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Abstract

Let TX be the full transformation semigroup on a set X and E be a nontrivial equivalence relation on X.
Denote

T∃(X) = { f ∈ TX : ∀x, y ∈ X, ( f (x), f (y)) ∈ E⇒ (x, y) ∈ E},

so that T∃(X) is a subsemigroup of TX . In this paper, we endow T∃(X) with the natural partial order and
investigate when two elements are related, then find elements which are compatible. Also, we characterise
the minimal and maximal elements.
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1. Introduction

In [4] Mitsch defined a partial order on an arbitrary semigroup S by

a ≤ b if and only if a = xb = by and a = ay for some x, y ∈ S 1,

and this is called the natural partial order on S . Later Kowol and Mitsch in [2]
studied various properties of this partial order on the full transformation semigroup TX

consisting of all total transformations of an arbitrary nonempty set X. Then Marques-
Smith and Sullivan in [3] extended some of the previous work to the semigroup PX

of all partial transformations on X. Sullivan in [11] investigated the partial order
on the linear transformation semigroup P(V) for a vector space V . In [10] Singha
et al. considered the partial order on the partial Baer–Levi semigroup, and so on (see
[12, 13]).

This paper is supported by National Natural Science Foundation of China (No. 10971086).
c© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

359

https://doi.org/10.1017/S0004972712001013 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712001013


360 L. Sun and X. Xin [2]

Let E be an equivalence relation on the set X. The subsemigroup of TX defined by

TE(X) = { f ∈ TX : ∀x, y ∈ X, (x, y) ∈ E⇒ ( f (x), f (y)) ∈ E}

was mainly studied in [5–9] and the natural partial order on the semigroup TE(X) was
investigated in [12]. Inspired by the semigroup TE(X), the authors in [1] considered
the semigroup

T∃(X) = { f ∈ TX : ∀x, y ∈ X, ( f (x), f (y)) ∈ E⇒ (x, y) ∈ E}

which differs greatly from the semigroup TE(X). The transformation f ∈ T∃(X) reflects
the equivalence relation E. Clearly, T∃(X) is also a subsemigroup of TX and contains
the identity transformation idX on X. Moreover, if E = X × X, then T∃(X) = TX . If
E = 4 = {(x, x) : x ∈ X}, then

T∃(X) = { f ∈ TX : f is injective}.

So to this extent it is regarded as a generalisation of TX .
In this paper, we assume the set X is finite or infinite, the equivalence relation E is

nontrivial (that is, E , X × X and E , 4) and X/E, which is the partition of X induced
by E, is finite or infinite, and consider the semigroup T∃(X) endowed with the natural
partial order. Denote by f g the transformation obtained by performing first g and
then f . Then the natural partial order can be written, for f , g ∈ T∃(X), as

f ≤ g if and only if f = kg = gh and f = k f for some k, h ∈ T∃(X).

This paper is organised as follows. In Section 2 we give a characterisation of the
natural partial order on the semigroup T∃(X). In Section 3 we find the elements which
are compatible with the natural partial order. And in Section 4 we characterise the
minimal and maximal elements.

The following lemma describes an essential property of T∃(X).

L 1.1 [1]. Let f ∈ T∃(X). Then for each A ∈ X/E, f (A) ⊆
⋃

i∈I Bi where I is some
index set and Bi ∈ X/E.

2. Characterisation

Let π( f ) be the partition of X induced by f ∈ TX , namely,

π( f ) = { f −1(y) : y ∈ f (X)}.

Denote
Z( f ) = {A ∈ X/E : A ∩ f (X) = ∅}.

LetA, B be two collections of subsets of X. If for each A ∈ A, there exists some B ∈ B
such that A ⊆ B, thenA is said to refine B. For A ⊆ X, let

f (A) = {B ∈ X/E : B ∩ f (A) , ∅}.
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The following theorem gives a characterisation of this partial order.

T 2.1. Let f , g ∈ T∃(X). Then f ≤ g if and only if the following statements hold.

(1) π(g) refines π( f ) and |Z(g)| ≤ |Z( f )|.
(2) If ( f (x), f (y)) ∈ E for some distinct x, y ∈ X, then (g(x), g(y)) ∈ E.
(3) If g(x) ∈ f (X) for some x ∈ X, then f (x) = g(x).
(4) For each A ∈ X/E, there exists a unique B ∈ X/E such that f (A) ⊆ g(B).

P. Suppose that f ≤ g. Then there exist some k, h ∈ T∃(X) such that

f = kg = gh and f = k f .

It follows from f = kg that π(g) refines π( f ). By f (X) = kg(X), f (X) ∩ k(A) = ∅ for
each A ∈ Z(g). Then there is some B ∈ Z( f ) such that B ∩ k(A) , ∅. By k ∈ T∃(X),
|Z(g)| ≤ |Z( f )| and (1) holds. Let ( f (x), f (y)) ∈ E for some distinct x, y ∈ X, that
is, (kg(x), kg(y)) ∈ E. Then, by k ∈ T∃(X), (g(x), g(y)) ∈ E and (2) holds. Now if
g(x) ∈ f (X) for some x ∈ X, then g(x) = f (y) for some y ∈ X. So

f (x) = kg(x) = k f (y) = f (y) = g(x)

and (3) holds. For each A ∈ X/E, let h(A) = {Bi : i ∈ I} where Bi ∈ X/E and I is some
index set. Then, for each M ∈ f (A),

f (A) ∩ M = gh(A) ∩ M ⊆ g
(⋃

i∈I

Bi

)
∩ M.

By g ∈ T∃(X), we know that g does not map the different E-classes to the same E-
class. So there is a unique i ∈ I such that f (A) ∩ M ⊆ g(Bi) ∩ M. Write B = Bi and
then f (A) ∩ M ⊆ g(B) ∩ M. Therefore, f (A) ⊆ g(B) and (4) holds.

Conversely, suppose that conditions (1)–(4) hold. Then, by |Z(g)| ≤ |Z( f )|, there is
a map

ρ :M =

{⋃
A : A ∈ Z(g)

}
→N =

{⋃
B : B ∈ Z( f )

}
such that (x, y) < E⇒ (ρ(x), ρ(y)) < E for any x, y ∈M. We define k on each
E-class A. There are two cases to consider.

Case 1. A ∩ g(X) = ∅. For each z ∈ A, let k(z) = ρ(z).

Case 2. A ∩ g(X) , ∅. For each z ∈ A ∩ g(X), then z = g(x) for some x ∈ X and define
k(z) = f (x). Fix a point zA ∈ A ∩ g(X) and let k(z) = k(zA) for each z ∈ A − g(X). If
some x′ ∈ X satisfies z = g(x′) = g(x), then f (x′) = f (x) since π(g) refines π( f ). Thus
k is well defined on A. Consequently, k is well defined on all of X. Moreover,
k(A) ⊆ f (X).

Now we verify that k ∈ T∃(X). Let x ∈ A1 and y ∈ A2 for some distinct A1, A2 ∈ X/E.
We discuss three cases.

Case 1. A1 ∩ g(X) = ∅ and A2 ∩ g(X) = ∅. Then (k(x), k(y)) = (ρ(x), ρ(y)) < E.

https://doi.org/10.1017/S0004972712001013 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712001013


362 L. Sun and X. Xin [4]

Case 2. A1 ∩ g(X) = ∅ and A2 ∩ g(X) , ∅. We discuss two subcases.

Case 2.1. y ∈ A2 ∩ g(X). Then k(x) = ρ(x) and k(y) ∈ f (X). So (k(x), k(y)) < E.

Case 2.2. y ∈ A2 − A2 ∩ g(X). In this case k(y) = k(zA2 ) where zA2 is a fixed point in
A2 ∩ g(X). So (k(x), k(y)) = (k(x), k(zA2 )) < E (by Case 2.1).

Case 3. A1 ∩ g(X) , ∅ and A2 ∩ g(X) , ∅. We discuss three subcases.

Case 3.1. x ∈ A1 ∩ g(X) and y ∈ A2 ∩ g(X). Then x = g(x′), y = g(y′) for some distinct
x′, y′ ∈ X. We assert that (k(x), k(y)) < E. Indeed, if (k(x), k(y)) ∈ E, namely,
( f (x′), f (y′)) ∈ E, then, by (2), we have (g(x′), g(y′)) ∈ E, that is, (x, y) ∈ E, a
contradiction.

Case 3.2. x ∈ A1 − A1 ∩ g(X) and y ∈ A2 ∩ g(X). Then we have k(x) = k(zA1 ) and
(k(zA1 ), k(y)) < E (by Case 3.1). So (k(x), k(y)) < E.

Case 3.3. x ∈ A1 − A1 ∩ g(X) and y ∈ A2 − A2 ∩ g(X). Then k(x) = k(zA1 ), k(y) = k(zA2 )
and (k(zA1 ), k(zA2 )) < E (by Case 3.1). So (k(x), k(y)) < E.

In any case k ∈ T∃(X). It is clear that f = kg. We show that f = k f . For each
x ∈ X, by (4), there exists some y ∈ X such that f (x) = g(y) and it follows from (3) that
f (y) = g(y). So

f (x) = f (y) = kg(y) = k f (x)

which means that f = k f .
Finally, we define h on X. For each A ∈ X/E and each x ∈ A, there exists a unique

B ∈ X/E such that y ∈ B and f (x) = g(y). Define h(x) = y as required. By f , g ∈ T∃(X)
and the uniqueness of the E-class B associated with each E-class A, we have h ∈ T∃(X).
It is clear that f = gh. This completes the proof. �

C 2.2. Let f , g ∈ T∃(X). Then the following statements hold.

(1) If f ≤ g, then f (X) ⊆ g(X).
(2) If f ≤ g and f (X) = g(X), then f = g.
(3) If f ≤ g and π( f ) = π(g), then f = g.

P. (1) This follows from Theorem 2.1(4).
(2) This follows from Theorem 2.1(3).
(3) By (1), f (X) ⊆ g(X). If f (X) ⊂ g(X) (where f (X) ⊂ g(X) means that f (X) is a

proper subset of g(X)), then take y ∈ g(X) − f (X) and let g(x) = y for some x ∈ X. So
f (x) = g(x′) for some x′ ∈ X (x′ , x). By Theorem 2.1(3), f (x′) = g(x′) which implies
that f (x′) = f (x). Since π( f ) = π(g), we have g(x′) = g(x). Observing that g(x′) =

f (x), g(x) = y, we deduce that f (x) = y, a contradiction. Therefore, f (X) = g(X). By
(2), f = g. �

3. Compatibility

A transformation h ∈ T∃(X) is said to be strictly left compatible with the partial
order if h f < hg for all f < g. Strict right compatibility is defined dually.
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T 3.1. Let h ∈ T∃(X). Then h is strictly left compatible if and only if h is
injective and h(A) ⊆ B ∈ X/E for each A ∈ X/E.

P. Suppose that h is strictly left compatible. We claim that h is injective. Indeed,
let h(a) = h(b) for some distinct a, b ∈C ∈ X/E. Assume that C is a disjoint union of
nonempty sets C1 and C2 (namely, C = C1 ∪C2 and C1 ∩C2 = ∅) and a ∈C1, b ∈C2.
Define f , g : X→ X by

f (x) =

{
a if x ∈C
x otherwise

and g(x) =


a if x ∈C1

b if x ∈C2

x otherwise,

respectively. Clearly, f , g ∈ T∃(X) and f , g. It is straightforward to show f < g. Then
h f < hg and h f (X) ⊂ hg(X). However, by the assumption h(a) = h(b), h f (C) = hg(C)
and h f (D) = hg(D) for any other E-class D which implies that h f (X) = hg(X), a
contradiction. It follows that h is injective.

To verify the remaining conclusion, assume without loss of generality that h(A) =

{B1, B2} for some A ∈ X/E. Denote

A1 = {x ∈ A : h(x) ∈ B1} and A2 = {x ∈ A : h(x) ∈ B2}.

Then A is a disjoint union of nonempty sets A1 and A2. Take x′ ∈ A1 and define
f : X→ X by

f (x) =

{
x′ if x ∈ A
x otherwise.

Clearly, f ∈ T∃(X), f , idX and f < idX . Thus h f < h idX . However, taking y′ ∈ A2,
we have (h f (x′), h f (y′)) ∈ E, h idX(x′) ∈ B1, h idX(y′) ∈ B2 which means that (h f (x′),
h f (y′)) ∈ E does not imply (h idX(x′), h idX(y′)) ∈ E, a contradiction.

Conversely, let f , g ∈ T∃(X) and f < g. Clearly, π(hg) refines π(h f ). Write

f (X) = {Ai : i ∈ I} and g(X) = {B j : j ∈ J},

where I, J are some index sets. Since h maps any E-class to one E-class, let h(Ai) ⊆Ci

and h(B j) ⊆ D j for each i ∈ I, j ∈ J. Then h f (X) = {Ci : i ∈ I} and hg(X) = {D j : j ∈ J}.
By |Z(g)| ≤ |Z( f )|, we have | f (X)| ≤ |g(X)| and |h f (X)| ≤ |hg(X)|. So |Z(hg)| ≤ |Z(h f )|
and h f , hg satisfy Theorem 2.1(1). Let (h f (x), h f (y)) ∈ E for some distinct x, y ∈ X.
Then ( f (x), f (y)) ∈ E. By f < g, we deduce (g(x), g(y)) ∈ E. Thus (hg(x), hg(y)) ∈ E
which implies that h f , hg satisfy Theorem 2.1(2). It is clear that h f , hg satisfy
Theorem 2.1(3). For each A ∈ X/E and M ∈ h f (A), we have h f (A) ∩ M , ∅ and
there is some N ∈ f (A) such that h( f (A) ∩ N) ∩ M , ∅. Thus, by f < g, f (A) ∩ N ⊆
g(B) ∩ N for a unique B ∈ X/E. So it follows that

h f (A) ∩ M = h( f (A) ∩ N) ∩ M ⊆ h(g(B) ∩ N) ∩ M = hg(B) ∩ M,

and h f (A) ⊆ hg(B). This means that h f , hg satisfy Theorem 2.1(4). Therefore,
h f < hg. �
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Note that if X/E is finite, then |h(A)| = 1 for each h ∈ T∃(X) and A ∈ X/E. So
Theorem 3.1 is simplified as follows.

C 3.2. Let X/E be finite and h ∈ T∃(X). Then h is strictly left compatible if
and only if h is injective.

T 3.3. Let h ∈ T∃(X). Then h is strictly right compatible if and only if h is
surjective.

P. Suppose that h is strictly right compatible. We assert that h is surjective.
Indeed, for some A ∈ X/E, let h(A) ∩ B ⊂ B for some B ∈ h(A). Take a ∈ B − h(A) ∩ B,
b ∈ h(A) ∩ B and define f , g : X→ X by

f (x) =

{
a if x ∈ h(A) ∩ B
x otherwise

and g(x) =

{
b if x ∈ h(A) ∩ B
x otherwise,

respectively. Then f , g ∈ T∃(X) and f , g. To see that f < g, let g(x) = g(y) for
some distinct x, y ∈ X. Then x, y ∈ h(A) ∩ B and f (x) = f (y) which means that π(g)
refines π( f ). Clearly, |Z(g)| = |Z( f )| = 0. So f , g satisfy Theorem 2.1(1). If g(x) ∈
f (X) = X − h(A) ∩ B for some x ∈ X, then, by the definition of g, f (x) = g(x) = x which
implies that f , g satisfy Theorem 2.1(3). Observing that

f (B) = f ((h(A) ∩ B) ∪ (B − h(A) ∩ B)) = {a} ∪ (B − h(A) ∩ B) = B − h(A) ∩ B

and
g(B) = g((h(A) ∩ B) ∪ (B − h(A) ∩ B)) = {b} ∪ (B − h(A) ∩ B),

that is, f (B) ⊂ g(B), together with f (C) = g(C) for any other E-class C, we have that
f , g satisfy Theorem 2.1(2) and (4). Thus f < g and f h < gh. However,

f h(A) ∩ B = f (h(A) ∩ B) ∩ B = {a}

and
gh(A) ∩ B = g(h(A) ∩ B) ∩ B = {b}, gh(C) ∩ B = h(C) ∩ B = ∅

where C ∈ X/E (C , A), which implies that there is no E-class D such that f h(A) ∩ B ⊆
gh(D) ∩ B. So f h, gh do not satisfy Theorem 2.1(4), a contradiction.

Conversely, let f , g ∈ T∃(X) and f < g. Clearly, f h, gh satisfy Theorem 2.1(1)–(3).
For each A ∈ X/E and M ∈ f h(A), f h(A) ∩ M , ∅ and there is some N ∈ h(A) such
that f (h(A) ∩ N) ∩ M , ∅. Since h is surjective, h(A) ∩ N = N. Then f (N) ∩ M ⊆
g(C) ∩ M for a unique C ∈ X/E. So there is a unique B ∈ X/E such that h(B) ∩C = C.
It follows that

f h(A) ∩ M = f (h(A) ∩ N) ∩ M = f (N) ∩ M ⊆ g(C) ∩ M = g(h(B) ∩C) ∩ M

= gh(B) ∩ M,

that is, f h(A) ⊆ gh(B), which means that f h, gh satisfy Theorem 2.1(4). Therefore,
f h < gh. �
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4. Minimal and maximal elements

We begin by determining the minimal elements of T∃(X).

T 4.1. Let f ∈ T∃(X). Then f is minimal if and only if for each A ∈ X/E,
| f (A) ∩ M| = 1 for each M ∈ f (A).

P. The sufficiency is clear, so we only show the necessity. If | f (A) ∩ M| ≥ 2,
denote A′ = {x ∈ A : f (x) ∈ M}, then take a ∈ f (A) ∩ M and define

g(x) =

{
a if x ∈ A′

f (x) otherwise.

Clearly, g ∈ T∃(X), g , f and g < f , which leads to a contradiction. �

Before characterising the maximal elements of T∃(X) we need some terminology.
For a transformation f ∈ T∃(X) and A ∈ X/E, we say that f |A is defect-divided if A is a
disjoint union of nonempty sets A1 and A2 such that f |A1 is not injective, f (A) ∩ M = M
for each M ∈ f (A1) and f |A2 is injective, f (A) ∩ N ⊂ N for some N ∈ f (A2). And we
say that f |A is surjection-divided if f |A is not injective and f (A) ∩ M = M for each
M ∈ f (A).

T 4.2. Let f ∈ T∃(X). Then f is maximal if and only if one of the following
statements holds.

(1) f is injective or surjective.
(2) There is some E-class A such that f |A is defect-divided. For any other E-class

B, either f |B is surjection-divided or f |B is injective.
(3) There are some distinct A, B ∈ X/E such that f |A is surjection-divided and f |B is

injective and f (B) ∩ N ⊂ N for some N ∈ f (B). For any other E-class C, f |C is
injective and f (C) ∩ N′ = N′ for each N′ ∈ f (C).

P. Let f be maximal. Suppose to the contrary that none of (1)–(3) holds. Assume
that f |A is not injective for some A ∈ X/E. Then we claim that f |A is surjection-divided.
Indeed, if f (A) ∩ M ⊂ M for some M ∈ f (A), let A be a disjoint union of nonempty
sets A1 and A2 with the property that f |A1 is not injective and f |A2 is injective. Then
M < f (A1). Otherwise, let f (x1) = f (x2) ∈ M′ for some distinct x1, x2 ∈ A1 and take
a ∈ M − f (A) ∩ M. Then define g : X→ X by

g(x) =

{
a if x = x1

f (x) otherwise.

Clearly, g ∈ T∃(X), g , f . It is straightforward to show that f < g. So f is not maximal,
a contradiction. It follows that M ∈ f (A2). This also means that f (A) ∩ N = N for
each N ∈ f (A1). Thus f |A is defect-divided, a contradiction. It follows that f |A is
surjection-divided. On the other hand, since f is not surjective, let f (B) ∩C ⊂C for
some B,C ∈ X/E (B , A). We assert that f |B is injective. Indeed, if f |B is not injective,
then let B be a disjoint union of nonempty sets B1 and B2 with the property that f |B1
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is not injective and f |B2 is injective. By the above approach, we deduce that f |B is
defect-divided, a contradiction. Thus f |B is injective. Hence we find two E-classes
A, B with the property that f |A is surjection-divided and f |B is injective, f (B) ∩C ⊂C,
a contradiction.

Conversely, let f ≤ g. There are three cases to consider.

Case 1. f is injective or surjective. If f is injective, then π( f ) = π(g). By
Corollary 2.2(3), f = g. So f is maximal. And if f is surjective, then f (X) = g(X).
By Corollary 2.2(2), f = g. So f is also maximal.

Case 2. f satisfies (2). Let A be a disjoint union of nonempty sets A1 and A2

such that f |A1 is not injective, f (A) ∩ M = M for each M ∈ f (A1) and that f |A2 is
injective, f (A) ∩ N ⊂ N for some N ∈ f (A2). Since f ≤ g, by Theorem 2.1(4), for each
M ∈ f (A1), there exists a unique A′ ∈ X/E such that

M = f (A) ∩ M ⊆ g(A′) ∩ M ⊆ M

which implies that f (A) ∩ M = g(A′) ∩ M = M. So if g(x) ∈ M for some x ∈ A′, then
g(x) ∈ g(A′) ∩ M = f (A) ∩ M. According to Theorem 2.1(3), f (x) = g(x) and f (x) ∈
f (A) ∩ M which implies that A′ = A. This also means that f (A1) = g(A1). Moreover,
by Corollary 2.2(3), f (A2) = g(A2). It follows that f (A) = g(A). For any other E-class
B, we also have f (B) = g(B). Hence f (X) = g(X) and f = g. Therefore, f is maximal.

Case 3. f satisfies (3). Then for each M ∈ f (A) there exists a unique A′ ∈ X/E such
that

M = f (A) ∩ M ⊆ g(A′) ∩ M ⊆ M.

Similarly to Case 2, we deduce that A′ = A and f (A) = g(A). By Corollary 2.2(3)
again, f (B) = g(B) and f (C) = g(C) as well. Thus f (X) = g(X). So f = g and f is
maximal. �

To illustrate the maximal elements of Theorem 4.2(2) and (3), we present two
examples.

E 4.3. Let X = {1, 2, . . .} and E =
⋃∞

i=1(Ai × Ai) where A1 = {1, 2, 3, . . . , 10},
A2 = {11, 12}, A3 = {13, 14, 15}, A4 = {16, 17, 18, 19}, A5 = {20, 21, 22, 23, 24}, . . . .
Let f ∈ T∃(X) satisfy

f |A1 =

(
1 2 3 4 5 6 7 8 9 10
11 12 11 13 13 14 15 17 19 16

)
and f |Ai be injective, f (Ai) ⊂ Ai+3 (i ≥ 2). Clearly, A1 = {1, 3, 4, 5} ∪ {2, 6, 7, 8, 9, 10},
f (1) = f (3) = 11 ∈ A2, f (4) = f (5) = 13 ∈ A3, f (A1) ∩ A2 = A2, f (A1) ∩ A3 = A3,
f (A1) ∩ A4 ⊂ A4. Then f |A1 is defect-divided. Moreover, f |Ai is injective (i ≥ 2). Then
f is a maximal element of the kind belonging to Theorem 4.2(2).
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E 4.4. Let X = {1, 2, . . . , 18} and E =
⋃4

i=1(Ai × Ai) where A1 = {1, 2, 3}, A2 =

{4, 5, 6, 7}, A3 = {8, 9, 10, 11, 12} and A4 = {13, 14, 15, 16, 17, 18}. Let

f =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5 4 6 1 3 1 2 15 13 14 18 17 8 9 9 10 11 12

)
.

Clearly, f ∈ T∃(X) and f |A1 is injective, f (A1) ⊂ A2 and f |A2 is surjection-divided, f |A3

is injective, f (A3) ⊂ A4 and f |A4 is surjection-divided. Then f is a maximal element of
the kind belonging to Theorem 4.2(3).

As a consequence of Theorem 4.2, we have the following conclusion.

C 4.5. Let f ∈ T∃(X). Then the following statements hold.

(1) If X is finite and all E-classes have the same size, then f is maximal if and only
if f is a permutation preserving E.

(2) If X/E is finite, then f is maximal if and only if f is either injective, or surjective,
or there are some distinct A, B ∈ X/E such that f |A is surjection-divided and f |B
is injective and f (B) ∩ N ⊂ N for some N ∈ f (B), and for any other E-class C,
f |C is injective and f (C) ∩ M = M for each M ∈ f (C).

By the way, if X/E is infinite, then there may be a maximal element of the kind
belonging to both Theorem 4.2(2) and (3). Even if X/E is finite and all E-classes
have the same size, then there may be a maximal element of the kind belonging to
Theorem 4.2(3).

E 4.6. Let X = {1, 2, . . .} and E =
⋃3

i=1(Ai × Ai), where A1 = {1, 4, 7, . . .}, A2 =

{2, 5, 8, . . .} and A3 = {3, 6, 9, . . .}. Choose

f (x) =


3n + 3 if x = 3n
3n − 1 if x = 3n + 2
x otherwise,

where n is a natural number. Clearly, f ∈ T∃(X). Then f |A1 is injective, f (A1) =

A1, f |A2 is surjection-divided ( f (2) = f (5) = 2, f (A2) ∩ A2 = A2) and f |A3 is injective,
f (A3) ⊂ A3 (3 < f (A3)). So f is a maximal element of the kind belonging to
Theorem 4.2(3).
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