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ABSTRACT. We demonstrate the feasibility of pulse time of arrival information for 
early detection of periodic events in low level counting. Time of arrival data allows us 
to apply time series analysis and serial correlation tests which, in graphic form, give the 
user an illustrative view of the parameters affecting the validity of counting statistics. 
The decision to discontinue counting can already be made on the basis of less than 100 
counts from the time information alone if more than 10 of these are non-Poisson peri- 
odic counts. The analyses also serve as a means of quality control for low level counting, 
being directly based upon the interval distribution of the Poisson process. 

INTRODUCTION 

We are developing an ultra low level gas counter that is capable of 
counting simultaneously 14 different CH4 samples contained in lOml pro- 
portional detectors at 1 to 10 atm pressures (Polach et al, 1982; Kaihola et 
al, 1983). Like Currie et al (1983) we have found it useful to provide each 
pulse with time of arrival (TA) information in addition to pulse height 
(PH) and rise-time (RT) data. Time of arrival analyses are powerful in 
detecting very low count rate, periodic noise. Thus, we have included 
pulse time series programs in the counting software in order to enhance 
detection of spurious events that do not fit Poisson statistics. TA, PH, and 
RT data are stored on disk for the analyses to be carried out after the 
runs. In low-level counting the required storage capacity remains reason- 
able even during prolonged (several days') counting. 

To suppress HV capacitor induced spurious events by electronic 
means we have encapsulated these components in resin enabling up to 
7kV to be applied without noise. Thus rigidly held, the HV components 
settle very fast, producing only 10 to 20 spurious pulses when first turned 
on in contrast to thousands of counts when they remain exposed to the 
atmosphere. To suppress radio frequency and line noise, the pulses de- 
tected by an aerial are amplified and channeled into the anticoincidence 
(pulse inhibit) module. 

TIME INTERVAL PROBABILITY DISTRIBUTION 

Radioactive decay is a Poisson process when the source half-life is 
much longer than the observation time, ie, the decay probability is time- 
invariant. When the recording system dead time is small compared with 
the mean time interval between decays then also the counting process can 
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be considered to be a Poisson one. Both the conditions are very well met 
in 14C and 3H counting. The mean modern count rate is only 0.5cpm in 
our sample detector, for example. 

Let A be the mean rate of occurrence for the detector pulses. Then 
the probability of the number of events Nt observed in time interval of 
length t has a Poisson distribution of mean At (fig 1), 

(Ac)ne-Xt prob {Nt=n} = \ 
n , (n = 0,1, ...). (1) 

The probability for the time interval X from time origin to the next pulse 
to be X > t is equivalent to the fact that no pulse is observed in time in- 
terval (0,t) and 

prob {X> t} = prob {Nt = 0} = e-"t. (2) 

Further, prob {there will be a pulse in the time interval (t, t+dt) } = Adt. 
Therefore, the joint probability for no event in the interval (0,t) and one 
event in (t, t+dt) is the pulse time interval probability density function 

fx (t) = Ae-t, (t>0). (3) 

The origin of the counting process can be freely selected (Cox && Lewis, 
1966). 

The pulse time interval distribution function FY(t) is prob {at least 
one event between (0,t)} or 

Fx (t) =1- e-xt (4) 

(see fig 2). Of the number N0 of pulse intervals there are N = N0(1-e-1) 
= 0.63N0 intervals smaller than the mean interval length 1/A and half of 
the intervals are shorter than 0.691k. The density of decay intervals in- 
creases towards the shorter lengths according to the negative exponential 
gap distribution Eq (3). 

The so-called survivor function R(t) = 1-F(t) contains the same in- 
formation as Eqs (3) and (4). On a logarithmic scale deviation of R(t) 
from linearity indicates non-Poisson component in the counting process, 
seen as a mismatch of the predicted and actual data. 
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Fig 1, Distribution of counts in 200 s counting intervals. Total number of counts 
was 194 in 22.1 hr (397 intervals). The theoretical Poisson probability histogram is cal- 
culated using the observed mean = 0.49 c per interval. Bar length indicates number of 
intervals containing given number of counts. 
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Fig 2. Pulse time interval distribution function (normal case, 373 c/33.8 hr; see Eq (4)). 

PULSE TIME INTERVAL SPECTRUM 

Non-random events can be tested by calculating the time intervals Qt; 
from the pulse i to a later pulse i+j, Qt1= - ti < T, j = 1,2, ... with 
a reasonable upper limit for the time interval span. A histogram is con- 
structed to visualize the frequency of time intervals between pulses in 
constant segment categories over T (fig 3). Periodic events will be disclosed 
as non-randomly distributed peaks in the spectrum (c f fig 3, normal case, 
with fig 6, non-random). 

SCATTER DIAGRAM 

As a test of serial correlation between successive time intervals be- 
tween pulses a scatter dot diagram is useful (Cox & Lewis, 1966) ie, we 
plot time interval Qt;+, = t1+1 - t; as a function of Qty = t - t1_1. A 
higher number of short intervals leads in a normal case to concentration 
of dots along to the axes, their equidensity curves being hyperbolic (fig 4). 
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Fig 3. Pulse time interval spectrum for Poisson-distributed data of figure 2. Num- 
ber of intervals of length from t to t+lO s are indicated by bars. 
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Fig 4. Scatter diagram for the data of figures 2 and 3. 

CUMULATIVE PLOT OF COUNTING DATA 

The accumulated number of pulses as a function of counting time is 
a rising line at a slope A with some scatter around it (Cox & Lewis, 1966). 
It is convenient to turn the plot horizontal, ie, we plot 

N=N-Nt. (5) 

This plot is produced after the data has been collected on the basis of 
a posteriori Poisson mean count rate N. Deviations from horizontal indi- 
cate fluctuations in the count rate, ie, due to cosmic flux or anticoinci- 
dence shield efficiency variations (fig 5). 

RESULTS 

A background run of 167 counts in 7.6 hr was divided into 200-second 
periods. We observed 62 periods containing one pulse while the theoreti- 
cal Poisson distribution based on the observed mean count rate predicted 
only 48.9 such periods. x2 test and index of dispersion showed excessive 
variance (table 1). The time interval spectrum showed a 400 s period with 
± 100 s scatter in its length (fig 6). The same fact is dramatically illus- 
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Fig 5. Horizontal cumulative plot for the first 24 hr of the data of figures 2, 3, 
and 4. 
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TABLE 1 

A background run containing non-random counts 

Total number of counts = 167 
Counting time = 7.57 hr 
Mean count rate ± o- = 0.37 ± 0.10 cpm 

Segmented in 200 s intervals: 
Number of intervals = 136 
Mean number of counts/interval = 1.23 ± 1.36 c 
Expected Poisson error/interval = 1.11 c 

xr = 203.5 
Index of dispersion = 
X2fdegrees of freedom = 1.51 
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trated in the time interval distribution function (fig 7). Because this is a 
background run, as a gross deviation from the predicted curve we can esti- 
mate the fraction of the extra counts to be some 30% of the total number. 

Another run of 606 counts in 20.5 hr contained 60% of extra pulses. 
The horizontal cumulative plot is not time-dependent. The scatter dia- 
gram showed a clear correlation between successive time intervals (fig 8). 
The time interval spectrum and distribution function both show a peri- 
odicity of 270 seconds. 

Time resolution of the above run was rounded from 10 ms to 1 s and 
10 s without loss of the interval spectrum structure. The data file was also 
examined in sections of 100 seconds. No great change was observed be- 
yond the first 100 s while the first section of data showed less prominent 
periodicity. 

To test the detection level of the time series analysis in low-level 
counting, cyclic spurious counts were added into pure random data files. 
Fifty counts were added into 373 counts collected in 33.8 hr with 20 s and 
40 s scatter around the mean 400 s interval length (see figs 9a, 9b). If 
<10% of spurious counts or >10% scatter in interval length are intro- 
duced, it is difficult to resolve any periodic structure in the interval spec- 
trum. 

The addition of artificial spurious periodic counts is a "rigorous" test 
of the method because we assume that the pulse height spectrum of the 
added counts does not differ from that of the true counts. 
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Fig 6. Periodic pulses in the data of table 1 indicating 400 s period and its har- 
monic at ca 800 s. Time window is 10 s. 
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Fig 7. Time interval distribution function for the data of figure 6 indicating too 
many intervals of length 400 s. Theoretical curve is drawn on the basis of the experi- 
mental mean count rate. 

CONCLUSIONS 

The use of pulse time arrival information in statistical analyses of 
low-level counting data offers a possibility of identifying the existence o 
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Fig 8. Scatter diagram for 200 intervals out of a run of 606 counts in 20.5 hr. Extra 
counts appear in encircled areas around the lines t1+1 = 270 s and Otl = 270 s. Group- 
ing of dots around the descending line At1+1 + Atl = 270 s indicates cases where the 
270 s periods are intercepted by single real events. 
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Fig 9a. The data of figure 2 made periodic by adding 50 pulses into the first 5.6 hr 
of the run. Equally distributed random scatter of ± 20 s was introduced into the mean 
period 400 s. Time window is 10 s. 
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Fig 9b. Same as figure 9a except the scatter in the length of the period is ± 40 s. 

periodic events at an early stage of counting. If the level of spurious 
counts reaches 10 out of 100 total counts, the spurious events can be de- 
tected. We have not used or planned to use time series analyses for trac- 
ing outliers, but only for establishing the possible existence of periodicity. 
The method is of particular advantage in examining very low frequency 
periodic phenomena, as higher frequency non-random events are detected 
by other means. 

Time series analyses displayed in suitable graphic form permits the 
user to visually assess the validity of low count-rate data. Time-dependent 
effects, radon decay, anticoincidence shield efficiency fluctuations, and nat- 
ural fluctuations in environmental radiation show up in cumulative plots 
that can be displayed while counting is in progress. 
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