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ON THE MODULII OF ANALYTIC FUNCTIONS 
BY 

MALCOLM J. SHERMANO 

The problem to be considered in this note, in its most concrete form, is the 
determination of all q u a r t e t s / i ^ g i ? ^ of functions analytic on some domain and 
satisfying 

« i/i00ip+\m\p = i*i(z)i*+\g&)\p, 
where p>0. When p=2 the question can be reformulated in terms of finding a 
necessary and sufficient condition for (two-dimensional) Hilbert space valued 
analytic functions to have equal pointwise norms, and the answer (Theorem 1) 
justifies this point of view. I f /? /2 , the problem is solved by reducing to the case 
/? = 2, and the reformulation in terms of the norm equality of lp valued analytic 
functions gives no clue to the answer. 

The following theorem is essentially due to Nevanlinna and Polya [2] for finite-
dimensional H, as pointed out to the author by David Drasin and Harley Flanders. 
It is of greatest interest in the formulation given; i.e., in terms of Hilbert space 
valued mappings, but does not appear to be widely known. The following proof 
was suggested by Henry Helson. 

THEOREM 1. Let H be a Hilbert space and let F(z)9 G(z) be analytic in some 
region Q with values in H and such that 

\\F(z)\\ = ||G(z)|| for all ze a 

Then there is an isometry U defined on the range of F such that 

G(z) = UF(z) forallzeù. 

Proof. Assume 0 e £1 and let F(z), G(z) have power series expansions 

n=0 n=0 

where the coefficients (f>n9 i/sn e H. Then the hypothesis is that 

|n = 0 1 
= | i/,nrnenie\ 

1 n = 0 1 
or 

Received by the editors July 30, 1969. 
C1) This work was supported in part by the National Science Foundation Grant GP-12020. 

325 

https://doi.org/10.4153/CMB-1970-062-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-062-4


326 MALCOLM J. SHERMAN [September 

where (•, •) denotes the inner product of //. A series of the form 
2n,m2>otfn,m rn+m e(n~m)w uniquely determine its coefficients, since if 

n.m^O p= - oo m = 0 

then 2m=o tfm+2>,r?/2m+p = 0 because of the uniqueness of the coefficients in a 
Fourier series, and then for each p, 0m+p,m = O for all m by the uniqueness of power 
series coefficients. Thus (<£n, ̂ m) = (0n> 0m) for all n, m and this guarantees that the 
linear mapping defined (unambiguously) on the span of the </>'s by U (2 an<l>n) 
= 2 ^ n is an isometry. The result, proved for a neighborhood of 0, then extends 
to the connected open set Q. 

If H is two-dimensional, and 

F(z) = f1(z)e1 +f2(z)e2, G(z) = g1(z)e1 +g2(z)e2, 

where el9 e2 is an orthonormal basis, then the condition ||F(z)|| = ||G(z)|| reduces 
to(*) for/> = 2.If we define the/?normofF(z)tobe ||F(z)||p = [|/1(z)|p + |/2(z)|p]1/p, 
then a sufficient condition for ||F(z)||p = ||G(z)||p is, of course, that F(z) = U G(z), 
where U is an isometry in this metric. If this condition were necessary then the 
only gly g2 satisfying (*) for p^l would be obtained by multiplying fl9f2 by con­
stants of modulus 1 and permuting them. (The scarcity of isometries of finite-
dimensional Banach spaces with an lp metric has surely been observed before, 
though the author could find no reference. When p= 1, the vertices ( 0 , . . . , 0, eie, 
0 , . . . , 0) are extreme points of the unit ball and are therefore sent into one another 
by an isometry. If p^l, these points must also be sent into one another (except, 
of course, when/? = 2), but here their distinguishing property among points on the 
unit sphere is maximal or minimal curvature (depending on whether p < 2orp> 2), 
in a sense which needs to be made precise. The maximum 8 for a fixed € in the 
definition of "localized uniform rotundity" given in [1, p. 113] is one way of doing 
this. The details are somewhat complicated.) 

COROLLARY 2. Let F, G be analytic on Q with values in a finite-dimensional 
Hilbert space H, and suppose for some p>0 

\\F(z)\\p - \\G(z)\\p forallzea 

Then there is an isometry U of H such that 

G(z)pl2 = U F(z)pl2 for z e Q 

for some (p/2)th power ofF, G. 

The proof is immediate. We comment that finite dimensionality is needed to 
assure the existence of a disk in which none of the coordinate functions of F or G 
vanish. If p= 1, the above condition reduces to 
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gi(z) = û2/1(z)+6y2(z)+2flè y / m m 

when H is two-dimensional, and where I ,1 is unitary. Most of the interest of 

the corollary is in the existence and construction of such nontrivial quartets 
satisfying (*). 

COROLLARY 3. Iff, g, h are analytic in some region in which 

1/01* = !*(*)!'+W*)lp 

then g, h are linearly dependent. In particular, the sum of the modulii of two inde­
pendent analytic functions is NOT the modulus of an analytic function. 

The above can be easily generalized to larger sets of functions, but except when 
p=2 or the dimension of H is 2, the hypothesis cannot be stated very gracefully 
in terms of linear dependence or independence of the original functions. 
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