
J. Appl. Prob. 43, 195–207 (2006)
Printed in Israel

© Applied Probability Trust 2006

ON A CONTINUOUS-STATE
POPULATION-SIZE-DEPENDENT
BRANCHING PROCESS
AND ITS EXTINCTION

YUQIANG LI,∗ Beijing Normal University

Abstract

A continuous-state population-size-dependent branching process {Xt } is a modification
of the Jiřina process. We prove that such a process arises as the limit of a sequence of
suitably scaled population-size-dependent branching processes with discrete states. The
extinction problem for the population Xt is discussed, and the limit distribution of Xt/t

obtained when Xt tends to infinity.
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1. Introduction

A time-homogeneous, nonnegative integer-valued Markov chain {X(t), t = 0, 1, . . . } is
called a population-size-dependent branching process (PSDBP) with discrete states if its tran-
sition probabilities are given by

E[sX(t+1) | X(t) = k] = f (k, s)k, k = 0, 1, . . . ,

where 0 ≤ s ≤ 1 and

f (k, s) =
∞∑

j=0

kpj s
j , with kpj ≥ 0 such that

∞∑
j=0

kpj = 1, k = 0, 1, . . . ,

is a family of probability generating functions governing the reproduction (see, e.g. [3] and
[8]). In this paper, we call f (k, s) the reproduction generating function of {X(t)}. Compared
with the classical Galton–Watson process (see, e.g. [1]), the PSDBP takes into account the fact
that the reproductive behavior may depend on the current size of the population. This process
has been studied by a number of authors and has been applied in a variety of contexts. In
a series of papers, Klebaner [8], [9], [10] studied the extinction problem of the process and
the convergence of X(t)/C(t) as t → ∞, for suitable normalizing constants C(t). Jagers
[4] gave sufficient conditions for exponent growth for general branching processes, and as a
corollary obtained the corresponding results for the PSDBP. Lu and Jagers [15] and Wang [18],
[19] studied PSDBPs in random environments. See [5], [7], and [11] for more results on the
discrete-state PSDBP.
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196 Y. LI

In this paper, we study a continuous-state version of the PSDBP. Let

{Xn(t), t = 0, 1, . . . }

be a sequence of PSDBPs. We prove that, under suitable assumptions, the finite-dimensional
distributions of {Xn(t)/n}, n = 1, 2, . . . , converge to those of a [0, ∞)-valued Markov process
{Y (t)}, as n → ∞. We also discuss the extinction problem for {Y (t)} and the limiting behavior
of Y (t)/t as t → ∞. The process {Y (t)} is the so-called continuous-state PSDBP, defined as
follows.

A time-homogeneous Markov process {Y (t), t = 0, 1, . . . } with state space [0, ∞) is
called a continuous-state PSDBP if the Laplace transform of its one-step transition probability
P(x, dy) is given by ∫

[0,∞)

e−λyP (x, dy) = exp{−xF(x, λ)}, (1.1)

where

F(x, λ) = β(x)λ +
∫

(0,∞)

(1 − e−λu)ν(x, du), (1.2)

with β(x) a nonnegative Borel function on [0, ∞) and (1 ∧ s)ν(x, ds) a finite kernel from
[0, ∞) to (0, ∞). In particular, if β(x) ≡ β and ν(x, ds) ≡ ν(ds) are both independent of
x ∈ [0, ∞), the process {Y (t)} degenerates to the classical Jiřina process (see, e.g. [6] and
[17]). Thus, we can regard {Y (t)} as a modification of the Jiřina process whose reproductive
behavior depends on the size of the population. Obviously, for each x ∈ [0, ∞),

∫
[0,∞)

e−λyQ(x, dy) = exp{−F(x, λ)}, (1.3)

defines an infinitely divisible probability measure Q(x, dy). In view of (1.1) and (1.3), we have

P(x, ·) = Q(x, ·)x,

where the right-hand side denotes the x-fold convolution introduced in [16, p. 35]. We shall call
the function F(x, λ) defined by (1.2) the reproduction cumulative function (RCF) of {Y (t)}.

The continuous-state PSDBP can be used to model a number of biological situations and
chemical reactions. For example, for some bacteria whose reproduction depends on their
concentration in the medium, it is suitable to describe the change of the concentration using a
continuous-state PSDBP. See [9], [12], and the references therein for more examples.

In the remainder of the paper, we write N = {0, 1, . . . } and N+ = {1, 2, . . . }. For each
n ∈ N+, let {Xn(t)}t∈N be a discrete-state PSDBP with reproduction generating function
fn(k, s). Then Yn(t) = n−1Xn(t) defines a Markov chain {Yn(t)}t∈N on Qn := {k/n, k ∈ N}.
For any in ∈ Qn, let

Fn(in, λ) = n[1 − fn(nin, 1 − λ/n)], λ ≤ n. (1.4)

In Section 2, we show that the continuous-state PSDBP arises as the limit of a sequence of
suitably scaled PSDBPs with discrete states. In Section 3, we discuss the extinction problem
and prove a limit theorem for the continuous-state PSDBP.
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2. The sequential limit theorems of the discrete-state PSDBP

In this section, we discuss the relation between the discrete-state PSDBP and the continuous-
state PSDBP (see Theorems 2.1–2.2). At the end of the section we give two examples to illustrate
the theorems.

Proposition 2.1. Let Fn(x, λ) be defined by (1.4) and let F(x, λ) be a continuous function of
(x, λ) ∈ [0, ∞) × [0, ∞). Suppose that

(A1) for any in, Qn 	 in → x, we have Fn(in, λ) → F(x, λ) as n → ∞.

Then F(x, λ) is the RCF of a continuous-state PSDBP.

Proof. It is sufficient to prove that F(x, λ) has the representation (1.2). Since F(x, 0) =
limn→∞ Fn(in, 0) = 0, for any x ∈ [0, ∞) we may apply Corollary 2 of [13] to obtain the
representation

F(x, λ) =
∫

[0,∞)

(1 − e−λu)(1 − e−u)−1G(x, du), (2.1)

where G(x, du) is a finite measure on [0, ∞) and the value of the integrand at u = 0 is defined
as λ. Clearly, the representation (2.1) can be written as (1.2) with β(x) = G(x, {0}) ≥ 0 and
ν(x, du) = (1 − e−u)−1G(x, du). It follows that

∫
(0,∞)

(1 ∧ u)ν(x, du) < ∞.

By the continuity assumption on F(x, λ), the measure G(x, ·) depends continuously on x ∈
[0, ∞), by the weak convergence topology. In particular, G(x, du) is a kernel from [0, ∞) to
[0, ∞). Then β(·) is a measurable function on [0, ∞) and ν(x, du) is a kernel from [0, ∞) to
(0, ∞).

Lemma 2.1. Under the conditions of Proposition 2.1, assume in addition that

(A2) for any in, Qn 	 in → x, we have f ′
n(nin, 1−)/n → 0 as n → ∞, where f ′

n(k, s) =
dfn(k, s)/ds.

Then
Hn(in, λ) := −n log fn(nin, e−λ/n) → F(x, λ) (2.2)

as n → ∞.

Proof. The assumption implies that fn(nin, 1 − λ/n) → 1. By the mean value theorem,
we have

0 ≤ |Hn(in, λ) − nlogfn(nin, 1 − λ/n)|

≤ n|fn(nin, e−λ/n) − fn(nin, 1 − λ/n)|
fn(nin, 1 − λ/n)

≤ nf ′
n(nin, 1−)|e−λ/n − 1 + λ/n|

fn(nin, 1 − λ/n)
,

where the right-hand side goes to 0 because f ′
n(nin, 1−)/n → 0. Consequently,

|Hn(in, λ) − nlogfn(nin, 1 − λ/n)| → 0. (2.3)
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By using a Taylor expansion, we find that there is a constant θn ∈ (fn(nin, 1 − λ/n), 1) such
that

logfn(nin, 1 − λ/n) = fn(nin, 1 − λ/n) − 1 − 1
2θ−2

n [fn(nin, 1 − λ/n) − 1]2.

It follows that

lim
n→∞ nlogfn(nin, 1 − λ/n) = lim

n→∞ n[fn(nin, 1 − λ/n) − 1] = −F(x, λ). (2.4)

By combining (2.3) with (2.4) we obtain the desired result.

Theorem 2.1. Suppose that conditions (A1) and (A2) hold, and that the distribution of Yn(0)

converges weakly to some distribution µ on [0, ∞) as n → ∞. The finite-dimensional
distributions of {Yn(t)} then converge to those of a continuous-state PSDBP {Y (t)} with RCF
F(x, λ) and initial distribution µ.

Proof. By the Kolmogorov existence theorem, we can construct a Markov process {Y (t)}t∈N

on [0, ∞) with initial distribution µ and one-step transition probability P(x, dy) characterized
by (1.1). Let ‘

d−→’ denote convergence in distribution. By assumption, we have Yn(0)
d−→ Y (0).

In the sequel, we assume that (Yn(0), . . . , Yn(m))
d−→ (Y (0), . . . , Y (m)) and prove that

(Yn(0), . . . , Yn(m + 1))
d−→ (Y (0), . . . , Y (m + 1)),

from which the theorem follows by induction.
It is sufficient to show that, for every λi ≥ 0, i = 0, 1, . . . , m + 1,

E

[
exp

{
−

m+1∑
i=0

λiYn(i)

}]
→ E

[
exp

{
−

m+1∑
i=0

λiY (i)

}]
(2.5)

for every λi ≥ 0. Since Yn(t) = Xn(t)/n, for any in ∈ Qn we have

E[exp{−λm+1Yn(m + 1)} | Yn(m) = in]
= E[exp{−λm+1X

(n)(m + 1)/n} | Xn(m) = nin]
= [fn(nin, e−λm+1/n)]nin

= exp{−inHn(in, λm+1)}, (2.6)

where Hn(·, ·) is defined by (2.2). Let F (n)
m = σ({Yn(0), Yn(1), . . . , Yn(m)}). From (2.6) and

the Markov property, we obtain

E

[
exp

{
−

m+1∑
i=0

λiYn(i)

}]
= E

[
exp

{
−

m∑
i=0

λiYn(i)

}
exp{−Yn(m)Hn(Yn(m), λm+1)}

]
. (2.7)

Since (Yn(0), . . . , Yn(m))
d−→ (Y (0), . . . , Y (m)), we can use the Skorokhod representation the-

orem (see [2, p. 102]) to construct random variables (Zn(0), . . . , Zn(m)) and (Z(0), . . . , Z(m))

such that
(Zn(0), . . . , Zn(m))

d= (Yn(0), . . . , Yn(m)),

(Z(0), . . . , Z(m))
d= (Y (0), . . . , Y (m)),

(2.8)
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and Zn(i) → Z(i) almost surely (a.s.) for every i = 0, 1, . . . , m, where ‘
d=’ means the related

random variables have identical distributions. Since P((Yn(0), . . . , Yn(m)) ∈ Qm+1
n ) = 1, we

have P((Zn(0), . . . , Zn(m)) ∈ Qm+1
n ) = 1. From (2.7) and (2.8), we obtain

E

[
exp

{
−

m+1∑
i=0

λiYn(i)

}]
= E

[
exp

{
−

m∑
i=0

λiZn(i)

}
exp{−Zn(m)Hn(Zn(m), λm+1)}

]
.

(2.9)
By Lemma 2.1 and the dominated convergence theorem, we see that the right-hand side of (2.9)
converges to

E

[
exp

{
−

m∑
i=0

λiZ(i)

}
exp{−Z(m)F(Z(m), λm+1)}

]

= E

[
exp

{
−

m∑
i=0

λiY (i)

}
exp{−Y (m)F(Y (m), λm+1)}

]

= E

[
exp

{
−

m+1∑
i=0

λiY (i)

}]
,

where the last equality follows from the Markov property of {Y (t)}. We thus obtain (2.5).

Proposition 2.2. Let F(x, λ) be a continuous RCF defined by (1.2). Suppose that one of the
following conditions holds.

(B1) For a sufficiently small δ > 0, we have∫
(0,∞)

(δ ∧ u)ν(x, du) ≤ e−β(x)

for all x ∈ [0, ∞).

(B2) The function

x �→ β(x) +
∫

(0,∞)

(1 ∧ u)ν(x, du)

is bounded on [0, ∞).

Then there exist probability generating functions {fn(i, ·)} such that condition (A1) is satisfied.

Proof. If condition (B1) is satisfied, we let

fn(i, s) = exp

{
β

(
i

n

)
(s − 1)

}
+ 1

n

∫
(0,∞)

(eun(s−1) − 1)ν

(
i

n
, du

)
. (2.10)

Then fn(i, 1) = 1 and

fn(i, 0) = exp

{
−β

(
i

n

)}
− 1

n

∫
(0,∞)

(1 − e−un)ν

(
i

n
, du

)

≥ exp

{
−β

(
i

n

)}
− 1

n

∫
(0,∞)

(1 ∧ un)ν

(
i

n
, du

)

= exp

{
−β

(
i

n

)}
−

∫
(0,∞)

(n−1 ∧ u)ν

(
i

n
, du

)
.
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It follows that fn(i, 0) ≥ 0 for sufficiently large n ≥ 1. On the other hand, fn(i, s) is clearly
analytic in s ∈ (−1, 1), with

dkfn(i, s)

dsk
= β

(
i

n

)k

exp

{
β

(
i

n

)
(s − 1)

}
+ nk−1

∫
(0,∞)

ukeun(s−1)ν

(
i

n
, du

)
≥ 0.

Thus, fn(i, s) is a probability generating function. Let Fn(in, λ) be defined by (1.4). It is easy
to check that

Fn(in, λ) = n(1 − e−β(in)λ/n) +
∫

(0,∞)

(1 − e−λu)ν(in, du)

= n[1 − β(in)λ/n − e−β(in)λ/n] + F(in, λ),

which converges to F(x, λ) if in → x.
If condition (B2) holds, we choose an integer

K > sup
x∈[0,∞)

[
β(x) +

∫
(0,∞)

(1 ∧ u)ν(x, du)

]
,

and let

hn(i, s) = 1 + β(i/n)

K
(s − 1) + 1

nK

∫
(0,∞)

(enu(s−1) − 1)ν

(
i

n
, du

)
. (2.11)

It is easy to check that hn(i, s) is a probability generating function and that, if in → x,

n

[
1 − hn

(
nin, 1 − λ

n

)]
= 1

K
F(in, λ) → 1

K
F(x, λ). (2.12)

Moreover, fn(i, s) := [hn(i, s)]K is also a probability generating function. Let Fn(in, λ) again
be defined by (1.4). By a Taylor expansion,

Fn(in, λ) = nK[1 − hn(nin, 1 − λ/n)] − 1
2nK(K − 1)ηK−2[hn(nin, 1 − λ/n) − 1]2,

where η ∈ (hn(nin, 1 − λ/n), 1). From (2.12) we have

lim
n→∞ Fn(in, λ) = lim

n→∞ nK[1 − hn(nin, 1 − λ/n)] = F(x, λ),

which completes the proof.

Remark 2.1. An analogue of condition (B2) was used in [14] in the study of the convergence
of branching particle systems to measure-valued processes. Although this condition is more
natural and easier to understand than condition (B1), it is not always satisfied, even in some
simple cases, as we will see in Example 2.1. We also remark that if

sup
x∈[0,∞)

[
β(x) +

∫
(0,∞)

ν(x, du)

]
< ∞,

then both (B1) and (B2) are satisfied.
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Proposition 2.3. Let F(x, λ) be a continuous RCF defined by (1.2), and assume that the
conditions of Proposition 2.2 hold. Suppose in addition that

(B3) the function x �→ ∫
(0,∞)

uν(x, du) is bounded on [0, ∞).

Then there exist probability generating functions {fn(i, ·)} such that conditions (A1) and (A2)
are satisfied.

Proof. By Proposition 2.2, there exists a family of probability generating functions {fn(i, ·)}
such that (A1) holds. If (B1) holds then fn(i, s) is defined by (2.10) and we have

f ′
n(nin, 1−) = β(in) +

∫
(0,∞)

uν(in, du).

We have the same equality if (B2) holds and fn(i, s) = hn(i, s)
K , with hn given by (2.11).

By (B3) and the continuity of F(x, λ), it follows that f ′
n(nin, 1−)/n → 0 for any in such that

Qn 	 in → x ∈ [0, ∞).

Theorem 2.1 and Proposition 2.3 imply the following result.

Theorem 2.2. Let {Y (t)} be a continuous-state PSDBP with continuous RCF F(x, λ) satisfying
the conditions of Proposition 2.3. Then there exists a sequence of discrete-state PSDBPs {Xn(t)}
such that the finite-dimensional distributions of {Xn(t)/n} converge to those of {Y (t)}.

Recall that a Jiřina process is the limit of a sequence of Galton–Watson processes (see, e.g.
[6]). Thus, the above theorems generalize the classical result in some sense. In the remainder
of this section, we give two examples to illustrate the theorems.

Example 2.1. Let {Xn(t)}t∈N be a sequence of discrete-state PSDBPs with reproduction dis-
tributions

kp
(n)
j = e−k/n(k/n)j

j ! , j ≥ 0.

Then

fn(k, s) =
∞∑

j=0

kp
(n)
j sj = exp

{
−k(1 − s)

n

}

and, as in → x, we have

Fn(in, λ) := n(1 − fn(nin, 1 − λ/n)) = n[1 − e−inλ/n] → xλ,

and f ′
n(nin, 1)/n = in/n → 0. Suppose that Xn(0) = n. Then Yn(0) = Xn(0)/n ≡ 1, and

Theorem 2.1 implies that the finite-dimensional distributions of {Yn(t)} converge to those of a
continuous-state PSDBP process {Y (t)} with RCF F(x, λ) = λx and Y (0) = 1. Clearly, the
limit process {Y (t)} is deterministic. It is not hard to see that condition (B1) holds for {Y (t)},
but condition (B2) does not hold.

Example 2.2. Let α ∈ (0, 1], β > 0, and γ > 0, with β ≤ 1 + γ . Let {Xn(t)}t∈N be a
sequence of discrete-state PSDBPs with reproduction distributions given by

kp
(n)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − βαk/n

1 + kγ
, j = 0,

βαk/n(kγ )j−1

(1 + kγ )j+1 , j > 0.
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Then

fn(k, s) =
∞∑

j=0

kp
(n)
j sj = 1 − βαk/n(1 − s)

1 + kγ − kγ s
.

If in → x, we have

Fn(in, λ) = βαinλ

1 + inγ λ
→ F(x, λ) := βαxλ

1 + γ λx
,

and

f ′
n(nin, 1−)

n
= βαin

n
→ 0.

By Theorem 2.1, if Yn(0) converges in distribution then the finite-dimensional distributions of
{Yn(t)} converge to those of a continuous-state PSDBP with RCF F(x, λ). It is not hard to
show that F(x, λ) has the decomposition (1.2) with β(x) = 0 and

ν(x, du) = βαx

γ 2x2 e−u/γ x du

for x > 0.

3. The extinction of the continuous-state PSDBP

In this section, we discuss the extinction problem for the continuous-state PSDBP {Yt }.
Since {Yt } has continuous states and its Laplace transform cannot be expressed explicitly, we
cannot infer that Yt tends to either 0 or ∞, as we do for the discrete-state PSDBP (see, e.g. [9])
and the classical continuous-state branching processes (see, e.g. [1]). However, we can still find
some interesting properties (see Theorems 3.1–3.3) of the extinction, under certain conditions.
We can also study the limit distribution of Yt/t as Yt tends to infinity (see Theorem 3.4).

Let {Yt }t∈N be a continuous-state PSDBP with RCF F(x, λ) and initial state Y0 = x0 ≥ 0.
Let

F (k)(x, λ) := dkF (x, λ)/dλk,

and write mk(x) = (−1)k−1F (k)(x, 0+) if the required derivative exists. Obviously, mk(x) ≥ 0
and

F(x, λ) ≤ m1(x)λ. (3.1)

Lemma 3.1. Suppose that mk(x) < Mk(x
(k−3)∨0 ∨ 1) for all x > 0 and k ∈ N+, where Mk is

a positive constant depending only on k. Then, for any k ≥ 3, there exists a positive constant
Ak such that

| E[{Yt+1 − m1(Yt )Yt }k | Yt ]| ≤ Ak(Y
k−2
t ∨ 1). (3.2)

Proof. We shall prove the inequality by induction on k. Note that

| E[{Yt+1 − m1(Yt )Yt }k | Yt ]| =
∣∣∣∣dk exp{Yt (λm1(Yt ) − F(Yt , λ))}

dλk

∣∣∣∣
λ=0+

. (3.3)

It is easy to show that

| E[{Yt+1 − m1(Yt )Yt }3 | Yt ]| = m3(Yt )Yt < M3Yt .
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Now suppose that (3.2) holds for all i, 3 ≤ i < k. From (3.3), by tedious calculations, we
obtain

| E[{Yt+1 − m1(Yt )Yt }k | Yt ]|

≤ Yt

k−3∑
j=2

(
k − 1

j − 1

)
mj(Yt )| E[{Yt+1 − m1(Yt )Yt }k−j | Yt ]|

+ Ytmk(Yt ) + (k − 1)(k − 2)

2
Y 2

t m2(Yt )mk−2(Yt )

≤
(

Mk +
k−3∑
j=2

(
k − 1

j − 1

)
MjAk−j + (k − 1)(k − 2)

2
M2Mk−2

)
(Y k−2

t ∨ 1), (3.4)

where the term containing the summation disappears if k = 4. Let

Ak = Mk +
k−3∑
j=2

(
k − 1

j − 1

)
MjAk−j + (k − 1)(k − 2)

2
M2Mk−2.

Then (3.2) follows from (3.4) for i = k.

Lemma 3.2. Under the assumption of Lemma 3.1, for any k ≥ 2 we have

E[Y k
t+1 | Yt ] = (m1(Yt )Yt )

k +
(

k

2

)
mk−2

1 (Yt )m2(Yt )Y
k−1
t + R(Yt , k), (3.5)

where

|R(Yt , k)| :=
∣∣∣∣

k∑
i=3

(
k

i

)
E[{Yt+1 − m1(Yt )Yt }i | Yt ](m1(Yt )Yt )

k−i

∣∣∣∣ (3.6)

< Bk(Y
k−2
t ∨ 1), for some Bk > 0.

Proof. When k = 2, we obtain (3.5) from

E[Y 2
t+1 | Yt ] = m2

1(Yt )Y
2
t + m2(Yt )Yt .

Note that, for k > 2,

E[Y k
t+1 | Yt ] = E[{Yt+1 − m1(Yt )Yt + m1(Yt )Yt }k | Yt ]

= (m1(Yt )Yt )
k +

(
k

2

)
mk−2

1 (Yt )m2(Yt )Y
k−1
t + R(Yt , k). (3.7)

Equations (3.2) and (3.6) imply that

|R(Yt , k)| ≤
k∑

i=3

(
k

i

)
AiM

k−i
1 (Y i−2

t ∨ 1)Y k−i
t ≤ (Y k−2

t ∨ 1)

k∑
i=3

(
k

i

)
AiM

k−i
1 . (3.8)

By combining (3.7) with (3.8), we recover (3.5) with

Bk =
k∑

i=3

(
k

i

)
AiM

k−i
1 ,

for all k > 1.
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Theorem 3.1. If supx∈(0,∞) m1(x) < 1 or m1(x) ↗ 1 as x → ∞, then Yt → 0 a.s.

Proof. Note that
E[Yt+1 | Yt ] = Ytm1(Yt ) ≤ Yt .

By the supermartingale convergence theorem, we know there exists a nonnegative integrable
random variable Y such that

Yt → Y a.s. (3.9)

Consider the following two cases.
Case 1. supx∈(0,∞) m1(x) < 1. Let m = supx∈(0,∞) m1(x) < 1. For any λ ≥ 0, by (3.1)

and the dominated convergence theorem we have

1 ≥ E[e−λY ] = lim
t→∞ E[e−λYt+1 ] = lim

t→∞ E[E[e−λYt+1 | Yt ]] = lim
t→∞ E[e−YtF (Yt ,λ)]

≥ lim
t→∞ E[e−mYtλ] ≥ lim

t→∞ E[e−m2Yt−1λ] ≥ · · · ≥ lim
t→∞ E[e−x0m

t+1λ] = 1,

which implies that Y = 0 a.s.
Case 2. m1(x) ↗ 1. There exists a δ(x) > 0 such that m1(x) + δ(x) ↗ 1. From (3.9) we

find that

n−1∏
i=0

[m1(Yi) + δ(Yi)] → 0 a.s.,

as n → ∞. Let

Xt = Yt∏t−1
i=0[m1(Yi) + δ(Yi)]

.

Obviously, Xt is a nonnegative supermartingale. There thus exists an integrable random variable
X such that Xt → X a.s. Hence, Yt = Xt

∏t−1
i=0[m1(Yi) + δ(Yi)] → 0 a.s.

Theorem 3.2. (i) Suppose that m̄ := infx∈(0,∞) m1(x) > 1 and m2(x) < M for some M > 0.
Then Yt → Y ∈ [0, ∞] a.s.

(ii) If β := infx∈(0,∞) β(x) > 1 and x0 > 0, then Yt → ∞ a.s.

(iii) If β̄ := supx∈(0,∞) β(x) < 1 and, as λ → ∞,

sup
x∈(0,∞)

∫
(0,∞)

(
1

λ
∧ u

)
ν(x, du) → 0, (3.10)

then there exist an r, 0 < r < 1, and a λ0, λ0 > 0, such that, for any λ ≥ λ0, we have

F(x, λ) ≤ rλ. (3.11)

(iv) If, for λ ≥ λ0 > 0, F(x, λ) satisfies (3.11), then Yt → Y ∈ [0, ∞] a.s.

Proof. (i) Since F (3)(x, λ) > 0, by a Taylor expansion it is easy to show that

F(x, λ) ≥ (m1(x) − 1
2m2(x)λ)λ. (3.12)

By combining (3.12) with the assumptions, we obtain

F(x, λ) ≥ αλ, (3.13)
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for a sufficiently small λ > 0 and some constant α > 1. From (3.13), we have

E[e−λYt+1 | Yt ] = e−YtF (Yt ,λ) ≤ e−αλYt ≤ e−λYt .

Thus, {e−λYt } is a nonnegative supermartingale. There exists a nonnegative random variable
X ∈ [0, 1] such that e−λYt → X a.s. Hence, Yt → Y = −λ−1logX ∈ [0, ∞] a.s.

(ii) Note that F(x, λ) ≥ β(x)λ ≥ βλ. By an argument similar to that used in proving (i), we
have

Yn → Y ∈ [0, ∞] a.s.

Now note that, for λ > 0,

0 ≤ E[e−λY ] = lim
t→∞ E[e−λYt+1 ] = lim

t→∞ E[E[e−λYt+1 | Yt ]] = lim
t→∞ E[e−YtF (Yt ,λ)]

≤ lim
t→∞ E[e−λYtβ ] ≤ lim

t→∞ E[e−λYt−1β
2 ] ≤ · · · ≤ lim

t→∞ E[e−x0β
t+1λ] = 0.

Thus, Y = ∞ a.s.

(iii) Since β̄ < 1, there exists a δ1 > 0 such that β̄ + δ1 < 1. From (3.10), there exists a λ0 > 0
such that, for λ ≥ λ0,

sup
x∈(0,∞)

∫
(0,∞)

(
1

λ
∧ u

)
ν(x, du) < δ1.

Thus, (3.11) holds for λ ≥ λ0.

(iv) Suppose that (3.11) holds for λ ≥ λ0 > 0. Then

E[e−λ0Yt+1 | Yt ] = e−YtF (Yt ,λ0) ≥ e−rλ0Yt ≥ e−λ0Yt .

Hence, there exists a random variable Y ∈ [0, ∞] such that Yt → Y a.s.

The main ideas of the following two theorems come from [9].

Theorem 3.3. If, for any x ≥ 0,

∫ ∞

0
e−xF(x,λ)−λ dλ ≤ 1

x + 1
,

then there exists a random variable Y such that Yt → Y a.s. and P{Y = 0} ≤ 1/(x0 + 1).

Proof. The proof is similar to that of Theorem 1.2 of [9]. We omit it here.

Remark 3.1. Theorem 3.1 and Theorem 3.2 discuss extinction for m1(x) < 1 and m1(x) > 1,
respectively. Theorem 3.3 gives a nontrivial upper bound for the extinction probability.

In the following we will consider the distribution of limt→∞ Yt/t when m1(x) → 1 as
x → ∞ (with m1(x) > 1) and Yt → ∞ as t → ∞. To this end we let ε(x) = m1(x) − 1 and
consider the following two conditions:

(E1) xε(x) = c + η(x), 0 < c < ∞, limx→∞ η(x) = 0,

(E2) limx→∞ m2(x) = σ 2, 0 < σ < ∞.

https://doi.org/10.1239/jap/1143936253 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1143936253


206 Y. LI

Theorem 3.4. Suppose that (E1) and (E2) hold. Under the assumption of Lemma 3.1, if
Yt → ∞ a.s., then the distribution of Yt/t converges to the �(r, α) distribution on [0, ∞),
where α = 2/σ 2 and r = 2c/σ 2; that is,

lim
t→∞ P{Yt/t ≤ x} =

∫ x

0

αr

�(r)
sr−1e−αs ds.

Proof. The proof is very similar to that of Theorem 1.5 of [9]. In the following we emphasize
the differences.

By the method of moments, we shall prove that

βk = lim
n→∞ E[(Yt/t)k] < ∞,

with β1 = c and, for k > 1,

βk = (c + 1
2 (k − 1)σ 2)βk−1.

We will use induction on k. For k = 1, by starting from (E1) and iterating, we find that

E[Yt ] = x0 + tc +
t−1∑
i=0

E[η(Yi)]. (3.14)

From (3.14) it is easy to obtain β1 = limt→∞ E[Yt/t] = c. Now suppose that, for all i ≤ k −1,
βi = limt→∞ E[(Yt/t)i] < ∞. Let α(k)

t = E[Y k
t ] and γ (x) = kη(x)+(

k
2

)
(σ 2 −m2(x)). Then,

by Lemma 3.2 and the argument in the proof of Theorem 1.5 of [9], we have

α
(k)
t+1 = α

(k)
t +

[
kc +

(
k

2

)
σ 2

]
α

(k−1)
t + E[Y k−1

t γ (Yt )] + E[Dt,k],

where Dt,k is a random variable such that |Dt,k| ≤ Ck(Y
k−2
t ∨ 1) for some positive constant

Ck . We point out that, in our case,

0 ≤ lim
t→∞ E[|Dt,k/tk−1|] ≤ Ck lim

t→∞(E[Y k−2
t /tk−1] + 1/tk−1) = 0.

The remainder of the proof is similar to that of Theorem 1.5 of [9].
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