (7, : «) is the convolution operator.

THEOREM 10. Let S be a bounded linear mapping of £ (see Section 4) into itself such
that Sf = (Sufe : @ € A) with S, : L};ﬁ (Gy) — Llc;ﬁ (Gy) for each a € A with B = ¢(a).
Then the following statements (i) and (ii) are equivalent:

(i) an operator S has the form

(1) S =pU, for some marked elements a € G = [Toen Go and p = {py : Ipol =
1Va € A} € FA, that is

(2) Sufe(x) = pu Uaﬂfa(x)for any o € A with B = ¢(a) and each x € G, where

3) (Afgﬁfa(x) = f.(0B(gp)x) for each gs € Gg and x € Gy,

(ii) (4) S is a left meta-centralizer and

@) ISefall = Wl for every £y € LEﬂ(GD,) and o € A with B = ¢(a).

Proof. The F-linear span of the set of all non-negative functions f/ € Llc;ﬂ (Gy, po, F)
is dense in Lgﬁ(Ga, a, F). Therefore, each bounded linear operator S, can be
written in the form S, = S + iS2a = Sy, — S, + iS5, — iS5, where Sljaf >0
and Skfmf >0 for k=1,2 and each f € Py, Sio = S,':a — S,;a, where P, denotes
the cone of functions in Lgﬂ(Ga, o, F) non-negative u,-almost everywhere on G,.
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Certainly over the real field additives S;Lja vanish. In view of Theorem 11 [19], there exist
ay € G and p; = {p, :Pi, > 0 Va € A} € R* such that ST f.(x) =p[, Ua;Ja(x)
and analogously for S, for eachk =1, 2.

Suppose that a; # d} forsomet, s € {+, —}andk, [ € {1, 2}, thenthereexistsa € A
such that af(’ g F a) g with B = ¢(«). On the other hand, we have Sjof, = S,t Ja —

Siafu = Do OL (@] 5)X) — P o fa(0L (a; 5)x) for each f, € Llc;ﬂ (Gq, e, F), since f,, =
Uy =il +ilf5, — fo,) where £ (x) = max(fi « (x), 0) forevery k = 1, 2and x € G,
SiwrSiw € Pa- Then if U is an open subset in G, such that 6 (a}, PUNOL(a) U =9
foreveryk,/=1,2and t,s € {4+, —}, then ||Sy xv| = Zi;l Yoieir (Pl Ua;(ﬂXUH).
If the interior of the intersection ﬂizl Nrefr.—y (67 (a,’c, ﬂ) U) is non-void, then ||Sy xu |l <
Zizl Yciry (Pl Ua;(ﬂXU”)s since uy(V) > 0 for each open subset V in G,,

consequently, S, is not an isometry.
Therefore, if S satisfies Conditions #i(4, 5), then af{y g = a‘}, 5 for each 1,5 € {+, —}
and k,[ € {1,2}. Thus (Syfe) = Pu Uam(x) for any @ € A and each x € G,, where
o — . 4 . . _ + .
Pe =Dy —Pry TP, — iP5, Naturally, in the case F = R the terms p; vanish. In

view of Lemma 7 [19] U, is the isometry. Since S preserves norms, then [py| = 1 for
each «.

Vice versa Conditions i(1-3) imply 7i(4, 5) due to Lemma 7 [19].

LEMMA 11. Let f/c be a left translation on € as in Section 10, letalso T : € — F be an
isomorphism of normed algebras such that Tf = (Tyfy o € A), T, : Llcﬂ (Gy, o, F) —
L}iﬂ(Ha, ra» F) and || Ty || < 1 for each a, where F = LW(L}iﬂ(Ha, Ay F) 1 < B € A).
IfK, = TU.T™", then there exist mappings of groups & : G — H and p : G — F» such
that
(1) Ke=pc, fort = &) and A
(2) pe =1{Pew : Pl = 1VYa € A} € FA, where V; denotes the left translation operator

onF, ceqG.

Proof. We have T(f*u)= (Tf)*(Tu) for each u,f €& and T !(gv)=
(T~'g)%(T~'v) foreach v, g € F. One can take the approximate identity {g, s : a € Wz}
as in Section 8 and consider functions s, g = Tsq, . The operator T is bijective and
continuous from & onto F, where £ and F as linear normed spaces are complete.
According to the Banach theorem 4.5.4.3 [17] (or see [1]) the inverse operator 7! is
also bounded. Due to Formulas 8(7, 8) there exists the adjoint operator (f((,y )* relative
to the * multiplication for each ¢ € G and y € A. For each f,g € F, y = ¢(B) and
B = ¢(«) the limit exists

(Ko, /)3ga = [53((K., )" gal = lim f3 (5,3 [(K:, )" gal)
= fp{lim(Ke, s0.p)5ga} = fHlim(Ty Ue, Ty ' Tpqap)¥8a)
= fp*{lim(T} U.,4u,8)%go} and hence
(K, fo)*gall <

T, [1f5*(( T Ue, qa 58l < 1511 Tp el TimaI[Ue, qa 351 < /5l llgell,
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for each f,ge &, since |T|| < 1. On the other hand, kc;l = (IA(CV)_I. Thus the
inequalities ||IA<(,V|| <1 and ||(IA<CV)*1|| <1 are satisfied for each y € A and ¢ € G,

consequently, K, is the isometry for each ¢ € G.
Applying Theorem 10 we get the statement of this lemma.

LEMMA 12. The mappings (G, 'L'g) > ¢ — p. € (B2, th) for each B and (G, rg) ScH>
&(c) € (H, r;’[) of Lemma 11 are continuous homomorphisms, where B={x € F: |x| =
1} is the multiplicative group, the product B® is in the box topology Tg, where rg denotes
the box topology on G (see Section 9 [19]).

Proof. These mappings are homomorphisms, since
7 [ —1 ;o= fr =1 ) £
Dehy Véy (cyhy) = Tﬂ U(’yhy Tﬂ = T,B Uc‘y T/s Tﬁ Uhy Tﬁ =Pecy ng(cy)ph,y Véy(hy),

foreachc¢,h € G, B € A withy = ¢(B), where £(¢c) = {&4(cq) : @ € A}, & : Gy, —> H,,
for each o € A. The mapping £ is bijective, since for &§(c) = ey € H, where ey is the
neutral element in H, one gets p.,Ir = Tp UCV Ty ! and hence UCV = peyle, where Ig
denotes the unit operator on £. Therefore, ¢ = eg and hence p.,, = 1 for each y.

Then the mapping G > ¢ — U, is continuous from G in the box topology rg and
relative to the strong operator topology according to Proposition 10 [19], consequently,
the mapping H > 1+ ¥, is also continuous, since 7 and 7' are bounded linear
operators.

Then for each € = (¢, > 0 : o € A), there exists a neighbourhood Y =[] ., Ys
of ey in (H, t,’;) such that each Y, is an (open) neighbourhood of the neutral element
eq in H, for which €, /2 < A,(Yy) < €, for each a € A, since A, is the quasi-invariant
borelian measure on H, relative to the dense subgroup Hg and hence non-atomic.
Moreover, if Z is an arbitrary neighbourhood of ey in (H, t};), then there exists ¥
such that YY~! C Z. Then the function g = (g, = xv, : @ € A) belongs to F, where
x4, denotes the characteristic function of a subset 4, in H,. Suppose that p is a marked
element in BA. Let t € H be such that

Ipsg*(V; 8a) — 838l < [ply,%ha)(Ya), where

Doslyy ¥hal(Ya) = fy /y hp (g (08 (xp)d ), (1)
B a

where 0 : Hg — H, are embeddings (see Section 1). If 5 ¢ Zg, then sz Y5 and spi5 Y
are the disjoint subsets in the group Hy for each element sg in Hg, consequently,

IPsgs™ V7 8a] — gp¥eull = sup f 1261531, 851580 (Xa) — [V, 851580 (o) D (xe)

sgpeHg J H,

— sup /H /H P55 (531 538)8a 68 (55 (Vo (i)
8 M

g EHﬁ

4 sup / / 125 (55X)20 (0 (x)x0) g (dxp)ha(dxa) = Dhl vy 30al( V).
sp€Hg JHyg J H,

Thus Inequality (1) implies that #3 € Zg. Hence, the mapping p f/gﬁ(cﬁ) = Ep(cp) =tg €
Hg, with Hg in the topology 74, is continuous for each 8, when linear operators
pV are considered relative to the strong operator topology, since the set of all (jq-
measurable) simple functions is dense in Lgﬂ(Ga). The mapping cg — &g(cp) is the
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composition of three mappings ¢ > Uy, > T, U, T;' = peg f/gﬁ(cﬁ) = Eg(cg) = g
which are continuous for each 8 € A as it was proved above, consequently, the mapping
£ : (G, tl) — (H, 1)) is also continuous.

The mapping ¢ — p, is continuous, since ¢ — p.I is continuous as the composition
of two uniformly bounded and continuous mappings 70U, 7! and i(g(c).

LEMMA 13. The mapping & : G — H is the homeomorphism of (G, rg) onto (H, T})).
Proof. If {&g(xpp): b} is a net converging to yg € Hg, where xg; € Gg,

A

then {Iﬂ/gﬁ(x“) : b} converges to V), in the strong operator topology. Therefore,

{T;" Veyx, T : b} converges to T,y , T,. From Lemma 11 we have the equality

A

B —1
T, Véﬁ(xﬁ,h) T, = Py, Uxﬂ-b ’

hence, the net of operators {p;b{ P f]xﬂ_h : b} strongly converges to pg f]xﬁ for some pg € B
and xg € Gg. Thus the equality

T U, T =,
is fulfilled with yg = &g(xg) and pg = p;}; for each B € A. This implies that £3(Gp) is
closed in Hy for each § and hence £(G) is closed in (H, r}}).

The inverse operator 7-! is bounded (see Section 11). Then 7! f/yﬂ T, =
(sTy)™! f/yﬂ (sT,) for each s € F\ {0}. Hence, without loss of generality we can
consider that 0 < || T/ ' <1 for each @ € A. On the other hand, from the equality
T,! f/yﬁ Ty = p;}s U., with x5 = &g !(»p) analogously to £ in Section 12 the continuity
of 5/;1 : £5(Gg) — Gg follows.

Applying Lemmas 11 and 12 and the proof in this section above to 77! : F — &,
we get that there exists a continuous bijective homomorphism 7 : (H, rg,) — (G, ré’;)
such that n(H) is closed in (G, ‘L'g) and

(1) Q, = r,U, for t = n(y) and

(2) ry = {rya : Iryel =1 Va € A} € F*, where Qy = T‘If/yT foreachye H, r:
(G, rg) — B? is a continuous homomorphism. The operators K, and Qy are the left
meta-centralizers on F and & respectively for each ¢ € Gand y € H. But from 11(1, 2)
it follows that n = &~" and p,(,) = r;' for each y € H, since n and & are bijective
homomorphisms. Therefore, Formulas (1, 2) and 11(1, 2) imply that n(£(G)) = G and
hence £(G) = H.

THEOREM 14. Let T : £ — F be an isomorphism of normed algebras such that Tf =
(Tyfo :x € N), Ty : Lgﬂ(Ga, U, F) — LlHﬁ(Ha, ras F) and | T, || < 1 for each a, where
F = L°°(L}1ﬂ (Hy, o, F) : a0 < B € A) (seeSections 11 and 12). Then a homeomorphism
& of topological groups exists from (G, Tg) onto (H, t¥) and a continuous homomorphism
¥ : G — B" such that .

() TUT™" = ¢ (x)Veq and

(2) (THa(E(x)) = Yp(xp)fa(xa) for each x € G, f € € and a € A with B = ¢(a),
where Yr(x) = (Vo(xy) : @ € A), Vo : Gy, — B,

To Uy Tyt = v (x5") Veyay)-

Xg o

Moreover, T is an isometry.
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Proof. We define a homomorphism ¥ (x) = p;', hence ¥ (x) = (Vo(xs) = py -
o € A} € B, hence ¥, : G, — B is a character for each « € A. From Lemmas 11—
13, Statement (1) of this theorem follows such that & : (G, t&) — (H, 7)) and £ :
(H,t5) — (G, t(b;) and ¥ : G — B" are continuous homomorphisms with £(G) = H.

If S : £ - Fisanisomorphism of normed algebras such that Sf' = (Syfo : & € A),
Sy - Llcﬂ(Ga, o, F) — L;,ﬂ (Hy, Ao, F) and ||S,|| < 1 for each « such that S satisfies
Equality (2).

(e (E(x)) = Yp(xp)fulxy) for each xe€ G and fe€&, then (S7'g)(x)=
Vg (xgl)ga(éa (xq)) for each g € F and x € G. Therefore, one infers that

(Soz Ucﬁ Sglga)(ga(xa)) = wﬁ(xﬂ)( UC/i Silga)(xa)
= Vp(xp)(S, ' €a)OL (cp)xa) = Yp(xp)Wp(xy ' 5 )EalOf (Ep(cp))Eu(Xa))
= Yp(c5 )2 (0L (Ep(cp))Ea(xa)) = V(s ) Uty 8a)Eal(Xa)).

consequently, S, U, 85" = vs(c5") Us, (., for each ¢ € G, @ € A with B = ¢(a), where
B\Cp &p(cp)

Cﬂ o
embeddings Hg < H,, also are denoted by 67 for the notation simplicity (see Section
1). This means that SU.S~! = TU,T~! and hence

T,'Se U, = U, T, 'S, ?3)

Cﬁo{

for each o € A with 8 = ¢(«). In view of Lemmas 11-13 and the conditions of this
theorem the linear operators 7', T~!, S and S~! are continuous. Thus, the operator

T7's =Y, 4)

is the isomorphism of the algebra & onto itself commuting with all operators U, such
that ¥ and Y~! are continuous. As in Section 13, it is sufficient to consider the case
0 < || Yol <1 for each a € A, since U, = Y;'U,, Y, = (kY,) ' U,,(kY,) for every
ke F\ {0}, € A with 8 = ¢(«) and ¢ € G. Take f, ¢ € £ and consider the left meta-
centralizer 4 defined by a radonian measure v, € M,(G,, F) such that

Ve(dXo) = qo(Xe)ha(dXs), ®)

for each @ € A, that is Af = vxf. On the other hand,
) = [ apmIO s lnstery) ©)
B
that is relative to the strong operator topology

A, = / a5 ) Uyt (dvp). %)
Gp

for each o € A with 8 = ¢(«), where Af = (A,f, : @ € A). In each Banach space
LIGV(G[;, wp, F) the space of (ug-measurable) simple functions ZJ’.’ZI vixz is dense,
where v; € Fis a constant and Z; is a ug-measurable subset in Gg foreachj =1, ..., n,

n € N. Therefore, from Formulas (3-7) it follows that

YAf = Y(¢¥) = (YQx(Y[) = AY[ = qx(Y]),
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consequently, Yg = ¢ for each ¢ € &, since f € & is arbitrary. Thus ¥ = I¢ and hence
T = S, where Iz denotes the unit operator on £. From this Formula (2) follows. The
last statement follows from Formulas (2) and 3(1).

15. Remark. The results of this paper can be used for further studies of non-locally
compact group algebras, representations of groups, completions and extensions of
groups, etc.
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