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Abstract. This note investigates compact complex manifad®f dimension 3 with second Betti
numberbz(X) = 0. If X admits a non-constant meromorphic function, then we prove that either
b1(X) = 1andbz(X) = Oorthath1(X) = 0andbs(X) = 2. The mainidea is to show the§(X) =

0 by means of a vanishing theorem for generic line bundlesoi\s a consequence a compact
complex threefold homeomorphic to the 6-sphéfecannot admit a non-constant meromorphic
function. Furthermore we investigate the structure of threefolds wiffX) = O and algebraic
dimension 1, in the case when the algebraic reduckioss P1 is holomorphic.
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0. Introduction

In this note we shall investigate compact complex manifolds of dimension three
and second Betti numbép(X) = 0. Such a manifold cannot be algebraic or
Kahler. Therefore we will be interested in the algebraic dimensidf) which

is by definition the transcendence degree of the field of meromorphic functions
over the field of complex numbers. Note thdtX) > 0 if and only if X admits

a non-constant meromorphic function. The topological Euler characteristic will be
denotedyop(X) which is also the third Chern clasg(X) by a theorem of Hopf.

Our main result is

THEOREM.Let X be a compac3-dimensional complex manifold with(X) = 0
anda(X) > 0. Then

e3(X) = xtop(X) =2 —2b1(X) — b3(X) =0,

i.e. we either havé; (X) =0, b3(X) =20rbi(X) =1,b3(X) =0.
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Notice that ifa(X) = 3, i.e. X is Moishezon, then we havg(X) > 0, but
examples of compact threefold$ with a(X) = 1 or 2 and with the above Betti
numbers exist (see Sect. 2).

The following corollary was actually our motivation for the Theorem

COROLLARY. Let X be a compact complex manifold homeomorphic toGhe
dimensional spher§®. Thena(X) = 0.

In other words,S® does not admit a complex structure with a non-constant mero-
morphic function.
Our Main Theorem is an immediate consequence of the following more general

THEOREM.Let X be a compac3-dimensional complex manifold wika(X) = 0
anda(X) > 0. LetB be a vector bundle oX. ThenH'(X, B® M) = 0fori > 0
and genericM € Pic®(X), in particular x (X, B® M) = Oforall M € Pic®(X).

In the last section we study more closely the structure of threefolgth b,(X) =
0 and algebraic dimension 1 whose algebraic reduction is holomorphic. We show
e.g. that smooth fibers can only be Inoue surfaces, Hopf surface with algebraic
dimension O or tori.

Finally we would like to thank the referee for suggestions of improvements in
the exposition.

1. Preliminaries and criteria for the vanishing of H°

NOTATIONS 1.0. (1) LetX be a compact complex manifold, always assumed to
be connected. The algebraic dimension, denet&d), is the transcendence degree
of the field of meromorphic functions over

(2) b;(X) = dim H*(X, R) denotes théth Betti number ofX .

(3) If G is a finitely generated abelian group, therGtiwill denote its rank
(overZz).

(4) If X is acompact space, théf( X, F) denotes the dimension &f?( X, F).

PROPOSITION 1.1.etY be a connected compact complex sp@oe necessarily
reduced, every component; of Y being of positive dimension. Lé2 be an

effective Cartier divisor ofY” such thatD|y; # O for all i. LetF be a locally free
sheaf onY’. Then there existgy € N such that

HOYY,F ® Oy(—kD)) =0

fork > ko.
Proof.We have natural inclusions

HO(Y, F ® Oy(—(k 4+ 1)D)) c H(Y, F ® Oy(—kD)).

Takekg such that this sequence is stationarykar kq. Thens has to vanish at any
order alongD)y, for everyi (s can be thought of locally as a tuple of holomorphic
functions), hencem =0, ands = 0.
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COROLLARY 1.2.Let S be a smooth compact complex surface containing an
effective divisoC' such that; (Os(C)) = 0. Let B be a vector bundle of. Then
for a genericC € Pic®(X) we have

H%S,B® L) = H*(S,B® L) =0.

In particular x(S, B) = x(S,B® £) = —h*(S,B® L) < 0.

Proof. The vanishingf%(S, B ® Os(—kC)) = 0 for largek follows from
(1.1). SinceDs (kC) is topologically trivial for large suitablé, the requiredi°-
vanishing follows from semi-continuity. Th&-vanishing follows by applying
the previous arguments B* ® K¢ and Serre duality.

COROLLARY 1.3.Let X be a smooth compact threefold wii{ X ) = O carrying
an effective divisod. ThenH%(X, B ® L) = 0 for genericL in Pic’(X) and
every vector bundl# on X.

Proof. The assumptioh,(X) = 0 means thatf?(X, z) is finite, hence there
exists an integem > 0 such thaty(Ox(mD)) = 0in H?(X,Z). We can apply
(1.1) to obtain

H°X,B® Ox(—kmD)) =0

for k large. Now we conclude again by semi-continuity.
The next lemma is well-known; we include it for the convenience of the reader.

LEMMA 1.4. Let X be a compact manifold of dimensierwith a(X) = n. Then
b2(X) > 0.

Proof. Choose a birational morphlsz — X such thatX is a projective
manifold. Take a general very ample divisoron X and a general curv@ € X.
Let D = n(D) andC = =(C). ThenD meetsC in finitely many points, hence
D - C > 0, in particularcy (Ox (D)) is not torsion inH?(X, 7).

LEMMA 1.5. Let X be a smooth compact threefold afidX — C be a surjective
holomorphic map to a smooth cur¢é LetF be a locally free sheaf oX. Then
R f.(F) is locally free for alli.

Proof. (a) Note that local freeness is equivalent to torsion freeness, since
dimC = 1. Hence the claim is clear for= 0.

(b) Next we treat the case= 2. We shall use relative duality (see [RRV71],
[We85]); it states in our special situatiofi is flat with even Gorenstein fibers) that
if R f,(G) is locally free for a given locally free she@fand fixed;, then

Rz_jf*(g* ® c'-JX/C) = ij*(g)*a
in particularR?~7 £,(G* ® wx/c) is locally free. Herevy /o = wx ® f*(wg) is

the relative dualizing sheaf. Applying thisfc= 0 andg = F* ® w?(/c our claim
for s = 2 follows.
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(c) Finally we prove the freeness Bt f, (F). By a standard theorem of Grauert
it is sufficient thathl(Xy,]-]Xy) is constant,X, the analytic fiber ovey € C.

By flatnessx(Xy, F|x,) is constant, hence it is sufficient thhAi(Xy,ﬂXy) is
constant forj = 0 andj = 2. By the vanishing?3f,(F) = 0, we have (see e.g.
[BaSt76])

R2f.( )y = HA(Xy, Fix,)-
Thereforehz(Xy, F|x,) is constant by (b). Finally
WO(Xy, Fix,) = B3(Xy, Fix, ®wx,) = WXy, (F* @ wx)|x,)

is constant by applying the same argumenftoR wx.

2. The main theorem
In this section we prove the main result of this note:

THEOREM 2.1LetX be a3-dimensional compact complex manifold witX ) =
Oanda(X) > 0. LetB be a vector bundle oX . Then

(1) H(X,B ® M) =0 fori > 0and M e Pic’(X) generic

(2) x(X,B® M) =0 for all M € Pi®(X).

(3) e3(X) = 0, i.e. eitherb1(X) = 0 and b3(X) = 2 or b1(X) = 1 and
b3(X) = 0.

Proof. First notice that (2) and (3) follow from (1). In fact, by (1) we have
x(X,BM)=0

for genericM and thus the same holds for A by Riemann-Roch and the equality
¢j(B) = ¢j(B ® M). For (3), we apply (2) ta3 = Ty and get

X(X, Tx) = 0
Now, sinceH?(X,R) = H*(X,R) = 0, we have:1(X) = c2(X) = 0, hence
0= x(X,Tx) = 3¢3(X)

by Riemann-Roch.

So it suffices to prove (1). Moreover by Serre duality we only need to prove the
vanishing fori = 0 andi = 2.

In casei = 0 we observe that there are nonzero effective divisor&dsince
a(X) > 0) and we can apply (1.3) to get the claim.

So leti = 2. Letg: X - - -~ P; be a nonconstant meromorphic function. Let
o: X — X be a resolution of the indeterminaciesgoénd letf: X — C be the
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Stein factorisation of the holomorphic majp g. Fix an ample divisod on C and
let £ be the line bundle oX determined by

[H(A) =a"(£) ® Ox(=E) (@)

with a suitable effective divisoF supported on the exceptional setofWe need
to exhibit a line bundleM € Pic®(X) with

H*(X,B® M) =0.

We shall distinguish two cases according to whether the indeterminacy locus of
g is empty or not.

We start treating the case thgits not holomorphic. First note that the canonical
map

H%(X,B® M) = H*(X,0*(B® M))

is injective. This is obvious from the Leray spectral sequence. Hence it is sufficient
to show

H*(X,0*(B® M)) =0. (%)
Actually for (x) we only need
H*(X,0*(B® M)(~tE)) =0 ()
for somet > 0. To verify that(x*) implies (), consider the exact sequence
H%(X,0*(B® M)(—tE)) — H?*(X,0*(B® M))
— H?(tE,0*(B® M))

and note thatf?(tE, o* (B ® M)) = 0. This last vanishing is seen as follows: let
A, be the complex subspace &fdefined by the ideal sheaf (—¢F), then

H*(tE,o*(B® M)) = H*(A;, B® M) =0

since dim4; = 1.

We make the ansat&t = £'** with ¢ andk to be determined; of course we
need to prove the vanishing only for oné by semi-continuity. Using the Leray
spectral sequence fgrt X — C, (xx) comes down to

H(C,R'f.(c"(B® L") ® t4) =0 (%)

forp+ ¢ = 2, and large, k. Forq = 2, (xxx) is obvious and fog = 1 it follows
from Serre’s vanishing theorem fors>> 0. So letg = 0. We need to see that

F =R*f.(0*(B® L") =0.
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SinceF is locally free by (1.5), it suffices tha|» = O for the general fibef” of
f and largek. But this follows from (1.1), the effective divisd?» being nonzero:

H?(F,0*(B ® LF)) ~ H)(F,0*(B*) @ Kr ® Op(—kE)) = 0.

If g is holomorphic, i.e. we may take= id, so thatf = g, this argument does not
work sinceE = 0. Here we have to replac&** by a different line bundle. First
note that

H°(C,R?*f.(B) ® (~tA)) = 0 (+)
for ¢ sufficiently large. We claim that this implies
HY(C,R?*f.(B®M)) =0 (++)

for generalM € Pic®(X). LetW = HY(X, Ox). Then every element if’ is
represented as a topologically trivial line bundle.

Consider locally the universal bundle on X x W . LetF = f xid: X x W —
C x W andB = pri (B). The coherent shed?F, (B ® M) satisfies

R?F,(B® M)|c x {t} ~ R*f.(B® M,),

whereM, is the line bundle correspondingte W. Choosen >> 0 andio such
that f*(A~™) = M,,. This is possible sincg(X) = 0. By (+) we have

H(C, R%f.(B ® My,)) = 0.

Hence itis sufficientto show th&¥ F, (B® M) is flat with respect to the projection
q.C x W — W, over a Zariski open set di/, then the usual semi-continuity
theorem gives the claim (2). NoR?f, (B ® M,) is locally free onC' = C x ¢ for
everyt by (1.5), hence it is clear that there is a Zariski operlset W such that
R?F,(B ® M) has constant rank ovéF, hence is locally free ovel (observe
just that the set where the rank of a coherent sheaf is not minimal is analytic). This
proves(++).

On the other hand we have for > 0 by Serre’s vanishing theorem

HYC,Rf.(B) ® A™) = 0.
In the same way as above we conclude that
HY(C,R'f.(B®M)) =0

for generalM € W.

https://doi.org/10.1023/A:1000313214795 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000313214795

COMPACT COMPLEX THREEFOLDS WITH VANISHING SECOND BETTI NUMBER 83

By the Leray spectral sequence we therefore again oBfa{iX, B ® M) = 0
for generalM. This finishes the proof of the theorem.

COROLLARY 2.2.Let X be a compact complex threefold homeomorphic to the
sphereS®. Then every meromorphic function &his constant.
Proof. Note thate(X) = xtop(S®) = 2 and apply (2.1).

Next we give examples of threefolds witl.X') > 0,b2(X) = 0ande3(X) =0
so that the Main Theorem (2.1) is sharp.

EXAMPLE 2.3. The so-called Calabi-Eckmann threefolds are compact threefolds
homeomorphictd® x S3, see [Ue75]. They can be realized as elliptic fiber bundles
overP; x P;. Hencea(X) = 2,b1(X) = bp(X) = 0 andbz(X) = 2.

We now show that Calabi-Eckmann manifolds can be deformed to achieve
a(X) =1ora(X) = 0andb; = by = 0,b3 = 2. We choose positive real numbers
a,b,candletB = C? \ {(0,0)}. We define the following action af on B x B:

(t,z,y,u,v) — (exp(t)z, explat)y, exp(ibt)u, exp(ict)v).

One checks easily that this action is holomorphic, free and almost proper so that
the quotientX exists and is a compact manifold.df= 1 andb = ¢, thenX is a
Calabi-Eckmann manifold. If howeverg Q andb = cresp.a ¢ Q andg Z Q,
thena(X) = 1 respa(X) = 0.

EXAMPLE 2.4. Hopf threefolds of the form

€\ {(0,0,0)}/z,

with the action ofz. ~ {\*; k € 7} being defined by

Az, y,2) = (azx, By, v2),  0<lal,|B], |1y <1

are homeomorphic t6* x $°. They have:(X) = 0,1 or 2 anch;(X) = 1, while
b2(X) = b3(X) = 0. This realizes the other possibility for the péik, b3) when
b, = 0 anda(X) > 0, as stated in the Main Theorem.

Notice that the algebraic reduction is holomorphic in (2.3) but it is not holo-
morphic in (2.4) ifa(X) = 1.

EXAMPLE 2.5. We finally give other examples of compact threefaldswvith
a(X) =0andby = by = 0,b3 = 2. LetI" C SI(2,C) be a torsion free cocompact
lattice in such a way that the quotiekit:= Sl(2,C) /" hasbi(X) = 0.

This last condition is not automatic. L&t = SU(2)\ SI(2,C)/T’; thenY is
a compact differentiable manifold admitting a differentiable fibrattoX — Y
with S3 is fiber. Sinceb;(X) = 0, we also havé,(Y) = 0, hence,(Y) = 0 by
Poincae duality. Now the Leray spectral sequence immediately dives) = 0,
the fibers ofr being 3-sphere$s(X) = 2 is again clear from the Leray spectral
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sequence. Finally the fact thaf does not carry any nonconstant meromorphic
function results from [HM83] from which we even deduce tiatloes not carry
any hypersurface (a¥ is homogeneous).

3. On the finer structure of threefolds with b,(X) = 0anda(X) =1

In this section we investigate more closely threefoKswith b,(X) = 0 and
algebraic dimension 1. By construction, the algebraic redugtioti - - ~ V is a
meromorphic map to a normal projective variety, helcis a nonsingular curve.
We claim thatV must be rational. In fact, we havg(X) < 1 by 2.1 (3); on
the other hand, for every holomorphic 1-formon V, the pull-backf*u is ad-
closed holomorphic 1-form of, thusb(X') > 2. ThereforeV is rational. In this
section we restrict ourselves to the case when the algebraic redyction- V
is holomorphic. The key to our investigations is

THEOREM 3.1.Let F' be a general smooth fiber gf. Then the restriction
r: HY(X,0x) — HY(F,Or) is surjective.

We need some preparations for the proof of (3.1). MetC V' be a finite
non emptyset such that = f~1(A) c X contains all singular fibers of. Let
V=V \A, andX’' = f~1(V’) so thatf’ = fix+ is a smooth fibration. LeD;,
1 < i < r be the irreducible components dfand lets = cardA be the number of
connected components df Furthermore we set= b,(F') whereF is the general
smooth fiber off. For a noncompact space we letb;(Z) = dimH;(Z,R),
whatever this dimension is. We prepare the proof of (3.1) by three lemmas.

LEMMA 3.2. (1) The natural exact sequence of groups
1= 7T2(V’) — 7T1(F) — 7T1(X’) — 71'1(V/) —1

is exact angnon-canonically split.

Q) b1 (X)) =b1 (V') + b1(F)=s—1+1t.

B)r=s—1+1t—bi(X).

Proof. (1) SinceV"’ is a non-compact Riemann surfaeg(V’) is a free group
of s — 1 generators and sind€ is uniformized by eithe€ or by the unit disc, we
haver,(V') = 1. Hence the exact homotopy sequence of the fibratiok’ — V'
gives the exact sequence of groups stated in (1). Sindé’) is a free group, the
sequence splits.

(2) From (1) we deduce that

Hl(XI, Z) ~ Hl(VI, Z) D Hl(F, Z).
Moreover f,: m1(X) — m1(V) is surjective since the fibers ¢f are connected.

Hence (2) follows.
(3) The cohomology sequence with rational coefficients of the(paid) gives
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0= HYX) —» H¥A) - H>(X,A) - H>(X) —» H°(A) = 0.

By duality we haveH>(X, A) ~ Hy(X') and H>(X) ~ Hy(X). Hencer =
dim H4(A) = b1(X') — b1(X) = s — 1+t — by(X) by (2), as claimed.

Now choose an integen > 0 such that;(Ox (mD;)) = 0in H?(X,Z) for
all1 <i < r. Let@ Z[mD;] ~ Z" be the free abelian group generatedhp;,
1<i < r,and letp: @ Z[mD;] — Pi®(X) be given by sendin® = 3, a;mD;
to O)((D)

LEMMA3.3.LetK = Ker¢pandl = Im¢. Thenk K < s—1andrkl > r—s+1.

Proof.The kernelK consists of all divisor® suchthatD x (D) ~ Oy, i.e. such
thatD is the divisor of a global meromorphic functioron X. As f: X — Visthe
algebraic reduction ok , there must exista meromorphic functioon V' such that
h = ho f. Now, the divisorD of i has degree 0 and supportd= {1, ..., z}.
This implies thatK is contained inf*(Pic®(A)). As Pi@(A) ~ 71, the claim
follows.

The last ingredient in the proof of (3.1) is provided by

LEMMA 3.4. The restriction mape: HY(X,Ox) — HY(X',Ox-) is injective.
Proof. The Leray spectral sequences of the fibratipn¥ — V andf’: X’ —
V' yield a commutative diagram

0= HYV,0y) —L HY(X,0x) —=—+ BV, Rf.0x) —— H3(V,0y) =0
0=HY\V' 0p) — HYX',0x) == H'(V',R*flOx') — H?*(V',0y) =0,
and sinceR'f, O is locally free by (1.5), we conclude thatis injective.

(e}

We are now able to finish the proof of (3.1). R

Consider agaitf C Pic®(X), the image ofy: @ Z[mD;] — Pic°(X), and letl
be the inverse image dfunder the natural mag*(X, Ox) — Pic®(X). We have
a commutative diagram

HY(X,2) HY(X',2) — "~ BOV',R*flz) —— HY(F,7)

0

Y

I c HY(X,0x) =2+ HY(X',0x/) 2+ HO(V', RYf10x:) -1+ HY(F,Op)

Y

I C Hl(X,O}) —&> Hl(Xlao}’)a
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where the two vertical sequences are exponential exact sequenardi are
restriction maps fronX to X', 8 and3* arise from the spectral sequence, and
~% are restriction maps to a generic fidérWe get

kI =rkI+rk HYX,Z)>r—s+1+by(X) =t
by 3.3 and 3.2 (3). Nowk(I) = 0, sincea(Ox(mD;)) = Ox/(mD;)) ~ Ox:
for all 4. It follows that«(I) is contained in the image &, thusé—*(a(I)) C
H(X',7) has rank

k(0 (D)) > rka(l) > kI >t

thanks to the injectivity of. Moreover,R! f/ 7 is a locally constant system of rank
rk HY(F,7) = t, henceH°(V', R f/7) has rank at most On the other hand, &

is an isomorphism and k(1) > ¢, we see thas?(6~1(«(I))) has rank at least
Thereforey” o 5%(0~1(«(1))) is of finite index inH(F, z). SinceH(F, Or) is
the complex linear span of the image Bt (F, ), we see tha o 3 o (1) also
generategl}(F, Or). In particular, the restriction maig* (X, Ox) — H(F,Or)
must be surjective. This concludes the proof of (3.1).

(3.5) We now study the structure of the smooth fiéisf f. The exact sequence
0—=Tr — (Tx)jr = O(F)jrp =0

and the equality, (O(F)) = 0in H2(X, R) imply
ci(F) = c1(X)p =0, c2(F) = c2(X)p =0

in particular we also havg(F, Or) = 0. We conclude from the classification of
surfaces thaF’ is one of the following: a Hopf surface, an Inoue surface, a Kodaira
surface (primary or secondary), atorus or a hyperelliptic surface (see e.g. [BPV84)).
By [Ka69] however,F' cannot be hyperelliptic. The reason is the existence of a
relative Albanese reduction in that case.

PROPOSITION 3.6The general fibe# of f cannot be a Kodaira surface nor a
Hopf surface with algebraic dimensidn

Proof. Let Fy be a fixed smooth fiber and assume thatis a Kodaira surface
or a Hopf surface withu(Fp) = 1. Letgo: Fo — Cp be ‘the’ algebraic reduction
which is an elliptic fiber bundle. Lefo = g§(Go) with Go very ample orCyo.

(1) There exists a line bundi& on X with £z, = Lo.

Proof. By passing to some powety' if necessary, we have(L£o) = 0 in
H?(X,Z7).Let

A HY(X,Ox) — Pig(X)
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and
.yl ;
Ao H (Fo, OFO) — PIC(Fo)

be the canonical maps, and teti'(X,0x) — H(Fo, O,) be the restriction
map. Chooser € H(Fp, Op,) with X\2(«) = Lo. Sincer is surjective by (3.2),
we find 8 € HY(X, Ox) with 7(8) = a.. Now let£ = \1(B).

(2) Let " be any smooth fiber of. Thenx (L r) = 1. In fact, it follows from
the local freeness d’ f, (L) stated in Lemma 1.5 that

Fo( L) gy = HO(F, LM),

whereF = f~1(y), see [BaSt76, Chap. 3, 3.10].
(3) From the generically surjective morphism

frf(Lm) = £,
(m > 0), we obtain a meromorphic map

g:X -~ P(fu(L™)),

which, restricted td¥ is holomorphic and just gives the algebraic reductiorof
Let Z be the closure of the image ¢f Thenf factors via the meromorphic map
h1: X - - -» Z and the holomorphic maiy,: Z — V. Now h; is the restriction of
the canonical projectioR(f,(£™)) — V, thereforeh, is a projective morphism
andZ is projective. Hence(X) > 2, contradiction.

From (3.6) it follows that” can only be an Inoue surface, a Hopf surface without
meromorphic functions or a torus. In order to exclude by a similar method as in
(3.6) also tori of algebraic dimension 1, we would need the existence of a relative

algebraic reduction (the analogueigf X - - -~ Z) in that case, too.
We now look more closely to the structure fof

PROPOSITION 3.7Assume thaF' is not a torus. Then
(1) R'f.(Ox) = Oy,

(2) R?f.(Ox) =0,

(3) dmHY(X,0x) = 1,

(4) H*(X,0x) = H3(X,0x) = 0.

Proof. (2) SinceH?(F, Or) = 0, the sheaR?f,(Ox) is torsion, hence iden-
tically zero by 1.5. TherZ3(X, Ox) = 0 is immediate from the Leray spectral
sequence.

(1) Sinceh!(F,Or) = 1, R*f.(Ox) is a line bundle orv. Let

d = degR'f.(Ox).
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Then Riemann-Roch giveg(k'f,(Ox)) = d + 1. On the other hand the Leray
spectral sequence together Wit (X, Ox) = 0 and (2) yields

X(R'f.(0x)) = W' (Ox) — h*(Ox) = —x(Ox) + 1.

We concludel = —x(Ox) = 0. This proves (1). Now (3) and the second part of
(4) are obvious.

Remark3.8. In casé is a torus,R' f,(Ox) is a rank 2 bundle an®?f, (Ox)
is a line bundle. Using Theorem 3.1 it is easy to see that

(1) RYf.(Ox) = O(a) ® O(b) with a,b > 0,
(2) R?f.(Ox) = O(a +b).
Note that (2) gives dually.(wx|i-) = O(—a — b). Usually one expects the degree

of fi(wxv) to be semi-positive, but here we are in a highly na@iiler situation
where it might happen that the above degree is negative, see [Ue87].

PROPOSITION 3.9Assume thaf is not a torus. Ther%(X, Q%) = 0, 1 <
i< 3.

Proof.For: = 3 the claim follows already from 3.7 (4) and Serre duality.

(1) First we treat the case= 1. Letw be a holomorphic 1-form. Let ' — X
be the inclusion. Theyi*(w) = 0, hence at least locally neBrwe havev = f*(n),
hence d = 0 nearF and therefore the holomorphic 2-fornw ds identically
zero onX. Now the space of closed holomorphic 1-forms can be identified with
HO(X,dOx) and, as it is well known (see e.g. [Ue75]), we have the inequality

2h0(X,dOx) < bi(X).

The inequalityb; (X) < 1 impliesh®(X, Q%) = h(X,dOx) = 0, as desired.

(2) In casei = 2, we again havg*(w) = 0. LetU be a small open set i
such thatf| ;-1(;) is smooth. Let be a coordinate off andh = f*(z). Then we
conclude that

w|f_1(U) =dh N«
with some relative holomorphic 1-forme € H°(f~*(U),Q%/). Now again
7*(«) = 0 and thereforex = 0,w = 0.

COROLLARY 3.10.Assume thaf’ is not a torus. Then eithef*(Qk/V) =0or

there exists some € V such thatf*(Qﬁ(/V) = C;, i.e. a sheaf supported on

with a1-dimensional stalk at. In particular f has at most one singular fiber and

such a fiber is normal with exactly one singularity of embedding dimesion
Proof. Consider the exact sequence

0— f5(Qy) = Q% — Q%) = 0.

https://doi.org/10.1023/A:1000313214795 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000313214795

COMPACT COMPLEX THREEFOLDS WITH VANISHING SECOND BETTI NUMBER 89

SinceF has no holomorphic 1-form$’*(Q§(/V) is a torsion sheaf on the curve
The corollary will follow if we check that®(V, £..(% y)) = h%(X, Q%)) < 1.
Now, observe the following facts.

(1) H(X, Q%) = 0, by (3.9);

(2) HY(X, f*(9})) = HY(V, Q1) by Leray’s spectral sequence and the equalities
Rif.(f*0}) = Rif.(Ox) ® QF = O}, i = 0,1 (cf. 3.7 (1));

(3) dmHY(V,0}) = 1.

Then, taking cohomology groups in the first exact sequence, we get the desired
inequality

hO(X,0%y) <AV, QF) = 1.

We can say something more about the structure of the singular fibgrs of

PROPOSITION 3.11Assume thaf#" is not a torus. Letd be a union of fibers
containing all singular fibers off. Lets = card f(A)) and r the number of
irreducible components od. Thenr = s, i.e. all fibers off are irreducible and
b1 (X) =0.

Proof. SinceF' is an Inoue surface or a Hopf surface, we hayé’) = 1, thus
3.2 (3) impliesr = s — b1(X). Asr > s, we must have = s andb, (X ) = 0.

Remarl3.12. In casé’ is a torus, 3.2 (3) implies = s + 3— b1(X) > s+ 2.
It seems rather reasonable to expect that tori actually cannot appear as fipers of
Observe thaf must have a singular fiber in this case becausex»fs. So a study
of the singular fibers is needed to exclude tori as fibers. dlowever there is a
significant difference: the case of tori is one (in fact the only one) wiigiemight
fail, see [Ue87].

PROPOSITION 3.13Assume thafF is not a torus. Theh!! = p12 = B2 = 1
(so that we know all Hodge numbersXj.

Proof. (1) h¥? = h?1 is of course Serre duality.

(2) By (3.9) andy(X, Q%) = 0 it suffices to se&'® = 0 in order to get
ht1 = h12, But this follows again from Serre duality and the equalif® =
hO(X,0%) = 0.

(3) From the exact sequence

0— f5(Qf) = Q% = Q%) = 0 (S)

we deduce that it suffices to show

(@) K2(X. /(@) =1,
(b) h3(X, 0% ,)) = O,

in order to get1? < 1.
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(@) By the Leray spectral sequence and (3.7) we ha(eX, f*(Q3)) =
WV, Q) = 1.

(b) Again we argue by the Leray spectral sequence. ﬁh’qé(Q}Y/V) is a
torsion sheaf, we need only to show that

sz*(Q}\’/V) =0.

In fact, taking the direct imagg, of (S), we see thasz*(Qﬁ(/V) is a quotient of
R2f.(Q%) which is 0 by the equality7?(F, Q%) = HO(F, Q1) = 0 and by (1.5).

(4) We finally showr ! # 0 to conclude the proof. Lét?-7) be the Folicher
spectral sequence al. Sincebi(X) = 0 by (3.11), we gett%:! = 0. Hence
E9' = 0. On the other hand

Eyt = Kerd: Byt — E.

SinceE}"? = HP4(X), we conclude that/1(X, Ox) injects intoH>(X). So by
(3.7)HY(X) #0.

We finally collect all our knowledge in the case the general fibef i not a
torus.

THEOREM 3.14.Let X be a smooth compact threefold with(X) = 0 and
holomorphic algebraic reductiofi: X — V' to the smooth curv&. Assume that
the general smooth fiber is not a torus. Then

(1) ba(X) = 0, b3(X) = 2.

(2) Any smooth fiber of is a Hopf surface without meromorphic functions or an
Inoue surface

(3) The Hodge numbers oX are as follows K% = 0, K% = 0, K20 = 0O,
htl =1,1h%2 = 0,h%0 = 0, h?1 = 1 (the others are determined by these via
Serre duality.

(4) All fibers of f are irreducible. There is at most one normal singular fiber
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