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On the relation of a distributive
lattice to its lattice of ideals

Herbert S. Gaskill

In this note we examine the relationship of a distributive
lattice to its lattice of ideals. Our main result is that a
distributive lattice and its lattice of ideals share exactly the
same collection of finite sublattices. In addition we give a
related result characterizing those finite distributive lattices
L which can be embedded in a lattice L' whenever they can be
embedded in its lattice of ideals T(L') .

In this note our main result is the following: if L is a
distributive lattice and T(L) its lattice of ideals, then L and T(L)
have the same collection of finite substructures. In addition we give a
characterization of those finite distributive lattices L for which if L'
is any lattice and L is embeddable in T(L') then L can be embedded in
L

Preliminaries

In general we follow the notation of Gratzer [3]. By a lattice we

mean a structure (L; +, *) where + and *+ are binary, associative,

commutative, jdempotent, and related by,
z + {y*x) = x and z(xty) = x .

We often omit the + . If z +y =2x , then xy =y , and we then write

y <x . By an ideal of a lattice L we mean a non-empty subset I of L
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such that if a and b €I and c=a+b then ¢ €I . We will denote
the collection of all ideals of L by I(L) . It is well known that the
structure T(L) = (I(L}); +, n} is a lattice where n 1is set theoretic

intersection and + 1is defined by

I +12={a:a€L and 3bl€I

1 I, € I, and a5b1+b2}.

1“2 2
1ir I0€I(L) and for some a €L ,

Io={b:b€L and b < al ,

then we say Io is the principal ideal generated by a . We will denote

the principal ideal generated by a by a . Lastly a lattice is

distributive if it satisfies

z(y+z) = ay + zz .

1.

In this section we give & complete characterization of those finite
distributive lattices L which satisfy the condition that whenever L 1is
embeddable in T(L') then L can be embedded in L' . We have termed
such lattices weakly transferable. The problem of characterizing weakly
transfersble lattices was first raised by Gratzer in [4, p. 207], and at

that time he pointed out the following:

LEMMA 1. If L <s any finite lattice and L has a point which is
both join and meet reducible, then L 1is weakly transferable.

We shall show that if L is a finite distributive lattice and no
point of L 1is both jJoin and meet reducible, then L is weakly
transferable. In fact we show an even stronger result. We say that a
finite lattice is transferable if whenever ¢ embeds L in T(L') there
is a Y embedding L in L' such that zy € y¢ if and only if x <y .
Thus the embedding of L in L' relates in a substantial way to the
embedding of L in T(L') . PFor the remainder of this paper
L =(L; +,*) denotes a fized finite distributive lattice.

THEOREM 1. If no point of L is both join and meet reducible, then

L is transferable.

Before proceeding with the proof of this result we shall need some
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information sbout the structure of finite distributive lattices.

LEMMA 2 [1, p. 58). If L 4is a finite distributive lattice, then
every element has a wnique representation as a join of a join-irredundant
set of join irreducibles.

Using Lemma 2, for each x € L , let Jx denote that unique Join
irredundant set of Join irreducibles satisfying Z J:r =x . As an
immediate consequence of the lemma we obtain:

LEMMA 3. If ¢ <s awy map of L into a lattice L' such that ¢

18 order preserving on the set of join irreducibles and such that
20 = Z(qu)) for each x €L , then ¢ is a join homomorphism.
Proof. This is immediate from the fact that Lemma 2 tells us that

every Join irredundant set of join irreducibles sums to a unique element.

For greater detail see [1].

Proof of Theorem 1. Let ¢ be the embedding of L in T(L') where
L' is any lattice such that L is embeddable in T(L') . Now to each

x € L choose an a:OEL' such that x06y¢ if and only if x =y .

Such choices are possible since ¢ is an embedding. Note that if x¢ is

principal then x¢ = a for some a € L and we may teke Ty =a. It is

now clear that if ¥ is a homomorphism of L into L' such that

zy = xp € xp then Y is one-to-one. Further it is easily seen that for

each x € L wve can choose a U)x such that w:c is defined exactly on the

set of Join irreducibles of L , wx is order preserving, for each Jjoin

irreducible y , Yy, =yP € yd , and such that ==, = Z[J Y ) . We then
0 x 0 x'x

define Y* by

Z{ywx :x €L} if y is join irreducible,

yv* =
Z(Jytp*) if y 1is Join reducible.

It is clear that Y* is a join embedding and that xY* € y¢ if and only
if x <=y . To complete the proof we define Y by

ap =TT (M%),
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where M:c is the unique meet irredundant meet representation of x as a

meet of meet irreducibles given by the dual of Lemma 2. Since

xp* = xp € xp , we have that ¢ is a meet isomorphism satisfying z¢ < y¢
if and only if x =y . Now we assert that |y is a.lattice isomorphism.
It is well known that in any distributive lattice, if 2z = x + y then
there exists zy = x and ¥q =y such that zy + Yy, = 2 - Similarly the

dual of this result is valid. Consider a, b, ¢ and d € L such that
ed = a+b vwhere a+ b is a proper join and ed a proper meet. Since
ed 1is not Join reducible we must have ed = a or ed=<b . Since a+b
is not meet reducible we must have either e<a+b or d=a+b . Now
Y 1is a meet isomorphism whence Y preserves the valid inequality of

ed <a and ed =b . Without loss of generality assume e <a + b .

There are two cases.

Case 1. ¢ is meet irreducible. Since ¢y = cP* for this case, we

obtain
ep = cp* s ap* + DY* = ay + by ,
since Y* is a join isomorphism, which completes Case 1.

Case 2. ¢ 1is meet reducible. For this case, ¢ 1is Join irreducible

e =x, by Lemma 2. Since | is an order

whence for some x. € J 0

0 atbh *

isomorphism and Ja+b c Ja U Jb , we have
e Sz =ap + by,

which completes Case 2.

It follows that for arbitrary a, b, ¢ and d € L , whenever
ed <a+b then (cP)(dW) <a¥ +bY . It is immediate that ¢ is an

isomorphism, and this completes the proof of Theorem 1.

Distributive lattices in which no point is both Join and meet
reducible have a particularly nice structure. This description was first
obtained by Galvin and Jénsson [2] and for the sake of completeness we give

this description. Given two non-empty subsets Ll and L2 of L , we
will write Ll = L2 if and only if Ll = L2 or for each x € Ll and

y € L2 » £ <y . L is said to be linearly indecomposable if there do not
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exist Ll and L2 such that L1<L2

forward that L is the union of a unique finite linearly ordered family

and Ll U L2 =L . It is straight

CL of linearly indecomposable lattices.

THEOREM 2 (Galvin and Jénsson). If no point of L is both join and
meet reducible and Ll € CL then either Ll i8 the 1 element lattice or
L ie the 8 eclement boolean lattice or Ll i a direct product of the

2 element chain with a finite chain having 2 or more elements.

2.

In this section we show that if L' is a distributive lattice then
L' and T(L') have exactly the same collection of finite sublattices.
For the remainder, let L' be a fixed infinite distributive lattice. Let
L be a fixed finite distributive lattice with ¢ embedding L in
T(L') . Further let y* and Y be obtained as in the proof of Theorem 1.

With J:z: and Mx as before, it is easily seen that if for each x € L ,
Z{wa) = I I [wa) , then ¢ is a lattice isomorphism. Further from the
foias < . R
definition of ¥ we have Z(wa] = | (wa) . Thus if Y is not a
lattice isomorphism then there is an x such that
[ < TT () -
Such an x is clearly meet and join reducible.

LEMMA 4. Let [Lyl be the lattice closure of LY in L' . Then if

y € (Y] ~ Ly , there is an =z €L such that Z(Jx w] sy<TT (Mx ¥
y

Y
Proof. We define sets Ko, e Kn’ ... as follows: KO =Ly ,
K27l+l is the join closure of K2'£ and K2i+2 is the meet closure of
—- 2 1] . . . .
K2i+1 . Now for some N €w, [Ly]= Kno since L' is distributive.

Suppose that for each j such that 0 = j <n , if j € Kj ~ Ly then the

lemma is satisfied. Consider y € X " Ly .
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Case 1. n=2n+ 121 . VNow if yGKn'\'Kn then there is a set

-1

of elements Jy -C-Kn— which is join irredundant and such that Z Jy =y .

1
Now for each 2z € Jy there is an z, € L such that

Z(szw] =zsTT (szlb] . Let

Now Zny = | I Mxy , whence for each 2z ¢ Jy we have

z < l I [Mx w] = l | [Mx w] , whence we conclude that
2 Y

Z(Jx w} sy<T7T [Mx w]

Y ¥

as desired. This completes Case 1.

Case 2. n=2m+ 2 =22 . The treatment of this case is similar to

that of Case 1, and we omit the details.

Observe that Lemma 4 allows us to draw the conclusion that, if x € L

is join irreducible, then a¥ is join irreducible in ([Zy]; +, *) .
LEMMA 5. Let a be a fixed maximal member of L such that

W) <TT (M) . Then for all « €L either z<a or aszx.
Proof. As noted earlier, a must be both join and meet reducible.

Suppose for the sake of contradiction that there is a d € L with a fd

and dfa. Now J(79) <TT (My) ena J(T %) € [Ly] . Let

H={x:«x €L, xis meet irreducible and =z ¥ a} .

Then for each y € L either y 5] | H or ] I H = y. To see this ve

note that for any meet irreducible ¢ , if ¢ =a then ¢ = | | H by the

dual of Lemme 2. Further by assumption | | H < a . Now either l I H is

Join irreducible or there is a Join irreducible ¢ such that

| I H< e¢<a. Hence fix ¢ such that ¢ 1is Join irreducible and
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TrHic <a . Then ¢y = Z(ch)] =T_|‘-Mc¢v » Whence

TT () <Tlow) <TT () .

.. b .} . Since

For convenience let Z(Jaw] =b and M = {b 1

A 0 **
ap* = b < I [ [Malb) € ap , if for some bi s bi\b = b then we can conclude
that biw € ap contrary to hypothesis. Thus for each bi R bi £b . Now

by distributivity we obtain

b=b+ T (b9) =TT +b,9)

i€m eem

Fix an 7 and let e; € L be such that

Z(Jciw] < (b+bilp) =TT [Mc.w} .

1

We immediately conclude that

aw*sbs'l_T[Mci] €ct,

vhence a = e; by definition of Y* . By the maximality of a we obtain
cilp = b + biw whence
b <aw5-[_|— (cilb) =b
€m .
which is absurd. Thus for all x € L either a=x or x=a.

LEMMA 6. Let L and L' be as before with ¢ embedding L 1in
T{L) . Let 1 be the greatest element of L . If a € 1¢ such that for
all y €L~ {1}, a tyd then the map ¢' defined by x¢' =anaxd is

an isomorphism.

Proof. That ¢' is a meet isomorphism is obvious. Let b € L . We

must show that if b is join reducible with Jp = {bo, cens bm_l} and
¢ € b¢' +then we can choose e; € bi¢’ such that Z e; > ¢ . But this is

obvious, whence ¢' is an isomorphism.

THEOREM 3. Let L and L' be as before. If L can be embedded
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in T(L') then L can be embedded in L

Proof. Let b . b be a list in descending order of those

0 "' m-1
elements of L excluding O and 1 which satisfy forall x € L, =<y
or y =x . Let Y be obtained as in Theorem 1. Then if ¥ is not the
desired isomorphism it fails for a maximal b . where for each x € L if
0

bj < x then Z(wa) =T] (M:c) . We define a nevw isomorphism

0
¢l : L +-I(L') vby:

xP if b, =sx,
)
xh = 4___
z.,Yynxp if xz <b. .
0 )

By procedures outlined in the proof of Theorem 1 we obtain a “’1 such that
for all z €L , :x:l,bl € y¢l if and only if « =y . Further we may also

require that xy. = 2y for each « such that b, =<zx , and in addition
1 J
0

that xwl =y¢ if end only if x =y . Since if wl is not the desired

isomorphism, its failure occurs at b, < b,j , we are done since the set
' 1 0

of bj's is finite. This concludes the proof and the note.
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