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1. Introduction. Locally compact group algebras are rather well investigated and
play very important role in mathematics [10, 12, 13, 15, 16, 18, 26]. Left centralizers
of locally compact group algebras were studied in [29]. In all those works, Haar
measures on locally compact groups were used. Haar measures are invariant or quasi-
invariant relative to left or right shifts of the entire locally compact group [6, 10, 13, 26].
According to the A.Weil theorem, if a topological group has a non-trivial borelian
measure quasi-invariant relative to left or right shifts of the entire group, then it is
locally compact. Moreover, it is well-known that the compactification of a topological
group may have no group structure so that the theory of non-locally compact groups
cannot be reduced to that of compact or locally compact groups.

On the other hand, the theory of non-locally compact groups and their
representations differ drastically from that of the locally compact case (see [2, 3, 11,
20, 21, 23] and references therein). Measures on non-locally compact groups quasi-
invariant relative to proper dense subgroups were constructed in [4, 7, 8, 20, 21, 22, 23,
25].

This article continues investigations of non-locally compact group algebras [19, 21,
24]. The present paper is devoted to centralizers of non-locally compact group algebras,
which are substantially different from that of locally compact groups. Their definition
in the non-locally compact groups setting is rather specific and they are already called
meta-centralizers. Theorems about their representations with the help of families of
generalized measures are proved. Isomorphisms of group algebras are investigated in
relation with meta-centralizers. The main results of this paper are Theorems 8–10 and
14. They are obtained for the first time.

Henceforth, definitions and notations of [19] are used.

2. Group algebra. To avoid misunderstandings, we first present our definitions
and notations.
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DEFINITION 1. Let � be a directed set and let {Gα : α ∈ �} be a family of topological
groups with completely regular (i.e. T1 ∩ T3 1

2
) topologies τα satisfying the following

restrictions:

(1) θβ
α : Gβ → Gα is a continuous algebraic embedding, θβ

α (Gβ) is a proper subgroup
in Gα for each α < β ∈ �;

(2) τα ∩ θβ
α (Gβ) ⊂ θβ

α (τβ) and θβ
α (Gβ) is dense in Gα for each α < β ∈ �; then (θβ

α )−1 :
θβ
α (Gβ, τβ ) → (Gβ, τβ ) is considered as the continuous homomorphism;

(3) Gα is complete relative to the left uniformity with entourages of the diagonal of
the form U = {(h, g) : h, g ∈ Gα; h−1g ∈ U} with neighbourhoods U of the unit
element eα in Gα, U ∈ τα, eα ∈ U ;

(4) for each α ∈ � with β = φ(α) the embedding θβ
α : (Gβ, τβ ) ↪→ (Gα, τα) is

precompact, that is by our definition for every open set U in Gβ containing the
unit element eβ a neighbourhood V ∈ τβ of eβ exists so that V ⊂ U and θβ

α (V ) is
precompact in Gα, i.e. its closure cl(θβ

α (V )) in Gα is compact, where φ : � → � is
an increasing marked mapping.

CONDITIONS 2. Henceforward, it is supposed that Conditions (1 − 5) are satisfied:

(1) μα : B(Gα) → [0, 1] is a probability measure on the Borel σ -algebra B(Gα) of a
group Gα from Section 1 with μα(Gα) = 1 so that

(2) μα is quasi-invariant relative to the right and left shifts on h ∈ θβ
α (Gβ) for each α <

β ∈ �, where ρr
μα

(h, g) = (μh
α)(dg)/μ(dg) and ρ l

μα
(h, g) = (μα,h)(dg)/μ(dg) denote

quasi-invariance μα-integrable factors, μh
α(S) = μ(Sh−1) and μα,h(S) = μα(h−1S)

for each Borel subset S in Gα;
(3) a density ψα(g) = μα(dg−1)/μα(dg) relative to the inversion exists and it is μα-

integrable;
(4) a subset Wα ∈ A(Gα) exists such that ρr

μα
(h, g) and ρ l

μα
(h, g) are continuous on

θβ
α (Gβ) × Wα and ψα(g) is continuous on Wα with μα(Wα) = 1 for each α ∈ �

with β = φ(α);
(5) each measure μα is Borel regular and radonian,

where the completion of B(Gα) by all μα-zero sets is denoted by A(Gα).

NOTATION 3. Denote by L1
Gβ

(Gα, μα, F) the subspace in L1(Gα, μα, F), which is the
completion of the linear space L0(Gα, F) of all (μα-measurable) simple functions

f (x) =
n∑

j=1

bjχBj (x),

where bj ∈ F, Bj ∈ A(Gα), Bj ∩ Bk = ∅ for each j �= k, χB denotes the characteristic
function of a subset B, χB(x) = 1 for each x ∈ B and χB(x) = 0 for every x ∈ Gα \ B,
n ∈ N, where F = R or F = C. A norm on L1

Gβ
(Gα) is by our definition given by the

formula:

‖f ‖L1
Gβ

(Gα ) := sup
h∈θ

β
α (Gβ )

‖fh‖L1(Gα ) < ∞, (1)
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where fh(g) := f (h−1g) for h, g ∈ Gα, L1(Gα, μα, F) is the usual Banach space of all
μα-measurable functions u : Gα → F such that

‖u‖L1(Gα ) =
∫

Gα

|u(g)|μα(dg) < ∞. (2)

Suppose that
(3) φ : � → � is an increasing mapping, α < φ(α) for each α ∈ �. We consider the

space,
(4) L∞(L1

Gβ
(Gα, μα, F) : α < β ∈ �) := {f = (fα : α ∈ �); fα ∈ L1

Gβ
(Gα, μα, F)

for each α ∈ �; ‖f ‖∞ := supα∈� ‖fα‖L1
Gβ

(Gα) < ∞, where β = φ(α)}.
When measures μα are specified, spaces are denoted shortly by L1

Gβ
(Gα, F) and

L∞(L1
Gβ

(Gα, F) : α < β ∈ �) respectively.

DEFINITION 4. Let the algebra E := L∞(L1
Gβ

(Gα, μα, F) : α < β ∈ �) be supplied
with the multiplication f 
̃u = w such that

wα(g) = (fβ 
̃uα)(g) =
∫

Gβ

fβ(h)uα(θβ
α (h)g)μβ(dh), (1)

for every f, u ∈ E and g ∈ G = ∏
α∈� Gα, where F = R or F = C, β = φ(α), α ∈ �.

If a bounded linear transformation T : E → E satisfies Conditions (2, 3):
(2) Tf = (Tαfα : α ∈ �), Tα : L1

Gβ
(Gα, μα, F) → L1

Gβ
(Gα, μα, F) for each α ∈ �,

(3) T(f 
̃u) = f 
̃(Tu),
for each f, u ∈ E , then T is called a left meta-centralizer.

DEFINITION 5. Let X be a topological space, let C(X, R) be the space of
all continuous functions f : X → R, while Cb(X, R) be the space of all bounded
continuous functions with the norm

(1) ‖f ‖ := supx∈X |f (x)| < ∞.
Suppose that F is the least σ -algebra on X containing the algebra Z of all
functionally closed subsets A = f −1(0), f ∈ Cb(X, R). A finitely additive non-
negative mapping m : F → [0,∞) such that

(2) m(A) = sup{m(B) : B ∈ Z, B ⊂ A},
for each A ∈ F is called (a finitely additive) measure. A generalized measure is
the difference of two measures. Denote by M(X) = M(X, R) the family of all
generalized (finitely additive) measures.
For short “generalized" may be omitted, when m is considered with values in R.

THEOREM 6 (A.D. Alexandroff [28]). M(X) is the topologically dual space to
Cb(X, R), that is for each bounded linear functional J on Cb(X, R) there exists a unique
generalized (finitely additive) measure m ∈ M(X) such that

(1) J(f ) = ∫
X f dm for each f ∈ Cb(X, R),

each measure m ∈ M(X) defines a unique continuous linear functional by Formula
(1). Moreover,

(2) ‖J‖ = ‖m‖.

DEFINITIONS 7. A bounded linear functional J on Cb(X, R) is called σ -smooth, if
(1) limn J(fn) = 0
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for each sequence fn in Cb(X, R) such that 0 ≤ fn+1(x) ≤ fn(x) and limn fn(x) = 0 for
each point x ∈ X . The linear space of all σ -smooth linear functionals is denoted by
Mσ (X) = Mσ (X, R).

A bounded linear functional J on Cb(X, R) is called tight, if Formula (1) is fulfilled
for each net fα in Cb(X, R) such that ‖fα‖ ≤ 1 for each α and fα tends to zero uniformly
on each compact subset K in X . The space of all tight linear functionals is denoted by
Mt(X) = Mt(X, R).

If m1, m2 ∈ M(X), then m = m1 + im2 is a complex-valued measure, their
corresponding spaces are denoted by M(X, C), Mσ (X, C) = Mσ (X) + iMσ (X) and
Mt(X, C) = Mt(X) + iMt(X).

THEOREM 8. Let E be a real F = R or complex F = C algebra (see Section 4), let
also T be a left meta-centralizer on E . Then there exists a family ν = (να : α ∈ �) of
generalized F-valued measures να on Gα of bounded variation such that

Tf = ν
̃f, (1)

where

(Tαfα)(g) = (νβ
̃fα)(g) =
∫

Gβ

νβ(dh)fα(θβ
α (h)g) (2)

for each α ∈ � and g ∈ Gα with β = φ(α).

Proof. For each β ∈ � and a neutral element eβ ∈ Gβ, we consider a basis of its
neighbourhoods {Va,β : a ∈ �β} such that clGα

θβ
α (Va,β) is compact in (Gα, τα), where

�β is a set, clX A denotes the closure of a set A in a topological space X . The set �β is
directed by the inclusion: a ≤ b ∈ �β if and only if Vb,β ⊆ Va,β .

There is a natural continuous linear restriction mapping pU
V : Cb(U, F) → Cb(V, F)

for each closed subsets U and V in Gβ such that V ⊂ U , where pU
V (f ) = f |V for

each f ∈ Cb(U, F). At the same time, if U is compact, then each continuous bounded
function g on V with values in F has a continuous extension πV

U (g) on U with values
in F such that

‖g‖Cb(V,F) ≤ ‖πV
U (g)‖Cb(U,F) ≤ 2‖g‖Cb(V,F),

due to Tietze–Uryson Theorem 2.1.8 [9], since Gβ is T0 and hence, completely regular
by Theorem 8.4 [13] and each Huasdorff compact space is normal by Theorems 5.1.1
and 5.1.5

[9]. Thus, there exists a linear continuous embedding πV
U : Cb(V, F) ↪→ Cb(U, F).

The probability measure μβ on Gβ is Borel regular and radonian. Hence, there
exists a σ -compact subset Xβ in Gβ such that μβ(Xβ) = 1, i.e. Xβ is the countable union
of compact subsets Xβ,n in (Gβ, τβ) with Xβ,n ⊂ Xβ,n+1 for each natural number n.

We put

qa,β := χVa,β
/μβ(Va,β), (3)

where χA denotes the characteristic function of a subset A in Gβ , χA(x) = 1 for each
x ∈ A, while χA(x) = 0 for each x /∈ A. In view of Proposition 17.7 [21] (see also
Lemma 13 [19]), the net {qa,β : a ∈ �β} is an approximation of the identity relative to
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the convolution:

lim
a

qa,β 
̃fα = fα (4)

for each fα ∈ L1
Gβ

(Gα, μα, F). From Formulas (2, 4) and 4(1–3), it follows that

Tαfα = Tα[lim
a

qa,β 
̃fα] = lim
a

qa,β 
̃[Tαfα]. (5)

Then qa,β 
̃[Tα·] : L1
Gβ

(Gα) → L1
Gβ

(Gα) is a continuous linear operator for each a ∈ �β

and α ∈ �, particularly, for each fα in the space Cb(Gα, F) of all bounded continuous
functions on Gα with values in the field F, where

‖fα‖Cb := sup
x∈Gα

|fα(x)| < ∞, (6)

for each fα ∈ Cb(Gα, F). The restriction of each fα ∈ Cb(Gα, F) on θβ
α (Gβ) is bounded

and continuous, while Cb(Gβ, F) is dense in L1
Gγ

(Gβ, μβ, F) with γ = φ(β) (see also
Lemma 17.8 and Proposition 17.9 [21]).

This implies that an adjoint operator B = T∗ exists relative to the 
̃ multiplication
according to the formula:

(vβ
̃[Tα f̄α])(x) =
∫

Gβ

vβ(h)[Tα f̄α](θβ
α (h)x)μβ(dh)

=:
∫

Gβ

(Bβvβ)(h)f̄α(θβ
α (h)x)μβ(dh), (7)

for each v, f ∈ E , where x ∈ Gα, z̄ denotes the complex conjugated number of z ∈ C.
The operator Bβ is bounded and linear from L1

Gγ
(Gβ) into itself, since from Formula

(7) the estimate follows:

‖Bβ‖ ≤ sup
s∈θ

γ

β (Gγ ), t∈θ
β
α (Gβ ), 0�=vβ∈L1

Gγ
(Gβ ), 0�=fα∈L1

Gβ
(Gα)

| ∫Gα

∫
Gβ

vβ(sh)[Tα f̄α](θβ
α (h)tx)μβ(dh)μα(dx)|

‖vβ‖L1
Gγ

(Gβ )‖fα‖L1
Gβ

(Gα )
≤ ‖Tα‖ < ∞. (8)

The family of bounded linear operators {(Bβqa,β )
̃ : a ∈ �β} from L1
Gβ

(Gα) into

L1
Gβ

(Gα) is pointwise bounded and hence by the Banach–Steinhaus Theorem (11.6.1)
[27] it is uniformly bounded:

sup
a∈�β

‖(Bβqa,β )
̃‖ < ∞. (B1)

Therefore, inequality (8) leads to the conclusion that Bβqa,β =: ha,β ∈ L1
Gγ

(Gβ, μβ, F)
for every a ∈ �β and β ∈ �. Each function ha,β induces the linear functional

Fa,β(gβ) :=
∫

Gβ

gβ(x)h̄a,β (x)μβ(dx). (9)
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Without loss of generality, we choose Va,β such that clGα
Va,β is compact in (Gα, τα)

for each a ∈ �β . Certainly, if f ∈ L1
Gγ

(Gβ, μβ, F), then f ∈ L1(Gβ, μβ, F) and

‖f ‖L1(Gβ ,μβ ,F) ≤ ‖f ‖L1
Gγ

(Gβ ,μβ ,F) < ∞. (10)

There is the embedding Cb(Gβ, F) ⊂ L1
Gγ

(Gβ, μβ, F) and

‖f ‖L1
Gγ

(Gβ ,μβ ,F) ≤ ‖f ‖Cb(Gβ ,F) < ∞, (11)

for each f ∈ Cb(Gβ, F), since μβ is the probability measure on Gβ .
If f ∈ L1

Gγ
(Gβ), then s �→ f 
̃s is a continuous linear operator from Cb(Gβ, F) into

Cb(Gβ, F). This follows from the formulas:

(f 
̃s)(g) =
∫

Gβ

f (h)s(hg)μβ(dh), (12)

where g ∈ Gβ and

sup
g

|(f 
̃s)(g)| ≤ ‖s‖Cb

∫
Gβ

|f (h)|μβ(dh) ≤ ‖s‖Cb‖f ‖L1(Gβ ) ≤ ‖s‖Cb‖f ‖L1
Gγ

(Gβ ).

It remains to verify that the function (f 
̃s)(g) is continuous for each f and s as just
above. For the proof consider the term

|(f 
̃s)(g1) − (f 
̃s)(g2)| =
∣∣∣∣∣
∫

Gβ

f (h)[s(hg1) − s(hg2)]μβ(dh)

∣∣∣∣∣ . (13)

From f ∈ L1
Gγ

(Gβ) and s ∈ Cb(Gβ, F), it follows that for each ε > 0 there exists a
compact subset V in Gβ such that

∫
Gβ\V |f (h)|μβ(dh) < ε and hence

∫
Gβ\V |f (h)[s(hg1) −

s(hg2)]|μβ(dh) < δ, where 0 < δ = ε2‖s‖Cb . Indeed, for each δ > 0, there exists a simple
function q ∈ L1

Gγ
(Gβ) such that ‖f − q‖L1

Gγ
(Gβ ) < δ and hence the measure |f (h)|μβ(dh)

is radonian together with |q(h)|μβ(dh). At the same time, certainly,
∫

V |f (h)|μβ(dh) ≤
‖f ‖L1(Gβ ).

On the other hand, [s(hg1) − s(hg2)] is uniformly continuous on V by the variable
h, since V is compact and s is the continuous function. For each symmetric open
neighbourhood U = U−1 of the neutral element eβ in Gβ, there exists a finite family
of elements p1, . . . , pn ∈ Gβ such that V ⊂ p1U ∪ . . . ∪ pnU , since V is compact. Thus
VU ⊂ p1U2 ∪ . . . ∪ pnU2. Consider a family of symmetric open neighbourhoods Uk =
U−1

k of eβ such that {pkUk : k ∈ ω} is a covering of V and |s(hg1) − s(hg2)| < ε for each
h ∈ pkUk and g1, g2 ∈ Uk, where pk ∈ Gβ for each k, whilst ω is an ordinal. The covering
pkUk of V has a finite subcovering for k ∈ M, where M is a finite subset in ω. Thus
for each ε > 0 there exists a symmetric neighbourhood U ⊆ ⋂

k∈M Uk of eβ such that
|s(hg1) − s(hg2)| < ε for each h ∈ V and g1, g2 ∈ U . Therefore,

|(f 
̃s)(g1) − (f 
̃s)(g2)| ≤ δ + ε‖f ‖L1 = ε(‖f ‖L1 + 2‖s‖Cb ),
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for each g1, g2 ∈ U . Thus

f 
̃s ∈ Cb(Gβ, F) (14)

for each f ∈ L1
Gγ

(Gβ, F) and s ∈ Cb(Gβ, F).
This implies that

Cb(Gβ, F) � s �→ (f 
̃s)(eβ) ∈ F, (15)

is the continuous linear functional on Cb(Gβ, F). In particular each operator (Bβqa,β )
̃
indices the continuous linear functional

Ja,β (s) = [(Bβqa,β )
̃s](eβ)onCb(Gβ, F). (16)

There are the inclusions Mt(X) ⊂ Mσ (X) ⊂ M(X) (see Section 1.4 [28] and
Definitions 5, 7 and Theorem 6 above) and for X = Gβ in particular. On the other
hand, each wa,β(dx) := (Bβqa,β )(x)μβ(dx) is the radonian measure on Gβ , i.e. belongs
to the space Mt(Gβ, F) of radonian measures on Gβ .

Let �β be a family of all left-invariant pseudo-metrics on (Gβ, τβ ) providing its
left uniformity denoted by Lβ (see Section 8.1.7 [9] and Condition 1(3)). This means
that each κ ∈ �β satisfies the restrictions:

(P1) κ(x, y) ≥ 0,
(P2) κ(x, x) = 0,
(P3) κ(x, y) = κ(y, x),
(P4) κ(x, y) ≤ κ(x, z) + κ(z, y),
(P5) κ(zx, zy) = κ(x, y) for each x, y, z ∈ Gβ .

The family �β is directed: κ1 ≤ κ ∈ �β if and only if κ1(x, y) ≤ κ(x, y) for each
x, y ∈ Gβ ; without loss of generality for each κ, κ1 ∈ �β, there exists κ2 ∈ �β such
that κ ≤ κ2 and κ1 ≤ κ2, since κ + κ1 ∈ �β . Each pseudo-metric κ ∈ �β defines the
equivalence relation: x�κy if and only if κ(x, y) = 0. Then as the uniform space (Gβ,Lβ )
has the projective limit decomposition (i.e. the limit of the inverse mapping system)

Gβ = lim
{
Gβ,κ , π

κ
ω,�β

}
,

where, Gβ,κ := Gβ/�κ denotes the quotient uniform space with the quotient uniformly,
πκ is a uniformly continuous mapping from Gβ onto Gβ,κ , πκ

ω are uniformly continuous
mappings from Gβ,κ onto Gβ,ω for each ω ≤ κ ∈ �β such that πω

ξ ◦ πκ
ω = πκ

ξ and
πω = πκ

ω ◦ πκ for each ξ ≤ ω ≤ κ ∈ �β (see Sections 8.2.B, 2.5.F and Proposition
2.4.2 [9] or [14]). Moreover, the equality is satisfied: {y ∈ Gβ : x�κy} = x�β,κ with
�β,κ := {y ∈ Gβ : eβ�κy}, since κ(x, y) = 0 if and only if κ(eβ, x−1y) = 0 by Property
(P5), where eβ denotes the neutral element in the group Gβ . That is, Gβ,κ is called the
homogeneous quotient uniform space.

At the same time the σ -compact subset Xβ is dense in Gβ , since μβ(U) > 0 for
each open subset U in Gβ , but μβ(Xβ) = μβ(Gβ) = 1 (see the proof above). Therefore,
πκ (Xβ) is dense in Gβ,κ . Then πκ (Xβ,n) is compact for each κ ∈ �β as the continuous
image of the compact space according to Theorem 3.1.10 [9], consequently, πκ (Xβ) =⋃∞

n=1 πκ (Xβ,n) is σ -compact. On the other hand, Gβ,κ is metrizable and complete, since
(Gβ,Lβ ) is complete. Therefore, the topological space πκ (Xβ) is separable, since each
πκ (Xβ,n) is separable by Theorems 4.3.5 and 4.3.27 [9] and πκ (Xβ) = ⋃∞

n=1 πκ (Xβ,n).
This implies that each metrizable space Gβ,κ is separable and complete.
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The spaces Cb(Gβ, F) and C∗
b (Gβ, F) form the dual pair (see Sections 9.1 and

9.2 [27]). Then we get that the space of bounded continuous functions Cb(Gβ, F)
has the inductive limit representation Cb(Gβ, F) = ind − lim�β

Cb(Gβ,κ , F), while its
topologically dual space has the projective limit decomposition C∗

b (Gβ, F) = pr −
lim�β

C∗
b (Gβ,κ , F) (see Sections 9.4, 9.9, 12.2, 12.202 [27] and also the note after

Theorem 2.5.14 in [9]). This implies that νβ ∈ M(Gβ, F) if and only if

νβ = lim{νβ,κ , π
κ
ω,�β}, (M 1)

where, νβ,κ ∈ M(Gβ,κ , F) for each κ ∈ �β so that

νβ (π−1
ω (C)) = νβ,ω(C) and νβ,κ ((πκ

ω)−1(C)) = νβ,ω(C) (M 2)

for every C ∈ B(Gβ,ω) and ω ≤ κ ∈ �β .
Then we consider the measure net {wa,β,κ : a ∈ �β} for each κ ∈ �β corresponding

to measures wa,β (dx) = (Bβqa,β )(x)μβ(dx) according to Formula (M2), where x ∈ Gβ .
Since the measure wa,β(dx) is absolutely continuous relative to the radonian measure
μβ , then wa,β is also radonian. Therefore, there is the inclusion {wa,β,κ : a ∈ �β} ⊂
Mt(Gβ,κ , F) and it is known that Mt(Y, F) ⊂ Mσ (Y, F) ⊂ M(Y, F) for a completely
regular topological space Y . Thus the measure net {wa,β : a ∈ �β} weakly converges to
some measure νβ in M(Gβ, F) if and only if the net {wa,β,κ : a ∈ �β} weakly converges
in M(Gβ,κ , F) for each κ ∈ �β according to Theorem 2.5.6 and Corollary 2.5.7 [9]. The
net {wa,β : a ∈ �β} is norm bounded, since

‖Bβqa,β‖L1(Gβ ) ≤ sup{‖(Bβqa,β )
̃fα‖L1
Gβ

(Gα) : fα ∈ L1
Gβ

(Gα), ‖fα‖L1
Gβ

(Gα ) ≤ 1}

= sup{‖qa,β 
̃(Tαfα)‖L1
Gβ

(Gα) : fα ∈ L1
Gβ

(Gα), ‖fα‖L1
Gβ

(Gα ) ≤ 1} ≤

‖Tα‖ sup{‖qa,β 
̃gα‖L1
Gβ

(Gα) : gα ∈ L1
Gβ

(Gα), ‖gα‖L1
Gβ

(Gα ) ≤ 1}

≤ ‖Tα‖ < ∞, since

‖uβ 
̃gα‖L1
Gβ

(Gα ) ≤ ‖u‖L1(Gβ )‖gα‖L1
Gβ

(Gα),

for each u ∈ L1(Gβ) and gα ∈ L1
Gβ

(Gα) (see Lemma 17.2 [21]). This implies that for each
ε > 0 and κ ∈ �β there exists a compact set Kε,κ in Gβ,κ such that wa,β,κ (Gβ,κ \ Kε,κ ) <

ε for each a ∈ �β , since μβ,κ as the image of μβ is the radonian measure on the complete
separable metric space Gβ,κ and each measure wa,β,κ is absolutely continuous relative
to μβ,κ (see also Theorem 1.2 [7] and Formulas (M1, M2)).

Applying theorems either 2.24 and 2.27 or 2.30 [28], we get that a measure νβ,κ ∈
Mσ (Gβ,κ , F) exists such that the net wa,β,κ weakly converges to νβ,κ for each β ∈ � and
κ ∈ �β . Thus, using Formulas (M1, M2) we have deduced that

lim
a

Ja,β (f ) =
∫

Gβ

f dνβ, (17)

for each f ∈ Cb(Gβ, F). The variation of νβ is finite and M(Gβ, F) is the Banach space
relative to the variation norm according to Theorems 1.2 and 1.3 [28].
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Let x ∈ Cb(Gβ, F) and y ∈ Cb(Gγ , F), we consider the function

z(g) =
∫

Gγ

y(h)x(θγ

β (h)g)μγ (dh). (18)

It evidently exists and is μβ-measurable, since μγ (Gγ ) = 1, consequently,

sup
g∈Gβ

∣∣∣∣∣
∫

Gγ

y(h)x(θγ

β (h)g)μγ (dh)

∣∣∣∣∣ ≤ ‖y‖Cb(Gγ ,F)‖x‖Cb(Gβ ,F).

Moreover, z ∈ Cb(Gβ, F) ⊂ L1
Gγ

(Gβ) due to the latter inequality and Properties (11, 14)
(see above). Since νβ is the weak limit of the net Ja,β , then for each ε > 0, there exists
b ∈ �β such that

∣∣∣∣∣
∫

Gβ

z(g)νβ(dg) −
∫

Gβ

z(g)(Bβqa,β )(g)μβ(dg)

∣∣∣∣∣ < ε, (19)

for each a > b. In view of the Fubini theorem the latter inequality implies that
∣∣∣∣∣
∫

Gγ

y(h)μγ (dh)
∫

Gβ

x(θγ

β (h)g)νβ(dg)

−
∫

Gγ

y(h)μγ (dh)
∫

Gβ

x(θγ

β (h)g)(Bβqa,β )(g)μβ(dg)

∣∣∣∣∣ ≤ ε (20)

for each a > b. Therefore, Tαx(g) = (νβ
̃x)(g) for each x ∈ Cb(Gβ, F) ∩
[(θβ

α )−1(Cb(Gα, F))] and g ∈ Gβ . If fα ∈ Cb(Gα, F), then its restriction fα|
θ

β
α (Gβ ) is

continuous and bounded, that is fα ◦ (θβ
α )−1 is continuous and bounded on (Gβ, τβ )

due to 1(2). Moreover, the function ψg(h) := fα(θβ
α (h)g) is continuous and bounded by

h ∈ Gβ for each g ∈ Gα. Hence,

(νβ
̃ψg)(s) =
∫

Gβ

fα(θβ
α (hs)g)νβ (dh) = [νβ
̃fα](θβ

α (s)g), (21)

is defined for each s ∈ Gβ and g ∈ Gα, particularly for s = eβ .
By the conditions of this theorem Tα : L1

Gβ
(Gα) → L1

Gβ
(Gα) is a continuous linear

operator. There is also the inclusion Cb(Gα, F) ⊂ L1
Gβ

(Gα, μα, F) so that Cb(Gα, F) is

dense in L1
Gβ

(Gα, μα, F), since μα(Xα) = μα(Gα) = 1 with the σ -compact subset Xα

in Gα (see also Lemma 17.8 and Proposition 17.9 [21] and Property (14) above).
Let fα ∈ L1

Gβ
(Gα, μα, F) and we take any sequence of bounded continuous functions

fα,n ∈ Cb(Gα, F) converging to fα in L1
Gβ

(Gα, μα, F). We have

lim
a

(Bβqa,β )
̃fα,n = fα and lim
n

fα,n = fα, (22)

in L1
Gβ

(Gα, μα, F). Then

‖(Bβqa,β )
̃fα,n − (Bβqb,β )
̃fα,m‖L1
Gβ

(Gα )

≤ ‖(Bβqa,β − Bβqb,β )
̃fα,n‖L1
Gβ

(Gα ) + ‖(Bβqb,β )
̃‖‖fα,n − fα,m‖L1
Gβ

(Gα), (23)
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consequently, for each ε > 0 there exist a0 ∈ �β and n0 ∈ N such that

‖(Bβqa,β )
̃fα,n − (Bβqb,β )
̃fα,m‖L1
Gβ

(Gα ) < ε, (24)

for each a, b > a0 and n, m > n0 (see Lemma 17.2 and Proposition 17.7 [21] and
Formula (B1) above). That is the net {(Bβqa,β )
̃fα,n : (a, n)} is fundamental (i.e. of the
Cauchy type) in the Banach space L1

Gβ
(Gα), where (a, n) ≤ (b, m) if a ≤ b and n ≤ m.

Therefore the limit exists

Tαfα = lim
a,n

(Bβqa,β )
̃fα,n = lim
n

lim
a

(Bβqa,β )
̃fα,n = lim
n

νβ
̃fα,n = νβ
̃fα. (25)

Thus

Tαfα = νβ
̃fα,

for each fα ∈ L1
Gβ

(Gα) as well, that is, Formulas (1, 2) are fulfilled.

THEOREM 9. Let the assumptions of Theorem 8 be satisfied. Then the statement of
Theorem 8 is equivalent to the following:

(1) relative to the strong operator topology the set of all convolution operators of the
form 8(1, 2) on E := L∞(L1

Gβ
(Gα, μα, F) : α < β ∈ �) with values in E is a closed subset

of the ring of all bounded linear operators from E into E .

Proof. (8 ⇒ 9). Let νa,β 
̃ be a net of convolution operators converging to an
operator Tα : L1

Gβ
(Gα) → L1

Gβ
(Gα) in the strong operator topology for each α ∈ �,

hence T is the left meta-centralizer on E , since each operator {νa,β 
̃ : α ∈ �,β = φ(α)}
is the left meta-centralizer.

(9 ⇒ 8). From the proof of Theorem 8, we analogously get

Tαfα = lim
a

νa,β 
̃fα,

for each α ∈ � and fα ∈ L1
Gβ

(Gα, μα, F) with β = φ(α), where νa,β ∈ M(Gβ, F) for each
β ∈ � and a ∈ �β consequently, T = (Tα : α) is the convolution operator.

THEOREM 10. Let S be a bounded linear mapping of E (see Section 4) into itself such
that Sf = (Sαfα : α ∈ �) with Sα : L1

Gβ
(Gα) → L1

Gβ
(Gα) for each α ∈ � with β = φ(α).

Then the following statements (i) and (ii) are equivalent:
(i) an operator S has the form
(1) S = pÛa for some marked elements a ∈ G := ∏

α∈� Gα and p = {pα : |pα| =
1 ∀α ∈ �} ∈ F�, that is

(2) Sαfα(x) = pαÛaβ
fα(x) for any α ∈ � with β = φ(α) and each x ∈ Gα, where

(3) Ûgβ
fα(x) = fα(θβ

α (gβ)x) for each gβ ∈ Gβ and x ∈ Gα;
(ii) (4) S is a left meta-centralizer and
(4) ‖Sαfα‖ = ‖fα‖ for every fα ∈ L1

Gβ
(Gα) and α ∈ � with β = φ(α).

Proof. The F-linear span of the set of all non-negative functions f ∈ L1
Gβ

(Gα, μα, F)

is dense in L1
Gβ

(Gα, μα, F). Therefore, each bounded linear operator Sα can be

written in the form Sα = S1,α + iS2,α = S+
1,α − S−

1,α + iS+
2,α − iS−

2,α, where S+
k,α

f ≥ 0
and S−

k,α
f ≥ 0 for k = 1, 2 and each f ∈ Pα, Sk,α = S+

k,α
− S−

k,α
, where Pα denotes

the cone of functions in L1
Gβ

(Gα, μα, F) non-negative μα-almost everywhere on Gα.

https://doi.org/10.1017/S0017089514000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000330


META-CENTRALIZERS OF NON-LOCALLY COMPACT GROUP ALGEBRAS 359

Certainly over the real field additives S±
2,α vanish. In view of Theorem 11 [19], there exist

a+
k ∈ G and p+

k = {p+
k,α

: p+
k,α

> 0 ∀α ∈ �} ∈ R� such that S+
k,α

fα(x) = p+
k,α

Ûa+
k,β

fα(x)

and analogously for S−
k,α

for each k = 1, 2.
Suppose that at

k �= as
l for some t, s ∈ {+,−} and k, l ∈ {1, 2}, then there exists α ∈ �

such that at
k,β

�= as
l,β with β = φ(α). On the other hand, we have Sk,αfα = S+

k,α
fα −

S−
k,α

fα = p+
k,α

fα(θβ
α (a+

k,β
)x) − p−

k,α
fα(θβ

α (a−
k,β

)x) for each fα ∈ L1
Gβ

(Gα, μα, F), since fα =
[f +

1,α − f −
1α] + i[f +

2,α − f −
2,α], where f +

k,α
(x) = max(fk,α(x), 0) for every k = 1, 2 and x ∈ Gα,

f +
k,α

, f −
k,α

∈ Pα. Then if U is an open subset in Gα such that θβ
α (as

k,β
)U ∩ θβ

α (at
l,β)U = ∅

for every k, l = 1, 2 and t, s ∈ {+,−}, then ‖SαχU‖ = ∑2
k=1

∑
t∈{+,−}(|pt

k,α
|‖Ûat

k,β
χU‖).

If the interior of the intersection ∩2
k=1 ∩t∈{+,−} (θβ

α (at
k,β

)U) is non-void, then ‖SαχU‖ <∑2
k=1

∑
t∈{+,−}(|pt

k,α
|‖Ûat

k,β
χU‖), since μα(V ) > 0 for each open subset V in Gα,

consequently, Sα is not an isometry.
Therefore, if S satisfies Conditions ii(4, 5), then at

k,β
= as

l,β for each t, s ∈ {+,−}
and k, l ∈ {1, 2}. Thus (Sαfα) = pαÛaβ

fα(x) for any α ∈ � and each x ∈ Gα, where
pα = p+

1,α − p−
1,α + ip+

2,α − ip−
2,α. Naturally, in the case F = R the terms p±

2 vanish. In
view of Lemma 7 [19] Ûa is the isometry. Since S preserves norms, then |pα| = 1 for
each α.

Vice versa Conditions i(1–3) imply ii(4, 5) due to Lemma 7 [19].

LEMMA 11. Let Ûc be a left translation on E as in Section 10, let also T : E → F be an
isomorphism of normed algebras such that Tf = (Tαfα : α ∈ �), Tα : L1

Gβ
(Gα, μα, F) →

L1
Hβ

(Hα, λα, F) and ‖Tα‖ ≤ 1 for each α, where F = L∞(L1
Hβ

(Hα, λα, F) : α < β ∈ �).

If K̂c = TÛcT−1, then there exist mappings of groups ξ : G → H and p : G → F� such
that

(1) K̂c = pcV̂t for t = ξ (c) and
(2) pc = {pc,α : |pc,α| = 1 ∀α ∈ �} ∈ F�, where V̂d denotes the left translation operator

on F , c ∈ G.

Proof. We have T(f 
̃u) = (Tf )
̃(Tu) for each u, f ∈ E and T−1(g
̃v) =
(T−1g)
̃(T−1v) for each v, g ∈ F . One can take the approximate identity {qa,β : a ∈ �β}
as in Section 8 and consider functions sa,β = Tβqa,β . The operator T is bijective and
continuous from E onto F , where E and F as linear normed spaces are complete.
According to the Banach theorem 4.5.4.3 [17] (or see [1]) the inverse operator T−1 is
also bounded. Due to Formulas 8(7, 8) there exists the adjoint operator (K̂cγ

)∗ relative
to the 
̃ multiplication for each c ∈ G and γ ∈ �. For each f, g ∈ F , γ = φ(β) and
β = φ(α) the limit exists

(K̂cγ
fβ)
̃gα = fβ 
̃[(K̂cγ

)∗gα] = lim
a

fβ 
̃{sa,β 
̃[(K̂cγ
)∗gα]}

= fβ 
̃{lim
a

(K̂cγ
sa,β)
̃gα} = fβ 
̃{lim

a
(TβÛcγ

T−1
β Tβqa,β )
̃gα}

= fβ 
̃{lim
a

(TβÛcγ
qa,β )
̃gα} and hence

‖(K̂cγ
fβ)
̃gα‖ ≤

lima‖fβ 
̃([TβÛcγ
qa,β ]
̃gα)‖ ≤ ‖fβ‖‖Tβ‖‖gα‖ lima‖[Ûcγ

qa,β ]
̃‖ ≤ ‖fβ‖‖gα‖,
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for each f, g ∈ E , since ‖T‖ ≤ 1. On the other hand, K̂c−1
γ

= (K̂cγ
)−1. Thus the

inequalities ‖K̂cγ
‖ ≤ 1 and ‖(K̂cγ

)−1‖ ≤ 1 are satisfied for each γ ∈ � and c ∈ G,
consequently, K̂c is the isometry for each c ∈ G.

Applying Theorem 10 we get the statement of this lemma.

LEMMA 12. The mappings (G, τ b
G) � c → pc ∈ (B�, τ b

B) for each β and (G, τ b
G) � c �→

ξ (c) ∈ (H, τ b
H) of Lemma 11 are continuous homomorphisms, where B = {x ∈ F : |x| =

1} is the multiplicative group, the product B� is in the box topology τ b
B, where τ b

G denotes
the box topology on G (see Section 9 [19]).

Proof. These mappings are homomorphisms, since

pch,γ V̂ξγ (cγ hγ ) = TβÛcγ hγ
T−1

β = TβÛcγ
T−1

β TβÛhγ
T−1

β = pc,γ V̂ξγ (cγ )ph,γ V̂ξγ (hγ ),

for each c, h ∈ G, β ∈ � with γ = φ(β), where ξ (c) = {ξα(cα) : α ∈ �}, ξα : Gα → Hα

for each α ∈ �. The mapping ξ is bijective, since for ξ (c) = eH ∈ H, where eH is the
neutral element in H, one gets pc,γ IF = TβÛcγ

T−1
β and hence Ûcγ

= pc,γ IE , where IE
denotes the unit operator on E . Therefore, c = eG and hence pc,γ = 1 for each γ .

Then the mapping G � c �→ Ûc is continuous from G in the box topology τ b
G and

relative to the strong operator topology according to Proposition 10 [19], consequently,
the mapping H � t �→ V̂t is also continuous, since T and T−1 are bounded linear
operators.

Then for each ε = (εα > 0 : α ∈ �), there exists a neighbourhood Y = ∏
α∈� Yα

of eH in (H, τ b
H) such that each Yα is an (open) neighbourhood of the neutral element

eα in Hα for which εα/2 < λα(Yα) < εα for each α ∈ �, since λα is the quasi-invariant
borelian measure on Hα relative to the dense subgroup Hβ and hence non-atomic.
Moreover, if Z is an arbitrary neighbourhood of eH in (H, τ b

H), then there exists Y
such that YY−1 ⊆ Z. Then the function g = (gα = χYα

: α ∈ �) belongs to F , where
χAα

denotes the characteristic function of a subset Aα in Hα. Suppose that p is a marked
element in B�. Let t ∈ H be such that

‖pβgβ 
̃(V̂∗
tβ gα) − gβ 
̃gα‖ < [λβ |Yβ


̃λα](Yα), where

[λβ |Yβ

̃λα](Yα) :=

∫
Yβ

∫
Yα

λβ(dxβ)λα(θβ
α (xβ)dxα), (1)

where θβ
α : Hβ ↪→ Hα are embeddings (see Section 1). If tβ /∈ Zβ , then sβYβ and sβtβYβ

are the disjoint subsets in the group Hβ for each element sβ in Hβ , consequently,

‖pβgβ 
̃[V̂∗
tβ gα] − gβ 
̃gα‖ = sup

sβ∈Hβ

∫
Hα

|pβ [V̂sβ tβ gβ ]
̃gα(xα) − [V̂sβ
gβ ]
̃gα(xα)|λα(dxα)

= sup
sβ∈Hβ

∫
Hβ

∫
Hα

|pβgβ(sβtβxβ)gα(θβ
α (xβ)xα)|λβ(dxβ)λα(dxα)

+ sup
sβ∈Hβ

∫
Hβ

∫
Hα

|gβ(sβxβ)gα(θβ
α (xβ)xα)|λβ(dxβ)λα(dxα) ≥ [λβ |Yβ


̃λα](Yα).

Thus Inequality (1) implies that tβ ∈ Zβ . Hence, the mapping pV̂ξβ (cβ ) �→ ξβ(cβ) = tβ ∈
Hβ , with Hβ in the topology τβ , is continuous for each β, when linear operators
pV̂ are considered relative to the strong operator topology, since the set of all (μα-
measurable) simple functions is dense in L1

Gβ
(Gα). The mapping cβ �→ ξβ(cβ) is the
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composition of three mappings cβ �→ Ûcβ
�→ TαÛcβ

T−1
α = pc,βV̂ξβ (cβ ) �→ ξβ(cβ) = tβ

which are continuous for each β ∈ � as it was proved above, consequently, the mapping
ξ : (G, τ b

G) → (H, τ b
H) is also continuous.

The mapping c �→ pc is continuous, since c �→ pcI is continuous as the composition
of two uniformly bounded and continuous mappings TÛcT−1 and K̂ξ (c).

LEMMA 13. The mapping ξ : G → H is the homeomorphism of (G, τ b
G) onto (H, τ b

H).

Proof. If {ξβ(xβ,b) : b} is a net converging to yβ ∈ Hβ , where xβ,b ∈ Gβ ,
then {V̂ξβ (xβ,b) : b} converges to V̂yβ

in the strong operator topology. Therefore,
{T−1

α V̂ξβ (xβ,b)Tα : b} converges to T−1
α V̂yβ,b Tα. From Lemma 11 we have the equality

T−1
α V̂ξβ (xβ,b)Tα = p−1

xb,β
Ûxβ,b ,

hence, the net of operators {p−1
xb,β

Ûxβ,b : b} strongly converges to pβÛxβ
for some pβ ∈ B

and xβ ∈ Gβ . Thus the equality

pβTαÛxβ
T−1

α = V̂yβ
,

is fulfilled with yβ = ξβ(xβ) and pβ = p−1
x,β for each β ∈ �. This implies that ξβ(Gβ) is

closed in Hβ for each β and hence ξ (G) is closed in (H, τ b
H).

The inverse operator T−1 is bounded (see Section 11). Then T−1
α V̂yβ

Tα =
(sTα)−1V̂yβ

(sTα) for each s ∈ F \ {0}. Hence, without loss of generality we can
consider that 0 < ‖T−1

α ‖ ≤ 1 for each α ∈ �. On the other hand, from the equality
T−1

α V̂yβ
Tα = p−1

x,βÛxβ
with xβ = ξ−1

β (yβ) analogously to ξ in Section 12 the continuity
of ξ−1

β : ξβ(Gβ) → Gβ follows.
Applying Lemmas 11 and 12 and the proof in this section above to T−1 : F → E,

we get that there exists a continuous bijective homomorphism η : (H, τ b
H) → (G, τ b

G)
such that η(H) is closed in (G, τ b

G) and
(1) Q̂y = ryÛt for t = η(y) and
(2) ry = {ry,α : |ry,α| = 1 ∀α ∈ �} ∈ F�, where Q̂y = T−1V̂yT for each y ∈ H, r :

(G, τ b
G) → B� is a continuous homomorphism. The operators K̂c and Q̂y are the left

meta-centralizers on F and E respectively for each c ∈ G and y ∈ H. But from 11(1, 2)
it follows that η = ξ−1 and pη(y) = r−1

y for each y ∈ H, since η and ξ are bijective
homomorphisms. Therefore, Formulas (1, 2) and 11(1, 2) imply that η(ξ (G)) = G and
hence ξ (G) = H.

THEOREM 14. Let T : E → F be an isomorphism of normed algebras such that Tf =
(Tαfα : α ∈ �), Tα : L1

Gβ
(Gα, μα, F) → L1

Hβ
(Hα, λα, F) and ‖Tα‖ ≤ 1 for each α, where

F = L∞(L1
Hβ

(Hα, λα, F) : α < β ∈ �) (see Sections 11 and 12). Then a homeomorphism
ξ of topological groups exists from (G, τ b

G) onto (H, τ b
H) and a continuous homomorphism

ψ : G → B� such that
(1) TÛxT−1 = ψ(x−1)V̂ξ (x) and
(2) (Tf )α(ξ (x)) = ψβ(xβ)fα(xα) for each x ∈ G, f ∈ E and α ∈ � with β = φ(α),

where ψ(x) = (ψα(xα) : α ∈ �), ψα : Gα → B,

TαÛxβ
T−1

α = ψβ

(
x−1

β

)
V̂ξβ (xβ ).

Moreover, T is an isometry.
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Proof. We define a homomorphism ψ(x) = p−1
x , hence ψ(x) = (ψα(xα) = p−1

x,α :
α ∈ �} ∈ B�, hence ψα : Gα → B is a character for each α ∈ �. From Lemmas 11–
13, Statement (1) of this theorem follows such that ξ : (G, τ b

G) → (H, τ b
H) and ξ−1 :

(H, τ b
H) → (G, τ b

G) and ψ : G → B� are continuous homomorphisms with ξ (G) = H.
If S : E → F is an isomorphism of normed algebras such that Sf = (Sαfα : α ∈ �),

Sα : L1
Gβ

(Gα, μα, F) → L1
Hβ

(Hα, λα, F) and ‖Sα‖ ≤ 1 for each α such that S satisfies
Equality (2).

(Sf )α(ξ (x)) = ψβ(xβ)fα(xα) for each x ∈ G and f ∈ E , then (S−1g)α(x) =
ψβ(x−1

β )gα(ξα(xα)) for each g ∈ F and x ∈ G. Therefore, one infers that

(SαÛcβ
S−1

α gα)(ξα(xα)) = ψβ(xβ)(Ûcβ
S−1

α gα)(xα)

= ψβ(xβ)(S−1
α gα)(θβ

α (cβ)xα) = ψβ(xβ)ψβ(x−1
β c−1

β )gα(θβ
α (ξβ(cβ))ξα(xα))

= ψβ(c−1
β )gα(θβ

α (ξβ(cβ))ξα(xα)) = ψβ(c−1
β )(Ûξβ (cβ )gα)(ξα(xα)),

consequently, SαÛcβ
S−1

α = ψβ(c−1
β )Ûξβ (cβ ) for each c ∈ G, α ∈ � with β = φ(α), where

embeddings Hβ ↪→ Hα also are denoted by θβ
α for the notation simplicity (see Section

1). This means that SÛcS−1 = TÛcT−1 and hence

T−1
α SαÛcβ

= Ûcβ
T−1

α Sα, (3)

for each α ∈ � with β = φ(α). In view of Lemmas 11–13 and the conditions of this
theorem the linear operators T , T−1, S and S−1 are continuous. Thus, the operator

T−1S =: Y, (4)

is the isomorphism of the algebra E onto itself commuting with all operators Ûc such
that Y and Y−1 are continuous. As in Section 13, it is sufficient to consider the case
0 < ‖Yα‖ ≤ 1 for each α ∈ �, since Ûcβ

= Y−1
α Ûcβ

Yα = (kYα)−1Ûcβ
(kYα) for every

k ∈ F \ {0}, α ∈ � with β = φ(α) and c ∈ G. Take f, q ∈ E and consider the left meta-
centralizer A defined by a radonian measure να ∈ Mt(Gα, F) such that

να(dxα) = qα(xα)μα(dxα), (5)

for each α ∈ �, that is Af = ν
̃f . On the other hand,

(Af )α(xα) =
∫

Gβ

qβ(yβ)[Ûyβ
fα(xα)]μβ(dyβ), (6)

that is relative to the strong operator topology

Aα =
∫

Gβ

qβ(yβ)Ûyβ
μβ(dyβ), (7)

for each α ∈ � with β = φ(α), where Af = (Aαfα : α ∈ �). In each Banach space
L1

Gγ
(Gβ, μβ, F) the space of (μβ-measurable) simple functions

∑n
j=1 vjχZj is dense,

where vj ∈ F is a constant and Zj is a μβ-measurable subset in Gβ for each j = 1, . . . , n,
n ∈ N. Therefore, from Formulas (3–7) it follows that

YAf = Y (q
̃f ) = (Yq)
̃(Yf ) = AYf = q
̃(Yf ),
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consequently, Yq = q for each q ∈ E , since f ∈ E is arbitrary. Thus Y = IE and hence
T = S, where IE denotes the unit operator on E . From this Formula (2) follows. The
last statement follows from Formulas (2) and 3(1).

15. Remark. The results of this paper can be used for further studies of non-locally
compact group algebras, representations of groups, completions and extensions of
groups, etc.
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