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The Co-annihilating-ideal Graphs of
Commutative Rings

Saeeid Akbari, Abbas Alilou, Jafar Amjadi,
and Seyed Mahmoud Sheikholeslami

Abstract. Let R be a commutative ring with identity. _e co-annihilating-ideal graph of R, denoted
by AR , is a graph whose vertex set is the set of all non-zero proper ideals of R and two distinct
vertices I and J are adjacent whenever Ann(I) ∩ Ann(J) = {0}. In this paper we initiate the study
of the co-annihilating ideal graph of a commutative ring and we investigate its properties.

1 Introduction

_roughout this paper, R denotes a commutative ring with identity and with non-
zero proper ideals. If X is either an element or a subset of R, then the annihilator of
X is deûned as Ann(X) = {r ∈ R ∣ rX = 0}. A regular element of R is a non-zero
element that is not a zero divisor. We denote by Z(R) and Max(R), the sets of zero
divisors andmaximal ideals of R, respectively. _e ring R is said to be reduced if it has
no non-zero nilpotent element. _e intersection of all maximal ideals of R is called
its Jacobson radical and is denoted by J(R).

Let G be a simple graph with the vertex set V(G) and edge set E(G). For every
vertex v ∈ V(G), N(v) is the set {u ∈ V(G) ∣ uv ∈ E(G)}. _e degree of a vertex
v is deûned as dG(v) = ∣NG(v)∣. _e minimum degree of G is denoted by δ(G).
A universal vertex is a vertex that is adjacent to all other vertices of G. _e distance
dG(u, v) between two vertices u and v in a connected graphG is the length of a short-
est uv-path in G. _e greatest distance between any pair of vertices u and v in G is
the diameter of G and denoted by diam(G). _e complete graph is a graph in which
any two distinct vertices are adjacent. If a graph G contains one vertex adjacent to
all other vertices and with no extra edge, then G is called a star graph. _e girth of
a graph G, denoted by g(G), is the length of its shortest cycle. _e girth of a graph
with no cycle is deûned∞. A clique in a graph G is a set of pairwise adjacent vertices
and the number of vertices in a maximum clique ofG, denoted by ω(G), is called the
clique number of G. Let χ(G) denote the chromatic number of the graph G, that is,
the minimal number of colors needed to color the vertices of G so that no two adja-
cent vertices have the same color. Obviously, χ(G) ≥ ω(G). We write Pn for a path
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of order n, Cn for a cycle of order n, and Kn for a complete graph of order n. For
terminology and notation not deûned here, the reader is referred to [20].
Applying the properties of graphs in the study of algebraic structures, has become

an interesting research topic in the past two decades, leading to many fascinating re-
sults and questions. _ere are many papers that assign graphs to algebraic structures.
We recall three graphs used to represent rings.

_e zero divisor graph Γ(R) [8, 9]: _e vertex set of this graph is Z(R) ∖ {0} and
two distinct vertices v1 and v2 are adjacent if and only if v1v2 = 0.

_e annihilating-ideal graphAG(R) [3–6,13]: _e vertex set of this graph is the set
of non-zero ideals, whose annihilators are non-zero, and two distinct ideals I and J
are adjacent if and only if IJ = (0).

_e comaximal ideal graph G̃(R) [15, 19]: _e vertices are the ideals of R and two
vertices v1 and v2 are adjacent if and only if v1 and v2 are comaximal. We denote the
subgraph of the comaximal ideal graph induced by the set of non-zero proper ideals
by G(R).

Here we propose another graph whose vertex set is all non-zero proper ideals of R.
_e co-annihilating-ideal graph of R, denoted by AR , is a graph whose vertex set is
the set of all non-zero proper ideals of R and two distinct vertices I and J are adjacent
whenever Ann(I) ∩ Ann(J) = (0). Clearly, for a commutative ring R if I is a non-
zero proper ideal of R and I is a universal vertex in AR , then Ann(I) = (0) or I is a
minimal ideal. In this paper we initiate the study of the co-annihilating-ideal graph
of a commutative ring.
Also we show that two graphs AR and G(R) are the same for Artinian rings.

Observation 1.1 If R is an Artinian ring, then for any non-zero proper ideal I of R,
AnnR(I) /= (0).

Proof By the structure theorem of Artinian rings [10, _eorem 8.7, p. 90], there
exist Artinian local rings R1 , . . . , Rn such that R = R1 × ⋅ ⋅ ⋅ ×Rn . _en I = I1 × ⋅ ⋅ ⋅ × In ,
where I i is an ideal of R i for 1 ≤ i ≤ n. Let mi be the maximal ideal of R i for each i.
_en mi = AnnR i (x i) for some x i ∈ R i . Hence AnnR i (mi) /= (0) for each i. Since
I is a proper ideal, I i ⊆ mi for some i and so (0) /= AnnR i (mi) ⊆ AnnR i (I i). Since
AnnR(I) = AnnR1(I1) × ⋅ ⋅ ⋅ ×AnnRn(I i), the result follows.

_e next result is an immediate consequence of Observation 1.1.

Corollary 1.2 If R is an Artinian ring, then AR = G(R).

Observation 1.3 Let R be a commutative ring with non-zero identity. If R has a non-
unit regular element x, then (xn) for each positive integer n is adjacent to all vertices of
AR . In particular, R has an inûnite clique. _us if R is an integral domain that is not a
ûeld, then χ(AR) = ω(AR) = ∞.

2 Basic Properties of Co-annihilating-ideal Graphs

In this section, we classify all rings whose co-annihilating-ideal graphs are empty,
complete, and connected.
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_eorem 2.1 Let R be a commutative ring with non-zero identity. _en AR is an
empty graph if and only if (R,m) is a local ring and Ann(m) /= (0).

Proof Let AR be an empty graph. Assume to the contrary that m1 and m2 are two
distinct maximal ideals of R. _enm1+m2 = R, implying that Ann(m1)∩Ann(m2) =
(0). It follows that m1 and m2 are adjacent in AR , a contradiction. Hence R is a local
ring. Now let m be the unique maximal ideal of R. We show that Ann(m) /= (0).
Suppose to the contrary that Ann(m) = (0). SinceAR is an empty graph, we deduce
that R has exactly three ideals (0), m, R. Since m2 ∈ {(0),m, R}, we should have
m2 = (0) or m2 = m. It follows from Ann(m) = (0) that m2 = m. Now applying
Nakayama’s Lemma, we obtain a contradiction.
Conversely, let (R,m) be a local ring and Ann(m) /= {0}. _en for every two

distinct non-zero proper ideals I and J, Ann(m) ⊆ Ann(I)∩Ann(J) and hence I and
J are not adjacent. _us AR is an empty graph and the proof is complete.

_e next result is an immediate consequence of Observation 1.1 and_eorem 2.1.

Corollary 2.2 If (R,m) is an Artinian local ring, then AR is an empty graph.

_eorem 2.3 Let R be a commutative ring with non-zero identity. _en AR is a
complete graph if and only if one of the following holds.
(i) R has exactly one non-zero proper ideal.
(ii) R is an integral domain.
(iii) R is a direct product of two ûelds.

Proof If R has exactly one non-zero proper ideal or R is an integral domain, then
clearly AR is a complete graph. If R = F1 × F2, where F1 and F2 are ûelds, then R has
exactly two non-zero proper ideals, (0)×F2 and F1×(0). Obviously, Ann(F1×(0))∩
Ann((0)×F2) = {0} and so (0)×F2 and F1×(0) are adjacent. _usAR is a complete
graph.
Conversely, letAR be a complete graph. If Ann(I) = (0) for each non-zero proper

ideal I of R, then R is an integral domain as desired. Hence, assume there is a non-zero
ideal I such that Ann(I) /= (0). Obviously, I is a minimal ideal of R.
First let I2 = (0). _en I ⊆ Ann(I) ∩ Ann(Ann(I)). If I /= Ann(I), then I and

Ann(I) are not adjacent, a contradiction. Henceforth, we assume I = Ann(I). Since
I is a minimal ideal, I = (a) for some a ∈ I ∖ (0) and so R/Ann(I) ≅ I. It follows
that R/Ann(I) is a simple R-module that implies I = Ann(I) is a maximal ideal. If
R has a maximal ideal m diòerent from I, then I2 ⊂ m and hence I ⊆ m which is
a contradiction because I is a maximal ideal. _us (R, I) is a local ring. Since I is
minimal, we conclude that I is the only non-zero proper ideal of R and so (i) holds.

Now let I2 /= (0). By Brauer’s Lemma [17, Lemma 10.22, p. 172], there exists an
idempotent element a ∈ R such that I = Ra and R = Ra×R(1− a). Now we show that
both of Ra and R(1−a) are ûelds. Clearly, Ra and R(1−a) are commutative rings with
identity a and 1−a, respectively. If R(1−a) has a non-zero proper ideal J, then (0)× J
is a non-zero proper ideal of R such that Ann((0)×R(1−a))∩Ann((0)×J) /= (0) and
hence (0)×R(1−a) and (0)× J are not adjacent inAR , a contradiction. _us R(1−a)
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has no non-zero proper ideal implying that R(1− a) is a ûeld. Also, obviously I = Ra
has no non-zero proper ideal and hence I is a ûeld. _is completes the proof.

Observation 2.4 Let R be a commutative ring with non-zero identity. IfMax(R) is
the set consisting of all maximal ideals of R, then the subgraph AR[Max(R)] induced
by Max(R) is a clique in AR .

Proof If R has exactly one maximal ideal, then the result is immediate. Let m1 and
m2 be two arbitrary distinctmaximal ideals ofR. _enm1+m2 = R and soAnnR(m1)∩
AnnR(m2) = {0}. It follows that m1 and m2 are adjacent in AR and the proof is
complete.

_eorem 2.5 Let R be a commutative ring with non-zero identity. _en AR is con-
nected if and only if one of the following holds.
(i) _ere exists a non-zero proper ideal I for which Ann(I) = (0).
(ii) J(R) = (0).
(iii) J(R) is the unique non-zero ideal of R.

Proof If R has a non-zero proper ideal I such that Ann(I) = (0), then for any non-
zero proper ideal J of R, we have Ann(I) ∩ Ann(J) = (0) implying that I and J are
adjacent in AR . _us I is adjacent to all vertices of AR and hence AR is connected.
Now let J(R) = (0). Assume that I is a non-zero proper ideal of R. Since I /⊆ J(R),
there exists a maximal ideal m such that I /⊆ m. It follows that I +m = R and hence
Ann(I) ∩ Ann(m) = (0). _us I and m are adjacent in AR . In fact, every non-zero
proper ideal is adjacent to some maximal ideal in AR . Now the result follows from
Observation 2.4. Finally, if J(R) is the unique non-zero proper ideal of R, then AR
has exactly one vertex and so it is connected.
Conversely, let AR be connected. If J(R) = (0), then we are done. Let J(R) /= (0).

If ∣V(AR)∣ = 1, then J(R) is the unique non-zero proper ideal of R and (iii) holds.
Let AR have at least two vertices. We show that R has a non-zero proper ideal I such
that Ann(I) = (0). Assume to the contrary that for each non-zero proper ideal I,
Ann(I) /= (0). Let J be a non-zero proper ideal diòerent from J(R). Clearly (0) /=
J(R) + J ⫋ R. By assumption Ann(J(R)) ∩ Ann(J) = Ann(J(R) + J) /= (0), and so
J(R) and J are not adjacent. It follows that J(R) is an isolated vertex in AR , which is
a contradiction. _is completes the proof.

3 When Is AR a Tree?

In this section, we characterize all rings whose co-annihilating-ideal graphs are bi-
partite graphs with no isolated vertex.

_eorem 3.1 Let R be a commutative ring. _enAR is a star if and only if one of the
following holds.
(i) (R,m) is a local ring, m2 = m, Ann(m) = (0) and for each pair of distinct non-

zero proper ideals I and J, diòerent from m, Ann(I) ∩Ann(J) /= (0).
(ii) (R,m) is a local ring,m2 = (0), and R has exactly three ideals.
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(iii) R ≅ F1 × F2, where F1 and F2 are ûelds.

Proof One side is clear. Suppose thatAR is a star. SinceAR is triangle-free, we have
∣Max(R)∣ ≤ 2. Two cases can be considered:

Case 1: Max(R) = {m}. First suppose that Ann(m) = (0). It follows that m2 /= (0),
which implies Ann(m2) = (0). We claim that m2 = m. Assume to the contrary that
m2 /= m. _en m and m2 are adjacent to all other vertices. Since AR is a star, we
conclude that R has at most two non-zero proper ideals, m and m2. We have m3 ∈
{(0),m,m2}. If m3 = (0), then m2 = (0), a contradiction. _us m3 = m2 or m3 = m.
So by Nakayama’s Lemma, m2 = (0), a contradiction and the claim is proved. Since
AR is a star, we deduce that for each pair of distinct non-zero proper ideals I and J,
diòerent from m, Ann(I) ∩Ann(J) /= (0).
Now, assume that Ann(m) /= (0). _us m is an isolated vertex in AR . Since AR is a
star, R has exactly three ideals, (0), m, R. Clearly, m is a principal ideal. If m2 = m,
then by Nakayama’s Lemma,m = (0), a contradiction. So m2 = (0).
Case 2: Max(R) = {m1 ,m2}. If Ann(m1) = (0), then m1 is adjacent to all other
vertices of AR . Let x ∈ m1 ∖ m2. Since (x) + m2 = R, we conclude that Ann(x) ∩
Ann(m2) = {0}. Hence (x) and m2 are adjacent. If m1 /= (x), then we obtain a
contradiction. _ereforem1 = (x). So x is a non-unit regular element and by Obser-
vation 1.3 there is an inûnite clique, a contradiction.

_us we can suppose that Ann(m1) /= (0) and Ann(m2) /= (0). If m1 ∩m2 /= (0),
then noting thatm1 andm2 are adjacent andAR is a star, we get a contradiction. Hence
m1 ∩m2 = (0). Now by the Chinese Remainder _eorem [10, _eorem 1.10, p. 7] we
have R ≅ R/m1 × R/m2, as desired. _is completes the proof.

_eorem 3.2 Let R be a commutative ring and g(AR) ≥ 5. _en R is a local ring or
R ≅ F1 × F2, where F1 and F2 are ûelds.

Proof SinceAR is triangle-free, ∣Max(R)∣ ≤ 2. If R is a local ring, then we are done.
_us assume that Max(R) = {m1 ,m2}. Since m1 + m2 = R, there are a ∈ m1 and
b ∈ m2 such that a + b = 1. Ifm1 /= (a) andm2 /= (b), then (a), (b),m1,m2 form a 4-
cycle, a contradiction. Without loss of generality assume thatm1 = (a). We claim that
J(R) = (0). By contradiction suppose that 0 /= x ∈ J(R). If Ann(m1) = (0), then a is a
non-unit regular element and recalling Observation 1.3, we get a contradiction. _us
assume that Ann(m1) /= (0). SinceAR is connected, (x) is adjacent to some ideal, say
L. If Ann(m2) = (0), then m2 is adjacent to all other vertices and so AR should be a
star, and recalling the previous theoremwe are done. So assume that Ann(m2) /= (0).
Note that L ⊆ m1 or L ⊆ m2. If L ⊆ m2, then x should be adjacent to m2. But since
(x) ⊆ m2, we get a contradiction. On the other hand, since Ann(m1) /= (0), we
deduce that L is not contained in m1. _erefore we conclude that J(R) = (0) and by
the Chinese Remainder _eorem, R is a direct product of two ûelds and the proof is
complete.

Corollary 3.3 If R is an Artinian ring, then g(AR) = 3, 4, or∞.
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_eorem 3.4 Let R be a commutative ring. _en AR is a tree if and only if AR is a
star.

Proof LetAR be a tree. By_eorem 3.2, R is a local ring or R ≅ F1×F2, where F1 and
F2 are ûelds. If R ≅ F1×F2, where F1 and F2 are ûelds, then by_eorem 3.1 we are done.
Let R be a local ring with the unique maximal ideal m. First let Ann(m) /= (0). _en
AR is an empty graph by_eorem 2.1. SinceAR is a tree, we deduce thatAR is trivial.
_us R has exactly three ideals (0), m, R. Since m2 ∈ {(0),m, R}, it follows from
Nakayama’s Lemma that m2 = (0) and hence AR is a star. Now let Ann(m) = (0).
_en clearlyAR has at least two vertices andm is adjacent to all vertices. SinceAR is
a tree, for each pair of distinct non-zero proper ideals I and J, diòerent from m, we
have Ann(I)∩Ann(J) /= (0) and the result follows from_eorem 3.1. _is completes
the proof.

_eorem 3.5 Let R be a commutative ring. _enAR is a bipartite graphwith δ(AR) >
(0) if and only ifAR is a star of order at least 2.

Proof One side is clear. Suppose AR is a bipartite graph without isolated vertices
and let X1 and X2 be the partite sets of AR . Since AR is triangle-free, ∣Max(R)∣ ≤ 2.
First let Max(R) = {m}. _en Ann(m) = (0), otherwise m is an isolated vertex in
AR , which is a contradiction. It follows thatm is adjacent to all vertices and henceAR
is a star.

Now letMax(R) = {m1 ,m2}. Sincem1+m2 = R,m1 andm2 are adjacent inAR . We
may assume thatm1 ∈ X1 andm2 ∈ X2. If Ann(m1) = Ann(m2) = (0), thenm1 andm2
are adjacent to all vertices. SinceAR is a bipartite graph, we deduce that R has exactly
four ideals (0), m1, m2, R. _is yields AR = K2 as desired. If Ann(m1) = (0) and
Ann(m2) /= (0) (the case Ann(m1) /= (0) and Ann(m2) = (0) is similar), then m1 is
adjacent to all vertices implying that ∣X1∣ = 1 and soAR is a star. Finally let Ann(m1) /=
(0) and Ann(m2) /= (0). _en J(R) = (0), otherwise for any non-zero ideal I of R
we have Ann(m1) ⊆ Ann(I) ∩Ann(J(R)) or Ann(m2) ⊆ Ann(I) ∩Ann(J(R)) that
implies J(R) is an isolated vertex in AR , a contradiction. It follows from J(R) = (0)
and the Chinese Remainder _eorem that R is a direct product of two ûelds and the
result follows by _eorem 3.1. _is completes the proof.

4 When Is AR a Finite Graph?

In this section, we prove that AR is ûnite if and only if each vertex of AR has ûnite
degree.

_eorem 4.1 Let R be a commutative ring such thatAR has no isolated vertex. _en
the following statements are equivalent.
(i) AR is a ûnite graph.
(ii) Every vertex ofAR has ûnite degree.

Proof One side is clear. Let each vertex of AR have ûnite degree. If Ann(I) = (0)
for some non-zero proper ideal I, then I is adjacent to all vertices ofAR . _is implies
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that AR is a ûnite graph. Assume Ann(I) /= (0) for each non-zero proper ideal I.
Since AR has no isolated vertex, by _eorem 2.5 J(R) = (0). By Observation 2.4,
we have ∣Max(R)∣ < ∞. Now it follows from the Chinese Remainder _eorem that
R ≅ F1 × ⋅ ⋅ ⋅ × Fn , where n = ∣Max(R)∣ and Fi is a ûeld for each i. _en obviously R
has ûnitely many ideals and the proof is complete.

Corollary 4.2 IfAR is a k-regular graph (0 < k < ∞), then AR is a complete graph.

Proof If Ann(I) = (0) for some non-zero proper ideal I, then I is adjacent to all
vertices ofAR . SinceAR is regular, we conclude thatG is complete. AssumeAnn(I) /=
(0) for each non-zero proper ideal I. Using an argument similar to that described in
the proof of _eorem 4.1, we have R ≅ F1 × ⋅ ⋅ ⋅ × Fn where Fi is a ûeld for each i. We
claim that n = 2. Assume to the contrary that n ≥ 3. Let I = F1 × (0) × ⋅ ⋅ ⋅ × (0). Since
Ann(I) = (0) × F2 × ⋅ ⋅ ⋅ × Fn , I is adjacent to exactly one vertex (0) × F2 × ⋅ ⋅ ⋅ × Fn
and hence deg(I) = 1. On the other hand, each maximal ideal has degree at least two,
which is a contradiction. _us n = 2, and so AR = K2. _is completes the proof.

5 Chromatic Number, Diameter of AR

In this section, we study the chromatic number and diameter of the co-annihilating-
ideal graphs of commutative rings. In particular, we show that if AR is connected,
then diam(AR) ≤ 3.

_eorem 5.1 If R is a reduced Noetherian ring, then the chromatic number of AR is
inûnite or R is a direct product of ûnitely many ûelds.

Proof Let P = {P1 , . . . , Pn} be the set consisting of all minimal prime ideals of R.
Let I = Pi + Pj for some i /= j. By prime avoidance theorem [10, _eorem 1.11, p. 8],
I /⊂ ⋃n

k=1 Pk . If I /= R, then I contains a non-unit regular element (see [18, _eorem
1.1 (3)]). It follows from Observation 1.3 that χ(AR) is inûnite. _us we may assume
Pi + Pj = R for every 1 ≤ i /= j ≤ n. Since R is reduced, we have ∩n

k=1Pk = (0) and by
the Chinese Remainder _eorem R ≅ R

P1
× ⋅ ⋅ ⋅ × R

Pn
. If R

Pi
is not a ûeld for some i, then

it follows from Observation 1.3 that χ(AR) is inûnite. _us R
Pi

is a ûeld for each i and
the proof is complete.

_eorem 5.2 If R ≅ R1 × ⋅ ⋅ ⋅ × Rn , where R i is an Artinian local ring for each i, then
χ(AR) = ω(AR) = n.

Proof Let X1 = {I1 × ⋅ ⋅ ⋅ × In ∣ I1 ⊲ R1 and I j ⊴ R i for 2 ≤ j ≤ n} ∖ (0) and X i =
{I1 × ⋅ ⋅ ⋅ × In ∣ I j = R j for 1 ≤ j ≤ i − 1, I i ⊲ R i and I j ⊴ R i for j ≥ i + 1} for i = 2, . . . , n.
Clearly, X1 ∪ ⋅ ⋅ ⋅ ∪ Xn is a partition of V(AR). By Observation 1.1, X i is independent
for each i. _us AR is an n-partite graph implying that ω(AR) ≤ χ(AR) ≤ n.

On the other hand, since R has at least n maximal ideals, we conclude that
ω(AR) ≥ n, and the proof is complete.

Corollary 5.3 If R is an Artinian ring, then χ(AR) = ω(AR) = ∣Max(R)∣.
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_eorem 5.4 Let R be a commutative ring with non-zero identity. IfAR is connected,
then diam(AR) ≤ 3.

Proof Since AR is connected, it follows from _eorem 2.5 that J(R) is the unique
non-zero ideal of R, J(R) = (0) or R has a non-zero proper ideal I such that
AnnR(I) = (0). If J(R) is the unique non-zero ideal of R, then ∣V(AR)∣ = 1 and hence
diam(AR) = 0. If R has a non-zero proper ideal I such that AnnR(I) = (0), then I
is adjacent to all vertices in AR implying that diam(AR) ≤ 2. Now let J(R) = (0).
It follows that for any non-zero proper ideal I, there is a maximal ideal mI such that
I +mI = R and hence Ann(I) ∩ Ann(mI) = (0). _us each non-zero proper ideal is
adjacent to a maximal ideal and it follows from Observation 2.4 that diam(AR) ≤ 3.
_is completes the proof.

Corollary 5.5 If R ≅ F1 × ⋅ ⋅ ⋅ × Fn (n ≥ 2), where Fi is a ûeld for each i, then

diam(AR) =
⎧⎪⎪⎨⎪⎪⎩

1 if n = 2,
3 if n ≥ 3.

Proof If R ≅ F1 × F2, then obviously AR = K2 and so diam(AR) = 1. Let n ≥ 3.
Clearly J(R) = (0) and we deduce from _eorem 2.5 that AR is connected which
implies diam(AR) ≤ 3 by _eorem 5.4. Now let I = F1 × (0) × ⋅ ⋅ ⋅ × (0) and J = (0) ×
F2×(0)×⋅ ⋅ ⋅×(0). It is not hard to see that dAR(I, J) = 3 and hence diam(AR) = 3.

Corollary 5.5 demonstrates that the bound of _eorem 5.4 is sharp.
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