
Compositio Mathematica112: 77–91, 1998. 77
c
 1998Kluwer Academic Publishers. Printed in the Netherlands.

The algebraic dimension of compact complex
threefolds with vanishing second Betti number
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Abstract. This note investigates compact complex manifoldsX of dimension 3 with second Betti
numberb2(X) = 0: If X admits a non-constant meromorphic function, then we prove that either
b1(X) = 1 andb3(X) = 0 or thatb1(X) = 0 andb3(X) = 2: The main idea is to show thatc3(X) =
0 by means of a vanishing theorem for generic line bundles onX: As a consequence a compact
complex threefold homeomorphic to the 6-sphereS

6 cannot admit a non-constant meromorphic
function. Furthermore we investigate the structure of threefolds withb2(X) = 0 and algebraic
dimension 1, in the case when the algebraic reductionX ! P1 is holomorphic.
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0. Introduction

In this note we shall investigate compact complex manifolds of dimension three
and second Betti numberb2(X) = 0. Such a manifold cannot be algebraic or
Kähler. Therefore we will be interested in the algebraic dimensiona(X) which
is by definition the transcendence degree of the field of meromorphic functions
over the field of complex numbers. Note thata(X) > 0 if and only ifX admits
a non-constant meromorphic function. The topological Euler characteristic will be
denoted�top(X) which is also the third Chern classc3(X) by a theorem of Hopf.
Our main result is

THEOREM.LetX be a compact3-dimensional complex manifold withb2(X) = 0
anda(X) > 0. Then

c3(X) = �top(X) = 2� 2b1(X)� b3(X) = 0;

i.e. we either haveb1(X) = 0, b3(X) = 2 or b1(X) = 1, b3(X) = 0.
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Notice that if a(X) = 3, i.e.X is Moishezon, then we haveb2(X) > 0, but
examples of compact threefoldsX with a(X) = 1 or 2 and with the above Betti
numbers exist (see Sect. 2).

The following corollary was actually our motivation for the Theorem

COROLLARY. Let X be a compact complex manifold homeomorphic to the6-
dimensional sphereS6. Thena(X) = 0.

In other words,S6 does not admit a complex structure with a non-constant mero-
morphic function.

Our Main Theorem is an immediate consequence of the following more general

THEOREM.LetX be a compact3-dimensional complex manifold withb2(X) = 0
anda(X) > 0. LetB be a vector bundle onX. ThenHi(X;B
M) = 0 for i > 0
and genericM 2 Pic0(X), in particular�(X;B
M) = 0 for allM 2 Pic0(X).

In the last section we study more closely the structure of threefoldsX with b2(X) =
0 and algebraic dimension 1 whose algebraic reduction is holomorphic. We show
e.g. that smooth fibers can only be Inoue surfaces, Hopf surface with algebraic
dimension 0 or tori.

Finally we would like to thank the referee for suggestions of improvements in
the exposition.

1. Preliminaries and criteria for the vanishing ofH0

NOTATIONS 1.0. (1) LetX be a compact complex manifold, always assumed to
be connected. The algebraic dimension, denoteda(X), is the transcendence degree
of the field of meromorphic functions overC .

(2) bi(X) = dimHi(X;R) denotes theith Betti number ofX.
(3) If G is a finitely generated abelian group, then rkG will denote its rank

(overZ).
(4) If X is a compact space, thenhq(X;F) denotes the dimension ofHq(X;F).

PROPOSITION 1.1.LetY be a connected compact complex space(not necessarily
reduced), every componentYi of Y being of positive dimension. LetD be an
effective Cartier divisor onY such thatDjYi 6= 0 for all i. LetF be a locally free
sheaf onY . Then there existsk0 2 N such that

H0(Y;F 
OY (�kD)) = 0

for k > k0.
Proof.We have natural inclusions

H0(Y;F 
OY (�(k + 1)D)) � H0(Y;F 
OY (�kD)):

Takek0 such that this sequence is stationary fork > k0. Thens has to vanish at any
order alongDjYi for everyi (s can be thought of locally as a tuple of holomorphic
functions), hencesjYi = 0, ands = 0.
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COROLLARY 1.2.Let S be a smooth compact complex surface containing an
effective divisorC such thatc1(OS(C)) = 0. LetB be a vector bundle onS. Then
for a genericL 2 Pic0(X) we have

H0(S;B 
L) = H2(S;B 
L) = 0:

In particular�(S;B) = �(S;B 
L) = �h1(S;B 
L) 6 0.
Proof. The vanishingH0(S;B 
 OS(�kC)) = 0 for largek follows from

(1.1). SinceOS(kC) is topologically trivial for large suitablek, the requiredH0-
vanishing follows from semi-continuity. TheH2-vanishing follows by applying
the previous arguments toB� 
KS and Serre duality.

COROLLARY 1.3.LetX be a smooth compact threefold withb2(X) = 0 carrying
an effective divisorD. ThenH0(X;B 
 L) = 0 for genericL in Pic0(X) and
every vector bundleB onX.

Proof. The assumptionb2(X) = 0 means thatH2(X;Z) is finite, hence there
exists an integerm > 0 such thatc1(OX(mD)) = 0 in H2(X;Z). We can apply
(1.1) to obtain

H0(X;B 
OX(�kmD)) = 0

for k large. Now we conclude again by semi-continuity.
The next lemma is well-known; we include it for the convenience of the reader.

LEMMA 1.4. LetX be a compact manifold of dimensionn with a(X) = n. Then
b2(X) > 0.

Proof. Choose a birational morphism�: X̂ ! X such thatX̂ is a projective
manifold. Take a general very ample divisorD̂ on X̂ and a general curvêC 2 X̂ .
Let D = �(D̂) andC = �(Ĉ). ThenD meetsC in finitely many points, hence
D � C > 0, in particularc1(OX (D)) is not torsion inH2(X;Z).

LEMMA 1.5. LetX be a smooth compact threefold andf :X ! C be a surjective
holomorphic map to a smooth curveC. LetF be a locally free sheaf onX. Then
Rif�(F) is locally free for alli.

Proof. (a) Note that local freeness is equivalent to torsion freeness, since
dimC = 1. Hence the claim is clear fori = 0.

(b) Next we treat the casei = 2. We shall use relative duality (see [RRV71],
[We85]); it states in our special situation (f is flat with even Gorenstein fibers) that
if Rjf�(G) is locally free for a given locally free sheafG and fixedj, then

R2�jf�(G
� 
 !X=C) ' Rjf�(G)

�;

in particularR2�jf�(G
� 
 !X=C) is locally free. Here!X=C = !X 
 f�(!�C) is

the relative dualizing sheaf. Applying this toj = 0 andG = F�
!�X=C our claim
for i = 2 follows.
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(c) Finally we prove the freeness ofR1f�(F). By a standard theorem of Grauert
it is sufficient thath1(Xy;FjXy

) is constant,Xy the analytic fiber overy 2 C.
By flatness,�(Xy;FjXy

) is constant, hence it is sufficient thathj(Xy;FjXy
) is

constant forj = 0 andj = 2. By the vanishingR3f�(F) = 0, we have (see e.g.
[BaSt76])

R2f�(F)jfyg ' H2(Xy;FjXy
):

Thereforeh2(Xy;FjXy
) is constant by (b). Finally

h0(Xy;FjXy
) = h2(Xy;F

�

jXy

 !Xy) = h2(Xy; (F

� 
 !X)jXy
)

is constant by applying the same argument toF� 
 !X .

2. The main theorem

In this section we prove the main result of this note:

THEOREM 2.1.LetX be a3-dimensional compact complex manifold withb2(X) =
0 anda(X) > 0. LetB be a vector bundle onX. Then

(1) Hi(X;B 
M) = 0 for i > 0 andM2 Pic0(X) generic.
(2) �(X;B 
M) = 0 for all M 2 Pic0(X).
(3) c3(X) = 0, i.e. either b1(X) = 0 and b3(X) = 2 or b1(X) = 1 and

b3(X) = 0.

Proof.First notice that (2) and (3) follow from (1). In fact, by (1) we have

�(X;B 
M) = 0

for genericM and thus the same holds for allM by Riemann-Roch and the equality
cj(B) = cj(B 
M). For (3), we apply (2) toB = TX and get

�(X;TX) = 0:

Now, sinceH2(X;R) = H4(X;R) = 0, we havec1(X) = c2(X) = 0, hence

0 = �(X;TX) =
1
2c3(X)

by Riemann-Roch.
So it suffices to prove (1). Moreover by Serre duality we only need to prove the

vanishing fori = 0 andi = 2.
In casei = 0 we observe that there are nonzero effective divisors onX (since

a(X) > 0) and we can apply (1.3) to get the claim.
So leti = 2. Let g:X - P1 be a nonconstant meromorphic function. Let

�: X̂ ! X be a resolution of the indeterminacies ofg and letf : X̂ ! C be the
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Stein factorisation of the holomorphic map� � g. Fix an ample divisorA onC and
letL be the line bundle onX determined by

f�(A) = ��(L)
O
X̂
(�E) (a)

with a suitable effective divisorE supported on the exceptional set of�. We need
to exhibit a line bundleM 2 Pic0(X) with

H2(X;B 
M) = 0:

We shall distinguish two cases according to whether the indeterminacy locus of
g is empty or not.

We start treating the case thatg is not holomorphic. First note that the canonical
map

H2(X;B 
M)! H2(X̂; ��(B 
M))

is injective. This is obvious from the Leray spectral sequence. Hence it is sufficient
to show

H2(X̂; ��(B 
M)) = 0: (�)

Actually for (�) we only need

H2(X̂; ��(B 
M)(�tE)) = 0 (��)

for somet > 0. To verify that(��) implies(�), consider the exact sequence

H2(X̂; ��(B 
M)(�tE)) ! H2(X̂; ��(B 
M))

! H2(tE; ��(B 
M))

and note thatH2(tE; ��(B 
M)) = 0. This last vanishing is seen as follows: let
At be the complex subspace ofX defined by the ideal sheaf��(�tE), then

H2(tE; ��(B 
M)) = H2(At; B 
M) = 0

since dimAt = 1.
We make the ansatzM = Lt+k with t andk to be determined; of course we

need to prove the vanishing only for oneM by semi-continuity. Using the Leray
spectral sequence forf : X̂ ! C, (��) comes down to

Hq(C;Rpf�(�
�(B 
Lk))
 tA) = 0 (���)

for p+ q = 2, and larget; k. Forq = 2, (���) is obvious and forq = 1 it follows
from Serre’s vanishing theorem fort� 0. So letq = 0. We need to see that

F = R2f�(�
�(B 
Lk)) = 0:
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SinceF is locally free by (1.5), it suffices thatFjF = 0 for the general fiberF of
f and largek. But this follows from (1.1), the effective divisorEjF being nonzero:

H2(F; ��(B 
Lk)) ' H0(F; ��(B�)
KF 
OF (�kE)) = 0:

If g is holomorphic, i.e. we may take� = id, so thatf = g, this argument does not
work sinceE = 0. Here we have to replaceLt+k by a different line bundle. First
note that

H0(C;R2f�(B)
 (�tA)) = 0 (+)

for t sufficiently large. We claim that this implies

H0(C;R2f�(B 
M)) = 0 (++)

for generalM 2 Pic0(X). Let W = H1(X;OX ). Then every element inW is
represented as a topologically trivial line bundle.

Consider locally the universal bundlêM onX�W . LetF = f� id :X�W !
C �W andB̂ = pr�X(B). The coherent sheafR2F�(B̂ 
 M̂) satisfies

R2F�(B̂ 
 M̂)jC � ftg ' R2f�(B 
 M̂t);

whereM̂t is the line bundle corresponding tot 2 W . Choosem� 0 andt0 such
thatf�(A�m) = M̂t0. This is possible sinceb2(X) = 0. By (+) we have

H0(C;R2f�(B 
 M̂t0)) = 0:

Hence it is sufficient to show thatRjF�(B̂
M̂) is flat with respect to the projection
q:C �W ! W , over a Zariski open set ofW , then the usual semi-continuity
theorem gives the claim (2). NowR2f�(B
M̂t) is locally free onC = C � t for
everyt by (1.5), hence it is clear that there is a Zariski open setU � W such that
R2F�(B̂ 
 M̂) has constant rank overU , hence is locally free overU (observe
just that the set where the rank of a coherent sheaf is not minimal is analytic). This
proves(++).

On the other hand we have form� 0 by Serre’s vanishing theorem

H1(C;R1f�(B)
Am) = 0:

In the same way as above we conclude that

H1(C;R1f�(B 
M)) = 0

for generalM2W .
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By the Leray spectral sequence we therefore again obtainH2(X;B 
M) = 0
for generalM. This finishes the proof of the theorem.

COROLLARY 2.2.LetX be a compact complex threefold homeomorphic to the
sphereS6. Then every meromorphic function onX is constant.

Proof.Note thatc3(X) = �top(S
6) = 2 and apply (2.1).

Next we give examples of threefolds witha(X) > 0,b2(X) = 0 andc3(X) = 0
so that the Main Theorem (2.1) is sharp.

EXAMPLE 2.3. The so-called Calabi-Eckmann threefolds are compact threefolds
homeomorphic toS3�S3, see [Ue75]. They can be realized as elliptic fiber bundles
overP1� P1. Hencea(X) = 2, b1(X) = b2(X) = 0 andb3(X) = 2.

We now show that Calabi-Eckmann manifolds can be deformed to achieve
a(X) = 1 ora(X) = 0 andb1 = b2 = 0, b3 = 2. We choose positive real numbers
a; b; c and letB = C 2 n f(0;0)g. We define the following action ofC onB �B:

(t; x; y; u; v) 7! (exp(t)x;exp(at)y;exp(ibt)u;exp(ict)v):

One checks easily that this action is holomorphic, free and almost proper so that
the quotientX exists and is a compact manifold. Ifa = 1 andb = c, thenX is a
Calabi-Eckmann manifold. If howevera 62 Q andb = c resp.a 62 Q and b

c 62 Q,
thena(X) = 1 resp.a(X) = 0.

EXAMPLE 2.4. Hopf threefolds of the form

C 3 n f(0;0;0)g=Z;

with the action ofZ' f�k; k 2 Zg being defined by

�(x; y; z) = (�x; �y; 
z); 0 < j�j; j�j; j
j < 1

are homeomorphic toS1� S5. They havea(X) = 0;1 or 2 andb1(X) = 1, while
b2(X) = b3(X) = 0. This realizes the other possibility for the pair(b1; b3) when
b2 = 0 anda(X) > 0, as stated in the Main Theorem.

Notice that the algebraic reduction is holomorphic in (2.3) but it is not holo-
morphic in (2.4) ifa(X) = 1.

EXAMPLE 2.5. We finally give other examples of compact threefoldsX with
a(X) = 0 andb1 = b2 = 0, b3 = 2. Let� � Sl(2; C ) be a torsion free cocompact
lattice in such a way that the quotientX := Sl(2; C )=� hasb1(X) = 0.

This last condition is not automatic. LetY = SU(2)nSl(2; C )=�; thenY is
a compact differentiable manifold admitting a differentiable fibration�:X ! Y

with S3 is fiber. Sinceb1(X) = 0, we also haveb1(Y ) = 0, henceb2(Y ) = 0 by
Poincaŕe duality. Now the Leray spectral sequence immediately givesb2(X) = 0,
the fibers of� being 3-spheres.b3(X) = 2 is again clear from the Leray spectral
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sequence. Finally the fact thatX does not carry any nonconstant meromorphic
function results from [HM83] from which we even deduce thatX does not carry
any hypersurface (asX is homogeneous).

3. On the finer structure of threefolds with b2(X) = 0 and a(X) = 1

In this section we investigate more closely threefoldsX with b2(X) = 0 and
algebraic dimension 1. By construction, the algebraic reductionf :X - V is a
meromorphic map to a normal projective variety, henceV is a nonsingular curve.
We claim thatV must be rational. In fact, we haveb1(X) 6 1 by 2.1 (3); on
the other hand, for every holomorphic 1-formu on V; the pull-backf�u is a d-
closed holomorphic 1-form onX; thusb1(X) > 2: ThereforeV is rational. In this
section we restrict ourselves to the case when the algebraic reductionf :X ! V

is holomorphic. The key to our investigations is

THEOREM 3.1.Let F be a general smooth fiber off . Then the restriction
r:H1(X;OX )! H1(F;OF ) is surjective.

We need some preparations for the proof of (3.1). Let� � V be a finite
non emptyset such thatA = f�1(�) � X contains all singular fibers off . Let
V 0 = V n�, andX 0 = f�1(V 0) so thatf 0 = fjX0 is a smooth fibration. LetDi,
1 6 i 6 r be the irreducible components ofA and lets = card� be the number of
connected components ofA. Furthermore we sett = b1(F ) whereF is the general
smooth fiber off . For a noncompact spaceZ we let bi(Z) = dimHi(Z;R),
whatever this dimension is. We prepare the proof of (3.1) by three lemmas.

LEMMA 3.2. (1) The natural exact sequence of groups

1 = �2(V
0)! �1(F )! �1(X

0)! �1(V
0)! 1

is exact and(non-canonically) split.
(2) b1(X

0) = b1(V
0) + b1(F ) = s� 1+ t.

(3) r = s� 1+ t� b1(X).
Proof. (1) SinceV 0 is a non-compact Riemann surface,�1(V

0) is a free group
of s� 1 generators and sinceV 0 is uniformized by eitherC or by the unit disc, we
have�2(V

0) = 1. Hence the exact homotopy sequence of the fibrationf 0:X 0 ! V 0

gives the exact sequence of groups stated in (1). Since�1(V
0) is a free group, the

sequence splits.
(2) From (1) we deduce that

H1(X
0;Z)' H1(V

0;Z)�H1(F;Z):

Moreoverf�:�1(X) ! �1(V ) is surjective since the fibers off are connected.
Hence (2) follows.

(3) The cohomology sequence with rational coefficients of the pair(X;A) gives
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0 = H4(X)! H4(A)! H5(X;A)! H5(X)! H5(A) = 0:

By duality we haveH5(X;A) ' H1(X
0) andH5(X) ' H1(X). Hencer =

dimH4(A) = b1(X
0)� b1(X) = s� 1+ t� b1(X) by (2), as claimed.

Now choose an integerm > 0 such thatc1(OX(mDi)) = 0 in H2(X;Z) for
all 1 6 i 6 r. Let

L
Z[mDi] ' Zr be the free abelian group generated bymDi,

1 6 i 6 r, and let�:
L

Z[mDi]! Pic0(X) be given by sendingD =
P

i aimDi

toOX(D).

LEMMA 3.3. LetK = Ker� andI = Im�. ThenrkK 6 s�1andrk I > r�s+1.
Proof.The kernelK consists of all divisorsD such thatOX(D) ' OX , i.e. such

thatD is the divisor of a global meromorphic functionh onX. Asf :X ! V is the
algebraic reduction ofX, there must exist a meromorphic function~h onV such that
h = ~h � f . Now, the divisor~D of ~h has degree 0 and support in� = fx1; : : : ; xsg.
This implies thatK is contained inf�(Pic0(�)). As Pic0(�) ' Zs�1, the claim
follows.

The last ingredient in the proof of (3.1) is provided by

LEMMA 3.4. The restriction map�:H1(X;OX )! H1(X 0;OX0) is injective.
Proof.The Leray spectral sequences of the fibrationsf :X ! V andf 0:X 0 !

V 0 yield a commutative diagram

0 = H1(V;OV )
f�
- H1(X;OX )

'
- H0(V;R1f�OX) - H2(V;OV ) = 0

0 = H1(V 0;OV 0)

?

- H1(X 0;OX0)

?

�

'
- H0(V 0; R1f 0�OX0)

?

~�

- H2(V 0;OV 0) = 0;
?

and sinceR1f�OX is locally free by (1.5), we conclude that~� is injective.

We are now able to finish the proof of (3.1).
Consider againI � Pic0(X), the image of�:

L
Z[mDi]! Pic0(X), and let~I

be the inverse image ofI under the natural mapH1(X;OX )! Pic0(X). We have
a commutative diagram

H1(X;Z) - H1(X 0;Z)
�Z
- H0(V 0; R1f 0�Z)


Z
- H1(F;Z)

~I � H1(X;OX )

?

�
- H1(X 0;OX0)

?

�

�

'
- H0(V 0; R1f 0�OX0)

?



- H1(F;OF )

?

I
?

� H1(X;O�

X )

?

�̂
- H1(X 0;O�

X0);

?
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where the two vertical sequences are exponential exact sequences,� and �̂ are
restriction maps fromX to X 0, � and�Zarise from the spectral sequence, and
,

Zare restriction maps to a generic fiberF . We get

rk ~I = rk I + rkH1(X;Z) > r � s+ 1+ b1(X) = t

by 3.3 and 3.2 (3). Noŵ�(I) = 0, since�̂(OX(mDi)) = OX0(mDi)) ' OX0

for all i. It follows that�(~I) is contained in the image of�, thus��1(�(~I)) �
H1(X 0;Z) has rank

rk(��1(�(~I))) > rk�(~I) > rk ~I > t

thanks to the injectivity of�. Moreover,R1f 0�Z is a locally constant system of rank
rkH1(F;Z) = t, henceH0(V 0; R1f 0�Z)has rank at mostt. On the other hand, as�
is an isomorphism and rk�(~I) > t, we see that�Z(��1(�(~I))) has rank at leastt.
Therefore,
Z� �Z(��1(�(~I))) is of finite index inH1(F;Z). SinceH1(F;OF ) is
the complex linear span of the image ofH1(F;Z), we see that
 � � � �(~I) also
generatesH1(F;OF ). In particular, the restriction mapH1(X;OX )! H1(F;OF )
must be surjective. This concludes the proof of (3.1).

(3.5) We now study the structure of the smooth fibersF of f . The exact sequence

0! TF ! (TX)jF ! O(F )jF ! 0

and the equalityc1(O(F )) = 0 inH2(X;R) imply

c1(F ) = c1(X)jF = 0; c2(F ) = c2(X)jF = 0

in particular we also have�(F;OF ) = 0. We conclude from the classification of
surfaces thatF is one of the following: a Hopf surface, an Inoue surface, a Kodaira
surface (primary or secondary), a torus or a hyperelliptic surface (see e.g. [BPV84]).
By [Ka69] however,F cannot be hyperelliptic. The reason is the existence of a
relative Albanese reduction in that case.

PROPOSITION 3.6.The general fiberF of f cannot be a Kodaira surface nor a
Hopf surface with algebraic dimension1.

Proof.Let F0 be a fixed smooth fiber and assume thatF0 is a Kodaira surface
or a Hopf surface witha(F0) = 1. Let g0:F0 ! C0 be ‘the’ algebraic reduction
which is an elliptic fiber bundle. LetL0 = g�0(G0) with G0 very ample onC0.

(1) There exists a line bundle~L onX with ~LjF0
= L0.

Proof. By passing to some powerLm
0 if necessary, we havec1(L0) = 0 in

H2(X;Z). Let

�1:H1(X;OX )! Pic(X)
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and

�2:H1(F0;OF0)! Pic(F0)

be the canonical maps, and letr:H1(X;OX ) ! H1(F0;OF0) be the restriction
map. Choose� 2 H1(F0;OF0) with �2(�) = L0. Sincer is surjective by (3.2),
we find� 2 H1(X;OX) with r(�) = �. Now let ~L = �1(�).

(2) LetF be any smooth fiber off . Then�( ~LjF ) = 1. In fact, it follows from
the local freeness ofRjf�( ~L) stated in Lemma 1.5 that

f�( ~L
�)jfyg ' H0(F; ~L�);

whereF = f�1(y), see [BaSt76, Chap. 3, 3.10].
(3) From the generically surjective morphism

f�f�( ~L
m)! ~Lm;

(m� 0), we obtain a meromorphic map

g:X - P(f�( ~L
m));

which, restricted toF is holomorphic and just gives the algebraic reduction ofF .
Let Z be the closure of the image ofg. Thenf factors via the meromorphic map
h1:X - Z and the holomorphic maph2:Z ! V . Nowh2 is the restriction of
the canonical projectionP(f�( ~Lm)) ! V , thereforeh2 is a projective morphism
andZ is projective. Hencea(X) > 2, contradiction.

From (3.6) it follows thatF can only be an Inoue surface, a Hopf surface without
meromorphic functions or a torus. In order to exclude by a similar method as in
(3.6) also tori of algebraic dimension 1, we would need the existence of a relative

algebraic reduction (the analogue ofh2:X - Z) in that case, too.
We now look more closely to the structure off .

PROPOSITION 3.7.Assume thatF is not a torus. Then

(1) R1f�(OX) = OV ,
(2) R2f�(OX) = 0,
(3) dimH1(X;OX ) = 1,
(4) H2(X;OX ) = H3(X;OX ) = 0.

Proof. (2) SinceH2(F;OF ) = 0, the sheafR2f�(OX) is torsion, hence iden-
tically zero by 1.5. ThenH3(X;OX ) = 0 is immediate from the Leray spectral
sequence.

(1) Sinceh1(F;OF ) = 1; R1f�(OX) is a line bundle onV . Let

d = degR1f�(OX):
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Then Riemann-Roch gives�(R1f�(OX )) = d + 1: On the other hand the Leray
spectral sequence together withH3(X;OX ) = 0 and (2) yields

�(R1f�(OX)) = h1(OX)� h2(OX) = ��(OX) + 1:

We concluded = ��(OX) = 0. This proves (1). Now (3) and the second part of
(4) are obvious.

Remark3.8. In caseF is a torus,R1f�(OX ) is a rank 2 bundle andR2f�(OX)
is a line bundle. Using Theorem 3.1 it is easy to see that

(1) R1f�(OX) = O(a)�O(b) with a; b > 0,
(2) R2f�(OX) = O(a+ b).

Note that (2) gives duallyf�(!XjV ) = O(�a� b). Usually one expects the degree
of f�(!XjV ) to be semi-positive, but here we are in a highly non-Kähler situation
where it might happen that the above degree is negative, see [Ue87].

PROPOSITION 3.9.Assume thatF is not a torus. ThenH0(X;
i
X) = 0, 1 6

i 6 3.
Proof.For i = 3 the claim follows already from 3.7 (4) and Serre duality.
(1) First we treat the casei = 1. Let! be a holomorphic 1-form. Letj:F ! X

be the inclusion. Thenj�(!) = 0, hence at least locally nearF we have! = f�(�),
hence d! = 0 nearF and therefore the holomorphic 2-form d! is identically
zero onX. Now the space of closed holomorphic 1-forms can be identified with
H0(X;dOX ) and, as it is well known (see e.g. [Ue75]), we have the inequality

2h0(X;dOX ) 6 b1(X):

The inequalityb1(X) 6 1 impliesh0(X;
1
X) = h0(X;dOX) = 0, as desired.

(2) In casei = 2, we again havej�(!) = 0. LetU be a small open set inV
such thatfjf�1(U) is smooth. Letz be a coordinate onU andh = f�(z). Then we
conclude that

!jf�1(U) = dh ^ �

with some relative holomorphic 1-form� 2 H0(f�1(U);
1
X=V ). Now again

j�(�) = 0 and therefore� = 0,! = 0.

COROLLARY 3.10.Assume thatF is not a torus. Then eitherf�(
1
X=V ) = 0 or

there exists somex 2 V such thatf�(
1
X=V ) = C x , i.e. a sheaf supported onx

with a1-dimensional stalk atx. In particularf has at most one singular fiber and
such a fiber is normal with exactly one singularity of embedding dimension3.

Proof.Consider the exact sequence

0! f�(
1
V )! 
1

X ! 
1
X=V ! 0:
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SinceF has no holomorphic 1-forms,f�(
1
X=V ) is a torsion sheaf on the curveV .

The corollary will follow if we check thath0(V; f�(

1
X=V )) = h0(X;
1

X=V ) 6 1.
Now, observe the following facts.

(1) H0(X;
1
X) = 0, by (3.9);

(2) H1(X; f�(
1
V )) = H1(V;
1

V )by Leray’s spectral sequenceand the equalities
Rif�(f

�
1
V ) = Rif�(OX)
 
1

V = 
1
V , i = 0;1 (cf. 3.7 (1));

(3) dimH1(V;
1
V ) = 1:

Then, taking cohomology groups in the first exact sequence, we get the desired
inequality

h0(X;
1
X=V ) 6 h1(V;
1

V ) = 1:

We can say something more about the structure of the singular fibers off .

PROPOSITION 3.11.Assume thatF is not a torus. LetA be a union of fibers
containing all singular fibers off . Let s = card(f(A)) and r the number of
irreducible components ofA. Thenr = s, i.e. all fibers off are irreducible and
b1(X) = 0.

Proof. SinceF is an Inoue surface or a Hopf surface, we haveb1(F ) = 1, thus
3.2 (3) impliesr = s� b1(X). As r > s, we must haver = s andb1(X) = 0.

Remark3.12. In caseF is a torus, 3.2 (3) impliesr = s+ 3� b1(X) > s+ 2.
It seems rather reasonable to expect that tori actually cannot appear as fibers off .
Observe thatf must have a singular fiber in this case because ofr > s. So a study
of the singular fibers is needed to exclude tori as fibers off . However there is a
significant difference: the case of tori is one (in fact the only one) whereC3;1 might
fail, see [Ue87].

PROPOSITION 3.13.Assume thatF is not a torus. Thenh1;1 = h1;2 = h2;1 = 1
(so that we know all Hodge numbers ofX).

Proof.(1) h1;2 = h2;1 is of course Serre duality.
(2) By (3.9) and�(X;
1

X) = 0 it suffices to seeh1;3 = 0 in order to get
h1;1 = h1;2. But this follows again from Serre duality and the equalityh2;0 =
h0(X;
2

X ) = 0.
(3) From the exact sequence

0! f�(
1
V )! 
1

X ! 
1
X=V ! 0 (S)

we deduce that it suffices to show

(a) h2(X; f�(
1
V )) = 1,

(b) h2(X;
1
X=V ) = 0,

in order to geth1;2 6 1.
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(a) By the Leray spectral sequence and (3.7) we haveh2(X; f�(
1
V )) =

h1(V;
1
V ) = 1.

(b) Again we argue by the Leray spectral sequence. SinceR1f�(

1
X=V ) is a

torsion sheaf, we need only to show that

R2f�(

1
X=V ) = 0:

In fact, taking the direct imagef� of (S), we see thatR2f�(

1
X=V ) is a quotient of

R2f�(

1
X) which is 0 by the equalityH2(F;
1

F ) = H0(F;
1
F ) = 0 and by (1.5).

(4) We finally showh1;1 6= 0 to conclude the proof. Let(Ep;q
r ) be the Fr̈olicher

spectral sequence onX. Sinceb1(X) = 0 by (3.11), we getE0;1
1 = 0. Hence

E
0;1
2 = 0. On the other hand

E
0;1
2 = Ker@:E0;1

1 ! E
1;1
1 :

SinceEp;q
1 = Hp;q(X), we conclude thatH1(X;OX ) injects intoH1;1(X). So by

(3.7)H1;1(X) 6= 0.
We finally collect all our knowledge in the case the general fiber off is not a

torus.

THEOREM 3.14.Let X be a smooth compact threefold withb2(X) = 0 and
holomorphic algebraic reductionf :X ! V to the smooth curveV . Assume that
the general smooth fiber is not a torus. Then:

(1) b1(X) = 0, b3(X) = 2.
(2) Any smooth fiber off is a Hopf surface without meromorphic functions or an

Inoue surface.
(3) The Hodge numbers ofX are as follows: h1;0 = 0, h0;1 = 0, h2;0 = 0,

h1;1 = 1,h0;2 = 0,h3;0 = 0,h2;1 = 1 (the others are determined by these via
Serre duality).

(4) All fibers off are irreducible. There is at most one normal singular fiber.
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