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ON DEGENERATIONS OF MODULES WITH
NONDIRECTING INDECOMPOSABLE SUMMANDS

A. SKOWRONSKI AND G. ZWARA

ABSTRACT.  Let 4 be a finite dimensional associative K-algebra with an identity
over an algebraically closed field K, d a natural number, and mod () the affine va-
riety of d-dimensional 4-modules. The general linear group Gl,(K) acts on mod4(d)
by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional
modules. For M and N in mod4(d), N is called a degeneration of M, if N belongs to
the closure of the orbit of M. This defines a partial order <4, on mod, (d). There has
been a work [1], [10], [11], [21] connecting <4, With other partial orders <ey and
< on mod4(d) defined in terms of extensions and homomorphisms. In particular, it is
known that these partial orders coincide in the case A is representation-finite and its
Auslander-Reiten quiver is directed. We study degenerations of modules from the ad-
ditive categories given by connected components of the Auslander-Reiten quiver of 4
having oriented cycles. We show that the partial orders <ex;, <geg and < coincide on
modules from the additive categories of quasi-tubes [24], and describe minimal degen-
erations of such modules. Moreover, we show that M <4., N does not imply M e N
for some indecomposable modules M and N lying in coils in the sense of [4].

1. Introduction and main results. Throughout the paper K denotes a fixed alge-
braically closed field. By an algebra we mean an associative finite dimensional K-algebra
with an identity, and by an 4-module a finite dimensional (unital) right 4-module. We
shall denote by mod A the category of A-modules, by I the Auslander-Reiten quiver of
A, and by 74 the Auslander-Reiten translation in ['4.

In this article we are interested in geometric properties of modules with indecompos-
able summands in connected Auslander-Reiten components of a prescribed form. Let
A be an algebra with a basis a; = 1,a,,...,a, and the associated structure constants
a;i. For any natural number d we have the affine variety mod,(d) of d-dimensional 4-
modules consisting in n-tuples m = (m,,...,m,) of d X d matrices with coefficients in
K such that m is the identity matrix and m;m; = 3 myay;; for all indices i and j. The gen-
eral linear group Gl,(K) acts on mod,(d) by conjugation, and the orbits correspond to the
isomorphism classes of d-dimensional 4-modules (see [16]). We shall agree to identify
a d-dimensional A-module M with its isomorphism class, and with the point of mod,(d)
corresponding to it. Then one says that a module M in mod,(d) degenerates to a module
N in mod,(d), and writes M <y, N, if the Glz(K)-orbit O(N) of N is contained in the
closure O(M) of the Gl (K)-orbit O(M) of M in mod,(d). Thus <4eg 15 a partial order on
the set of isomorphism classes of d-dimensional A-modules. There has been an important
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work by S. Abeasis and A. del Fra [1], K. Bongartz [10], [11] and Ch. Riedtmann [21]
connecting <4ep With other partial orders <ex, <.ix and < on the isomorphism classes
in mod,(d) which are defined in terms of representation theory as follows:
o M < N: <= there are modules M;, U;, V; and short exact sequences 0 —
U — M — Vi— 0inmod4 suchthat M = M|, My, = UV, 1 <i<s,
and N = M, for some natural number s.
o M <,ix N: &= M P X <geg N @ X for some 4-module X.
e M < N: < [X,M] < [X, N] holds for all modules X.
Here and later on we abbreviate dimg Hom,(X, Y) by [X, Y]. Then for modules M and
N in mod,(d) the following implications hold:

MSextNiMSdegNiMSvinNiMSN

(see [10], [21]). Unfortunately, the reverse implications are not true in general, and it is
interesting to find out when they are. This is the case for all modules over representation-
finite algebras 4 with "4 directed, and hence for representations of Dynkin quivers [10],
[11]. Finally, for a module M in mod 4, we shall denote by [M] the image of M in the
Grothendieck group Koy(4) of A. Thus [M] = [N] if and only if M and N have the same
simple composition factors including the multiplicities. Observe that, if M and N have
the same dimension and M < N, then [M] = [N].

We are interested in the following problem. Let C be a family of connected compo-
nents of an Auslander-Reiten quiver I'y and add(C) the additive category of C. We may
ask when M <4, N for M and N in add((C) with [M] = [N]? For preprojective compo-
nents this problem has been investigated in [10]. In particular, it was shown in [10] that,
for C preprojective, the partial orders <ey; and < coincides on add((C). An important fea-
ture of preprojective components is that they consists of modules not lying on oriented
cycles of nonzero nonisomorphisms between indecomposable modules (directing mod-
ules [22]), and hence such modules are uniquely determined (up to isomorphism) by their
composition factors. Here, we are interested in degenerations of modules from add(C)
for connected components C of I'4 containing oriented cycles. Our interest in such com-
ponents is motivated by a result due to L. Peng —J. Xie [19] and the first named author
[25] saying that the Auslander-Reiten quiver I'y of any algebra 4 has at most finitely
many 74-orbits containing directing modules. A distinguished role in the representation
theory is played by components consisting of 74-periodic modules, called stable tubes
(see [13], [14], [15], [22], [26]), that is, components of the form ZA.,/(7), r > 1. In
[14] d’Este and Ringel investigated components, called (coherent) tubes, which can be
obtained from stable tubes by ray and coray insertions. In recent investigations of tame
simply connected algebras appeared a natural generalization of the notion of tube called
coil, introduced by 1. Assem and the first named author in [3], [4]. Roughly speaking
a coil is a translation quiver whose underlying topological space, modulo projective-
injective points, is homeomorphic to a crowned cylinder. Special types of coils are quasi-
tubes [24] whose underlying topological space, modulo projective-injective vertices, is
homeomorphic to a tube. It is shown in [4] that coils can be obtained from stable tubes
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by a sequence of admissible operations. Moreover, it was shown in [29] (see also [28])
that a strongly simply connected algebra 4 is (tame) of polynomial growth if and only
if every nondirecting indecomposable 4-module lies in a standard coil of a multicoil of
4. We note also that quasi-tubes frequently appear in the Auslander-Reiten quivers of
selfinjective algebras (see [24]). Recall that a component C of T'4 is called standard if the
full subcategory of mod 4 formed by modules from C is equivalent to the mesh-category
K(C) of C [12], [22].

Our first main result shows that the partial orders <cy;, <geg, <vir and < coincide on
the additive categories of quasi-tubes.

THEOREM 1. Let A be an algebra, C = (G)icr be a family of pairwise orthogonal
standard quasi-tubes in T4, and M, N modules in add(C) with [M] = [N]. Then the
following conditions are equivalent:

(l) MSext N,
(i) M <N,
(iii) [X,M] < [X, N] for all modules X in C.

Note that the condition (iii) is rather easy to check, so the above theorem gives a handy
criterion to decide when N is a degeneration of M.

Our second theorem shows the convexity of the degenerations between modules from
the additive categories of pairwise orthogonal standard quasi-tubes of I'4 in the lattices
of all degenerations between A-modules of a given dimension.

THEOREM 2. Let A be an algebra and C = (G )ier a family of pairwise orthogonal
standard quasi-tubes in T 4. Assume that M, N, V are A-modules such that [M] = [V] =
[N}, M <4eg V <geg N, and M and N belong to add(C). Then V belongs to add(C).

It is well known that if O(M) is a Gl,(K)-orbit in mod,(d) then the set O(M) \ O(M)
is a union of orbits of smaller dimension than dim O(M), and dim O(M) = dim Gl4(K) —
dim Stabgy,(x)(M) = d* — [M, M] (see [16]). Hence any chain of neighbours

M=M <deg M, <deg <deng =N

in mod,(d) has at most [N, N] — [M, M] members (see also [10]). We shall now describe
the minimal degenerations in the additive categories of quasi-tubes. With each coil I" one
associates in [5] two numerical invariants (p(F), q(F)) which measure respectively the
number of rays and corays in I'. For I a quasi-tube, we define in Section 4 canonical
short exact sequences

(U, s,):0 — U— EU,s, ) — ¢~ ¢'U— 0

with U and ¢ ¢/ U indecomposable modules in I', and s and ¢ measuring the size of the
rectangle
RWU,s,0)={o YU, 0<i<s,0<j<t}

determined by U and 74V = ¢ 5*!4*~' U. Then our next main result is as follows.
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THEOREM 3. Let A be an algebra, C = ((})icr a family of pairwise orthogonal
standard quasi-tubes in T 4, and M, N modules in add(C) with [M] = [N]. Then N is a
minimal degeneration of M ifand only if M = EQ U '@V '@ X, N=U"S V" DX,
m,r > 1, and the following conditions are satisfied:

(1) UV and E & X have no common nonzero direct summands.
(ii) U and V are indecomposable modules lying in one quasi-tube I' = G, of C.
(iii) There exists a canonical exact sequence

0— U—EWU,s,0)— ¢ *Y'U—0

with E ~ E(U,s,t), V ~ ¢o=5¢y'U, and s, t satisfying one of the following condi-
tions:
(@) s < p().
) t < q().
(¢) s =p() andt = kq('), for some k > 1.
(d) s = kp(T') and t = q(I), for some k > 1.
(iv) Any common indecomposable direct summand W % o ~*¢'U of M and N does
not belong to the rectangle R (7; U, s, 1).
(v) Any common indecomposable direct summand W % U of M and N does not
belong to the rectangle R (U, s, ).

From the description of the exact sequences Z(U, s, f) given in Section 4 we then get
the following fact (¢f. [11, Lemma 5]).

COROLLARY 1. Let A be an algebra, C = (()ics a family of pairwise orthogonal
standard quasi-tubes in T 4, and M, N modules in add(I") with [M] = [N] and without
common nonzero direct summands. If there is a minimal degeneration M <4, N, then
no indecomposable direct summand X occurs twice in M.

For coils which are not quasi-tubes we shall prove the following fact.

THEOREM 4. Let A be an algebra and C a standard coil of T 4 which is not a quasi-
tube. Then there exist indecomposable modules M and N in C such that [M] = [N] and
M <deg N.

As a direct consequence of Theorems 1 and 4 we get the following corollary.

COROLLARY 2. Let A be an algebra and C a standard coil in T 4. Then C is a quasi-
tube if and only if, for any M and N in add(C) with [M] = [N], M <4 N implies
M Sext N.

The paper is organized as follows. In Section 2 we fix the notation, recall the relevant
definitions and facts, and prove some preliminary results on modules which we apply in
our investigations. Section 3 is devoted to coils and their construction from stable tubes
by admissible operations. We prove also there that the additive category add(T") of a
standard coil I" of an Auslander-Reiten quiver I'4 is closed under extensions. In Section 4
we prove several facts on additive functions determined by short exact sequences in the
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additive categories of standard quasi-tubes. Sections 5, 6 and 7 are devoted to the proofs
of Theorems 1 and 2, 3, and 4, respectively.

For a basic background on the topics considered here we refer to [11], [16], [22] and
[26].

2. Preliminaries on modules.

2.1. Throughout the paper 4 denotes a fixed finite dimensional associative K-algebra
with an identity over an algebraically closed field K. We denote by mod 4 the category
of finite dimensional right A-modules, by ind4 the full subcategory of mod 4 formed
by indecomposable modules, by rad(mod 4) the Jacobson radical of mod 4, and by
rad*®(mod 4) the intersection of all powers rad'(mod4), i > 1, of rad(mod A4). By an
A-module is meant an object from mod 4. Further, we denote by I'y the Auslander-
Reiten quiver of 4 and by 7 = 74 and 7~ = 7, the Auslander-Reiten translations
DTr and TrD, respectively. We shall agree to identify the vertices of 'y with the cor-
responding indecomposable modules. For M in mod A4 we denote by [M] the image of
M in the Grothendieck group Ko(4) of A. Further, for X, Y from mod 4 we abbreviate
dimg Homy(X, Y) by [X, Y]. Finally, for a family I" of A-modules, we denote by add(T")
the additive category given by T, that is, the full subcategory of mod 4 formed by all
modules isomorphic to the direct sums of modules from I'.

2.2 Following [21], for M, N from mod 4, we set M < N if and only if [X, M] < [X, N]
for all A-modules X. The fact that < is a partial order on the isomorphism classes of 4-
modules follows from a result by M. Auslander (see [6], [9]). M. Auslander and I. Reiten
have shown in [7] that, if [M] = [N] for A-modules M and N, then for all nonprojective
indecomposable 4-modules X and all noninjective indecomposable modules Y the fol-
lowing formulas hold:

[X, M] — [M,7X] = [X,N] — [N, 7X],
[M,Y]—["Y,M] = [N,Y] - [r"Y,N].
Hence, if [M] = [N], then M < N if and only if [M, X] < [N, X] for all 4-modules X.
2.3. Let M and N be 4-modules with [M] = [N] and

>0—-D—F—F—0

an exact sequence in mod 4. Following [21] we define the additive functions s v, 5,’\4, I
bz and &% for an 4-module X as follows:

omunX) = [N, X] — M, X]

opun(X) = [X,N] = [X, M]
65(X) = bg.per(X) = [D® F,X] — [E, X]
85 (X) = b pe.r(X) = [X,D & F] — [X, E]

From the Auslander-Reiten formulas (2.2) we get the following very useful equalities

SuNX) = Sy X),  SuN(TX) =y p(X)
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and
bs(X) = b5(T7X), 8x(rX) = b3(X)

for all A-modules X. Observe also that oy n(I) = 0 for any injective A-module /, and
oy n(P) = 0 for any projective 4-module P. In particular, we get that the following
conditions are equivalent:

(1) M<N.

(2) bun(X) > 0forall X € indA4.

(3) Sy pX) > 0 forall X € indA4.

2.4 For an A-module M and an indecomposable 4-module Z, we denote by p(M, Z) the
multiplicity of Z as a direct summand of M. For a noninjective indecomposable A-module
U we denote by X(U) an Auslander-Reiten sequence

S(U):0 — U— E(U)— 7 U— 0,

and define m(U) to be the unique indecomposable projective-injective direct summand
of E(U), if such a summand exists, or 0 otherwise.
We shall need the following lemmas.

LEMMA 2.5. Let G be an A-module and U an indecomposable A-module. Then
(i) If U is noninjective, then 651(G) = (G, U).
(i) If U is nonprojective, then 5;_(TU)(G) = u(G, U).

PROOF. (i) The Auslander-Reiten sequence 2(U) induces an exact sequence
0 — Homy(r~ U, G) — Homy(E(U), G) — rad(U, G) — 0,
and hence we get that
osn)(G) = [Ud T U,G] — [E(V), G] = [U, G] — dimk rad(U, G) = (G, U)
(i) The Auslander-Reiten sequence £(rU) induces an exact sequence
0 — Homy(G, 7U) — Hom,(G, E(rU)) — rad(G, U) — 0
and hence we get the equalities
850)(G) = [G,7U & U] — [G, E(rU)] = [G, U] — dimg rad(G, U) = u(G, U)

LEMMA 2.6. LetI be a standard component of T 4 and assume that there exists in I’
a mesh-complete subquiver of the form

U — U —-— U — Usy — -

| I I |

Vi — Vo — oo Vi — Vi — e
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with all U, V;, i > 1, pairwise nonisomorphic. Then for any Z € add(l') the following
equality holds

W, 2] = [U,Z) = Y wZ, V)

i>1

PROOF. SinceT is standard there exist irreducible maps f;: V; — Visy, gi: Ui — Ussy,
hi: Vi — U, i > 1, such that gjh; = h;(f; for all i > 1. Moreover, by [18], for any in-
decomposable modules X and Y in I',rad™(X, ¥) = 0 (T is generalized standard in the
sense of [27]), and hence any nonzero morphism in rad(X, Y) is a linear combination of
the composites of irreducible morphisms between indecomposable modules in I'. Clearly,
in order to prove the lemma, we may consider an indecomposable module Z in I'. First
observe that the induced map Homy (4, Z): Hom4(U,, Z) — Homy(V, Z) is a monomor-
phism. Indeed, take a nonzero map w in Homy(U), Z). Then by the above remarks there
exists r > 0 such that w € rad’(U;, Z) \ rad™'(Uy, Z). Applying now the dual of Corol-
lary 1.6 in [17], we get that h;: V; — U, is of infinite right degree, and consequently
wh € rad™*' (¥, Z) \ rad™*(V}, Z). In particular, wh; # 0 and we are done. Further, we
know that any irreducible map V; — W with W indecomposable is of the form af; + ¢,
¢ € rad*(V;, Vis), or ah; + 1, ¢ € rad*(V;, Uy), for some € K. Hence, if Z ¢ V;, for
any i > 1, then using the equalities g;4; = h;+(f; we get that the map Homy(h, Z) is an
isomorphism. Then

[V|9Z] - [UlaZ] =0= ZN(Z9 Vl)

i>1

Assume Z = ¥} for some j > 1. Then we get
HomA(VhZ) = im HomA(hl,Z) +Kﬁ_, .. fl

where, in case j = 1, f; is the identity map V; — V). Moreover, by [8], fi—1 - - - i does
not belong to im Hom (4, Z), because 7~ V; = Uy % Viup for any i > 1. Therefore, we
get

W, Z1 - [U, 21 = 1= wZ,V)) = ;u(l, Vi)

because the modules V}, V5, . .. are pairwise nonisomorphic.

LEMMA 2.7. LetT4 = I UT” be a decomposition of T4 into a disjoint sum of
connected components. Assume that M and N are A-modules such that [M] = [N] and
dun(X) = 0 for all X € add(I"’). Then the following statements hold:

(i) If M,N € add(T") then M ~ N.
(i) M € add(T"") if and only if N € add(T"").

PROOF. Since each X € mod 4 has a decomposition X = X’ ® X" with X’ € add(T")
and X" € add(I"”") it is sufficient to prove that uw(M, U) = u(N, U) for any indecompos-
able module U in I, Take an indecomposable module U in I''. Assume first that U is not
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projective. Then by our assumption and Lemma 2.5(ii) we get the equalities

.u(N’ U) - ,LL(M, U) = &E(TU)(N) - 6;:(TLJ)(M)
= [N.7U & U] — [N, EGU)] — [M,7U & U] + [M, EGrU)]
= 5un(rU) +un(U) — bun(EGU)) = 0

because U, 7U, and E(tU) belong to add(I""). Assume now that U is projective. Then we
get the equalities

uM, U) = [M,U] — [M,rad U] = [N, U] — [N,rad U] = w(N, U)
because rad U € add(I"’) and 6y p(U) = 0, Sy v(rad U) = 0. This finishes the proof.

2.8 LetT be a connected component of I'4. For modules M and N in add(I') we set
M < N < [X,M] < [X, N] for all modules X in add(T’).

Clearly, M < N implies M < N. The following direct consequence of the above lemma
shows that <[ is a partial order on the isomorphism classes of modules in add(I") having
the same composition factors.

COROLLARY. Let M and N be two modules in add(T') such that [M] = [N]. Then
M~ Nifandonly if M <r Nand N <r M.

Moreover, if M and N belongs to add(I") and [M] = [N] then the following conditions
are equivalent (see (2.3)):

(1) M<r N.

(2) émun(X) > 0 for all modules X'inT.

(3) 83 (X) > 0 for all modules X'in T

3. Coils. We shall recall some basic facts on coils introduced by I. Assem and the
first named author in [3] (see also [4]) and prove that the additive categories of standard
coils are closed under extensions.

3.1. A translation quiver I is called a tube [14], [22] if it contains a cyclical path and
its underlying topological space is homeomorphic to ' x R* (where S! is the unit circle,
and R* the non-negative real half-line). Tubes containing neither projective vertices nor
injective vertices are called stable. The rank of a stable tube I is the least positive integer
suchthat 7 X = Xforall X eT.

3.2 The one-point extension of an algebra B by a B-module X is the matrix algebra
K X
B0 =5 3]

with the usual addition and multiplication of matrices. The B[X]-modules are usually
identified with the triples (V, M, ¢), where V is a K-vector space, M is a B-module and
p: V — Homy(X, M) is a K-linear map. A B[X]-linear map (V, M, p) — (V' M, ") is
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then identified with a pair (f, ), where /- V — V' is K-linear, g: M — M’ is B-linear and
¢'f = Homg(X, g)¢. One defines dually the one-point coextension [X]B of B by X (see
[22]).

3.3. A coil is a translation quiver constructed inductively from a stable tube by a se-
quence of operations called admissible. Our first task is to define the latter. Let B be an
algebra and I" be a standard component of I'g. Recall that I is called standard if the
full subcategory of mod B formed by modules from I' is equivalent to the mesh-category
K(T') of T" (see [22]). For an indecomposable module X in I, the support S(X) of the func-
tor Homp(X, —)|r is the factor category of K(I') by the ideal Iy of K(I') generated by all
morphisms f: M — N such that Homp(X, /) = 0. For an indecomposable module X in T,
called the pivot, one defines admissible operations (ad 1), (ad 2), (ad 3) and their duals
(ad 1*), (ad 2*), (ad 3*), modifying (T, 7) to a new translation quiver (I, '), depending
on the shape of the support S(X).

(ad 1) Assume that S(X) is the K-linear category of an infinite sectional path starting
at X:

X=X0—>X) —>X2—>"

In this case, we let ¢ > 1 be a positive integer, D denote the full 7 x r-lower triangular ma-
trix algebra and Y}, . .., Y, denote the indecomposable injective D-modules with ¥ = Y
the unique indecomposable projective-injective module. We define the modified algebra
B’ of B to be the one-point extension

B =[BxDJ[X®Y]

and the modified component I’ of T to be obtained by inserting in I a rectangle consisting
of the modules Z; = (K, X; ® Y-,(i)) fori >0,1 <j<t,and X = (K, X;, 1) fori > 0.
The translation 7’ of I is defined as follows: 7'Z; = Z;_, ;. ifi > 1,j > 2,7'Z; = X;_,
ifi > 1,72y = Yy ifj > 2, Zy = P is projective, 7'Xy = Y, 7X] = Zi_, if
i > 1,7'(r" X;) = X| provided ; is not an injective B-module, otherwise X; is injective
in I"". For the remaining vertices of I" (or I'p), the translation 7 coincides with 7 (or 7p,
respectively).

If now ¢t = 0, we define the modified algebra B’ to be the one-point extension B’ =
B[X] and the modified component I’ to be the component obtained from I" by inserting
only the sectional path consisting of the X/, i > 0.

(ad 2) Assume S(X) is the K-linear category given by two sectional paths starting at
X, the first infinite and the second finite with at least one arrow

Y— =1 —X=X—o X —-X— -

where ¢ > 1. In particular, X is necessarily injective. We define the modified algebra B/
of B to be the one-point extension B’ = B[X] and the modified component I’ of T" to be
obtained by inserting in I" a rectangle consisting of the modules Z; = (K,X; ® Y}, (}))
fori > 1,1 <j<tand X! = (K, X;,1) fori > 1. The translation 7’ of I" is defined as
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follows: P = Xj is projective-injective, 7'Z; = Z;_yj_ ifi > 2,j > 2,7Zy = Xi—y if
i> 1,72y =Y ifj > 2,7X = Zi_y,ifi > 2,7X) = Y, 7(r X)) = X ifi > 1,
provided X; is not injective B-module, otherwise X' is injective in I"'. For the remaining
vertices of I/, the translation 7’ coincides with the translation 7.

(ad 3) Assume S(X) is the mesh-category of two parallel sectional paths

iboo— h e

I |

X=Xy — X —— X0 — X, — Xu —--

where ¢ > 2. In particular, X;_; is necessarily injective. We define the modified algebra
B’ of B to be the one-point extension B’ = B[X] and the modified component I’ to be
obtained by inserting in I a rectangle consisting of the modules Z; = (K, X; ® ¥, (:))
fori > 1,1 <j<iand X = (K,X;, 1) fori > 1. The translation 7" of " is defined as
follows: P = Xj is projective, 7'Z; = Z;_yj_1 if i > 2,2 <j <i,7'Z; =Xy ifi > 1,
X, =Yifl <i<7X =Z,ifi> 7Y =X ,if2<j<70X) =X
if i > ¢ provided X; is not an injective B-module, otherwise X! is injective in I'"". For the
remaining vertices of I"/, the translation 7’ coincides with 7. We note that X]_, is injective.

Finally, together with each of the admissible operations (ad 1), (ad 2) and (ad 3), we
must consider its dual, denoted by (ad 1*), (ad 2*) and (ad 3*), respectively.

3.4 A translation quiver I is called a coil if there exists a sequence of algebras By, B),

..»Bw = A and components I'; of T'p,; 0 < i < m, such that I' = [, I’y is a standard
stable tube, and for each i (0 < i < m), B+ is the modified algebra B; of B; and I';1
is the modified component of I';, by one of the admissible operations (ad 1), (ad 2),
(ad 3), (ad 1*), (ad 2%), or (ad 3*). It is shown in [3] that such a coil I" is a standard
component of I'y. We refer to [4] for an axiomatic definition of a coil and examples.
Hence any stable tube is trivially a coil. A (coherent) tube in the sense of [14] is a coil
having the property that each admissible operation in the sequence defining it is of the
form (ad 1) or (ad 1*). If we apply only operations of the type (ad 1) (respectively, of
the type (ad 1*)) then such a coil is called a ray tube (respectively, coray tube). Observe
that a coil without injective (respectively, projective) vertices is a ray tube (respectively,
coray tube). A quasi-tube (in the sense of [24]) is a coil having the property that each
admissible operation in the sequence defining it is of the form (ad 1), (ad 1*), (ad 2) or
(ad 2*). The quasi-tubes occur frequently in the Auslander-Reiten quiver of selfinjective
algebras (see [24]). Note that a coil I in the Auslander-Reiten quiver I'4 of an arbitrary
algebra A is not necessarily standard. But for any coil I there exists a triangular algebra
A (and hence of finite global dimension) such that I" is a standard component of I"y. We
shall show now that the additive categories of standard coils are closed under extensions.

PROPOSITION 3.5.  Let B be an algebra, I a standard component of T'g, and assume
that add(T') is closed under extensions. Let X be the pivot of an admissible operation,
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B’ the modified algebra, and T’ the modified component. Then add(I"’) is closed under
extensions.

PROOF. We may assume, by duality, that the admissible operation leading from I to
I'" is one of (ad 1), (ad 2), or (ad 3). For a B-module M, we let M, denote its restriction to
BxD, if the operation is of type (ad 1) with# > 1, or to B in the remaining cases. Denoting
by w the extension vertex of B’, we represent a B’-module M as a triple (M,,, Mo, V),
where M,, is a finite dimensional K-vector space and 7y, is a K-linear map from M,, to
Homgxp(X @ Y, Mp) or to Homp(X, My), respectively. Let now

0—-M—->FE—->N—0

be an exact sequence in mod B’ with M and N in add(I"’). Clearly, we may assume that
this sequence is not splittable. We get an exact sequence

0—-My—Ey—Ny— 0

in mod B with My and N in add(T"). Since add(I") is closed under extensions, we infer
that £y € add(I'). From the description of admissible operations in (3.3) we know that
the vector space category Hompy D(X e, add(F)), if the admissible operation is of type
(ad 1) and ¢t > 1, and Homgp (X, add(F)) in the remaining cases, is given by a partially
ordered set of width at most 2. Then, since £y € add(I'), the indecomposable direct sum-
mands of E are of the form (0, Z, 0) with Z an indecomposable B-module lying in I’ (and
henceinT), (K, X;® Y}, (1)), (K, X;, 1) or (K, ¥}, 1) (see [23, (2.4)] for details). Therefore,
we must show that £ has no direct summand of the form (X, Y}, 1). Suppose this is not
the case. Then there is a nonzero map from a module (X, ¥}, 1) to an indecomposable
direct summand, say ¥, of N. By our assumption,  belongs to I"’. Observe now that any
indecomposable B-module U in I with Hom,(Y}, U) # 0 is isomorphic to ¥; with / > j.
Since the modules (K, Y, 1) do not belong to I'’, ¥ is isomorphic to a module of the form
0,Y,0)or (K, X; DY, (:)) But it is easy to check that any map in mod B’ from (X, ¥}, 1)
to any of the modules (0, Y;,0) or (K, X; @ Y, (:)) is zero. Consequently, E belongs to
add(T”). This shows that add(I"") is closed under extensions.

THEOREM 3.6. Let A be an algebra and T a standard coil of T 4. Then add(T') is
closed under extensions.

PROOF. Let I = ann(T') be the annihilator of I' in 4, that is, the intersection of the
annihilators ann X of the modules X in I, and B = 4/I. Clearly, I" is a standard coil in
I's. Moreover, if 0 — M — E — N — 0 is an exact sequence in mod 4 with M and N
in add(I") then MI = 0, NI = 0, and so EI = 0. Therefore, we may assume that B = 4,
that is, I is a faithful standard coil of I';. Repeating now the arguments from [4, (5.4)]
we infer that there exists a sequence of algebras C = Ay, A4, ...,4, = 4 and a standard
faithful stable tube 7 in I'c such that, for each 0 < i < m, 4,4, is obtained from the
algebra 4; by an admissible operation with pivot in the coil I'; of I'4,, obtained from the
stable tube 7 by the sequence of admissible operations done so far, and I is the modified
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coil I, = I},_,. Hence, by Proposition 3.5, it is sufficient to show that add(‘7") is closed
under extensions in mod C. Since 7 is a faithful standard (hence generalized standard)
stable tube of I'c, we infer that pd- X < 1 forany Xin 7 (see [27, (5.9)]). LetEy, ..., E,
be a complete set of modules lying on the mouth of 7. Then the modules E|, .. ., E, are
pairwise orthogonal with endomorphism rings isomorphic to K (because 7 is standard),
and Ext%;(E,,Ej) = 0 forall 1 <i,j <r. Thenby [22, (3.1)], add(T) is a serial abelian
category consisting of all C-modules X having a filtration

X=XD2Xi1DX2D:---DX;=0, s>1,

with X;_, /X; being isomorphic to one of E|,...E,, forany 1 <i < s. But then add(7)
is closed under extensions, and we are done.

4. Exact sequences in quasi-tubes.

4.1. Throughout this section I" denotes a standard quasi-tube in the Auslander-Reiten
quiver I'4 of an algebra 4. We shall investigate short exact sequences in the additive
category add(I") in mod 4 given by I'. Since I is standard, add(I") is equivalent to the
additive category add(K(F)) of the mesh-category K(I') of I'. Hence we may assume
that " is a sincere quasi-tube in I'y, 4 is obtained from an algebra C by a sequence of
admissible operations of type (ad 1), (ad 1), (ad 2), (ad 2*), and T is obtained from a
sincere standard stable tube 7 of ['¢ by the same sequence of admissible operations. By
I" we denote the translation quiver obtained from I" by removing all projective-injective
vertices. Hence, I" is a tube. A vertex X of I" will be said to belong to the mouth of " if X
is starting, or ending, vertex of a mesh in I with a unique middle term. The arrows of I’
may be subdivided into two classes: arrows pointing to the mouth and arrows pointing to
infinity (from the mouth). Denote by I’y the set of vertices in I'. We define two functions

o, :ToU {0} —TouU{0}

such that: ¢(0) = 0, 1(0) = 0, and for X € Iy:
e (X) is the starting vertex of a (unique) arrow with end vertex X and pointing to
the mouth, if such an arrow exists, and p(X) = 0 otherwise;
e (X) is the ending vertex of a (unique) arrow with starting vertex X and pointing
to infinity, if such an arrow exists, and 1)(X) = 0 otherwise.
In an obvious way we define also partial inverse functions

LY ]:()U {0} — I:OU{O}

such that for X € I'y we have:
e o (X)=Yif p(Y) =X, and ¢~ (X) = 0 otherwise;
o Y (X) = YifyY(Y) = X, and ¢~ (X) = 0 otherwise.
Recall also that an infinite sectional path in I starting from a module lying on the
mouth of I and consisting of arrows pointing to infinity is called a ray. Dually, an infinite
path in ' with the ending module lying on the mouth of T and consisting of arrows
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pointing to the mouth is called a coray (see [22]). Then one associates two numerical
invariants (p(F), q(F)) such that p(T") is the number of rays in I' and ¢(T") is the number
of corays in I'. We shall use the abbreviation p = p(I') and ¢ = ¢(I"). Finally, observe
that a module X € Iy lies on a ray (respectively, coray) in I if and only if ¥/(X) # 0
(respectively, p'(X) # 0) for all i > 0.

4.2 Following [20] by a short cycle in add(I') we mean a cycle X — Y — X of nonzero
nonisomorphisms between modules X and Y from I". We collect now the following prop-
erties of ¢ and 1, needed in our proofs.

LEMMA. Let X be an indecomposable module in T'. Then the following statements
hold:
(i) X lies on a short cycle in add(') if and only if X lies on a ray and on a coray in
. Moreover, if this is the case, then P X = X and there is a cycle X — X —
oI = PX > — X — X
(i) X lies on a short cycle in add() if and only if p?~' X # 0 and y9~'X # 0.
(iii) If X lies on a short cycle in add(T) then, for any integers i,j,k > 0, 'YX =
Yo' X = o RytkaX lies on a short cycle.
(iv) If o'W X = X or W/ ¢'X = X then there is an integer k such that i = kp and
J=(=kyg.
Assume that U is amodule in I and s,  are two positive integers such that the modules
P P U0 <i<s,0<j<t, arenonzero. Then

R(WU,s,t)={o WPYU,0<i<s50<j<t}
is called a rectangle of size (s,t) in I determined by U.

4.3, Let T be the set of vertices in I'. For any noninjective vertex U € I’y we have in
the notation of (2.4) an Auslander-Reiten sequence

2U)0—-U—EU)—T1TU—0

where E(U) = m(U) & Y(U) @ ¢~ (U), and Y(U) # 0.

LEMMA. Let U € Ty, s,t > 1 be integers, and assume that there exists in I a
rectangle R = R (U, s, t) consisting of nonzero and noninjective modules. Then
(i) There exists a nonsplittable exact sequence

(U, s,£):0 — U— E(U,s,t) — ¢~ %'U — 0,

where

E(U,s,8) = YU o U ( b b w(w“WU))-

0<i<s 0<j<t

(ii) 65Uy = To<ics 20<j<t Ox(p-ipivy-
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(iii) dswsi(Z2) = 1 forany Z € R and by s(Z) = O for the remaining inde-
composable A-modules Z. Moreover, if s < p(T) = port < q(I') = q, then
52(UJ,,)(Z) = lfOF anyZ € R

PROOF. (i) From our assumptions we have forany 0 < i < sand 0 < j < ¢
Auslander-Reiten sequences

0= ¢ WU— o WU W' U (e Y U)— ¢ ¢ U—0.
Applying now [2, Corollary 2.2] we get the required short exact sequence

(U, s5,0:0 — U — E(U,s5,1) — ¢~ *'U— 0

with
E(U,s,) = $U® ¢~ U ( D D w(soW‘U)).
0<i<s 0<j<t
(i) Let
W= ( D D w"i//U) ® ( D D w‘i@b"U).
0<i<s 0<j<t 0<i<s 0<j<t
Then
D P VYU W) =WaU® YU
0<i<s 0<j<t
and

D D E@ WU =WEU,s,0).

0<i<s 0<j<t

Hence, for each X € mod 4, we get
> S AT WUS oW UX] - [E(p T U), X))
0<i<s 0<j<t

= [l]69 kas"[)’UVX] - [E(U’S’ t)sX]

Therefore, by Lemma 2.5(i), we get

Sswsn®) = 2 3 sy = 2 Y wX, o YU).

0<i<s 0<j<t 0<i<s 0<j<t

Since R = {¢ Y/ U,0 < i < 5,0 <j < t} we conclude that 5y 5,(Z) > 1 for
all Z € R and 65y, = O for the remaining indecomposable A-modules Z. Now, if
s <p=pI)ort < q = q() then any module ¢~/ U € R is uniquely determined
(up to isomorphism) by the pair (i, /), because I is obtained from a standard stable tube
T by a sequence of admissible operations. This shows that 85y5.)(Z) = Lyeg 6zx(Z)
has value 1 on any module Z € & .. This finishes the proof.
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LEMMA4.4.  Assumethat there exists a short exact sequence Z(U, p, kq) for some k >
1 and U € Ty. Then there exists a short exact sequence (W, kp,q) for W = o Py*U.
Moreover, 63y pig) = Osw kp.q) and E(U,p, kq) ~ E(W, kp, g).

PROOF. First observe that ¢ 7*' U has the property: o*~'(o?"'U) = U # 0 and
Y (@ PU) = o @ Dya~tU # 0, because (U, p, kq) exists. Hence, by 4.2(ii),
@ P*1U lies on a short cycle in add(T"). Then clearly the modules ¢~ '/U = /o~ 'U
for 0 <i < p,0 <j < kq, also lie on short cycles in add(I'), by 4.2(iii).

Take now nonnegative integers i, ¢, d such that i < p, ¢ < k,andd < q. Since
@ ypeatd U and W = Py lie on short cycles in add(I"), we get, again by 4.2(iii), that

W—iwcq+dU — (pfif(k—c)pwcqﬂh(k—c)qU
— (pfi—(k—c)pwdﬂ'pu

— gDp—i—(k‘c)p1pti(,0~p,(/)kqU
— (p—i—(k~c~l)pd)d w.

From the existence of (U, p, kq) we know that any module X in the rectangle
R = R(U,p,kq) = {p”YU; 0<i<p,0<j<kq}
is nonzero and noninjective. Observe now that

R ={p p9U; 0<i<p, 0<c<k 0<d<gq}
={p kPl 0<i<p, 0<c<k 0<d<gq},

and so &_coincides with the rectangle
R = RW.kp,q) = {o Y'W; 0 <e <hkp,0 <d < gq}.
Consequently, we infer, by Lemma 4.3, that there exists a short exact sequence
(W, kp,q):0 — W — E(W,kp,q) — ¢ P¢IW — 0
and for any indecomposable 4-module X the equalities

SsUpry@) = 3 bsinX) = > bsn(X) = bsw jp.g)(X)-
YeR YeR'

hold. This gives the equality
[U® ¢ 94U, X] — [E(U,p. kq). X] = [W & ¢~ YW, X] — [E(W, kp, 9), X]
for any X € indA4. Since U = ¢ ®9W and ¢ Py*9U = W, we then obtain that

(ECU, p, kq), X] = [E(W, kp, q), X]

for all X € ind A. Therefore, E(U, p, kq) ~ E(W, kp, q), by the theorem of Auslander [6].
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LEMMA 4.5. Let M and N be A-modules with [M] = [N], and W € Ty. Then

u(N, W) — M, W) = dun(W) — S (e W) — dun (™ W) +oun(™ o W).

Moreover, if W is noninjective and m(W) # 0 then

(N, (W) = p(M,7(W)) = ~bpn(W).

PROOF.  We split the proof of the first formula into two cases. Assume first that W is
nonprojective. Then W = Y~ oW and E(TW).= o W ¢~ W B n(+W). Applying 2.5(ii),
we get the equalities

(N, W) — (M, W) = 85, p(N) — 85, (M)
=(NY oW S W] — [N, oW Sy~ W S n(rW)])
—(M Yy~ WS W] — M, oWS ¢y WS (W)
= dun(W) +éun( W) —bun(p W)
— SN W) = by (T (T ).
Since 7(r W) is either zero or injective and [M] = [N] we have (SM,N(’II’(TW)) = 0. Hence
the required formula is true. Assume now that W is projective. Observe that then W is

noninjective, because W € T'y. Obviously, rad W = oW @ ¢~ W and Hom,(X, rad W) ~
rad(X, W) as K-vector spaces. We then get that

BN, W) — w(M, W) = ([N, W] — [N,rad W]) — ([M, W] — [M,rad W])
= duN(W) — dun(rad W)
= OuNW) — Sun(pW) — dun(™ W).

Since either Y~ @ W = 0 or ¢~ ¢ W is injective we have dyn(yy~ W) = 0, and so the
required formula is true.
Finally, assume that W is noninjective and 7(W) # 0. Then W = rad m(W), and we
obtain that
w(N, 7(W)) — w(M, =(W)) = (IN, "(W)] — [N, W]) — (IM, =(W)] — [M, W)
= oun((W)) — bun(W) = ~Sun(W)
because 7(W) is injective and [M] = [N]. This finishes the proof.

LEMMA 4.6. Let M and N be A-modules with [M] = [N), and U € Ty. Assume that
a rectangle R (U, s, t) consists of nonzero and noninjective modules. Then

22 (N U) — (M, oY U)) = bunpU)

0<i<s 0<j<t

— SN U) = ST UY + Sun(e Y U).
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PROOF. From Lemmas 2.5(i) and 4.3(ii) we get the equalities

> 2 (uN @YW U) — p(M, oY U))

0<i<s 0<j<t

= 2 2 (s ) = s(prsn(MD)

0<i<s 05<t

= b3 s(N) — bz s (M)

= [U® ¢ "¢Y'U,N] - [E(U,s,1),N] — [UD ¢~ "¢'U,M] + [E(U, s,1), M]
= 8y n(U @ ¢~ ¢'U) — 8y y(E(U,5,1))

= bun(U & 7o *Y'U) — b (TE(U, 5,1))

= Sun(rU & ¢~ 'Y U) — bun(rp U @ 7' U)

= SN~ pU) +un(e ™" "W ) — by~ 0 U) — Sun(ey' ' U),

which is the required formula.

5. Proofs of Theorems 1 and 2. We shall divide our proof of Theorem 1 into sev-
eral steps. We use the notations introduced in Sections 3 and 4.

5.1. Let 7 be a standard stable tube in T4, and E|, ..., E, a complete set of modules
lying on the mouth of 7. Then 7 consists of the modules Y/'E;, i > 0,1 <j < r. For
each k, 1 < k < r, we denote by /; : add(I'’) — N the additive function defined on
modules Y'E; by

LWE)=#{te {jj+1,...,j+i};rdivides t — k}.
Then it is easy to see that
WE] = h(WENE+- -+ LWE)IE]
fori > 0,1 <j <r,and hence
W] =hLMIE ]+ +L(WE]

for any module W in add(I"). Moreover, we have also the following lemma.

LEMMA. Fori>m >0and1 <j, t <r, the following equality holds:

W"E:, V'E]) = [(W"E).

PROOF. Straightforward because 7 is a standard stable tube.
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LEMMA 5.2. Let I" be a standard quasi-tube in T4, and assume that M and N are
two modules in add(T") with [M] = [N] and M <r N. Then by y(X) = 0 andﬁj‘,,‘N(X) =0
for all but finitely many modules X in T,

PROOF. Assume first that [ is a stable tube, say of rank ». Take s > 0 such that for
any i > sand 1 <j < r, the module ¢/(E;) is not a direct summand of M & N. Then
applying Lemma 5.1 we get that [M, y'E;] = [;(M) and [N, ¢'E;] = I;(N), which implies
L(N) — [i(M) = éun(Y'E;) > 0, because M <r N. Hence, for i > s, we have

2 OMnWENE] = 3 ((N) — L(M)E)]

15<r 15<r
= ( > lj(N)[Ej]) - ( 2 Ii(M)[Ej])
1< 1%
=[N]-[M]=0

Therefore, Sy n(Y'Ej) = 0 forany i > sand 1 < j < r, and so dyn(X) for all but
finitely many module X in I. Since &), ,(Y) = émn(rY) for all nonprojective modules
Y € add(T'), we get that 6}, ,(X) = 0 for all but finitely many ann modules X in .

Assume now that I' is not a stable tube. Since I' is a standard tube in '/ ynn(r), Where
ann(T") is the annihilator of " in 4, we may assume that ann(I") = 0. Then there exists (see
[4, (5.4)]) a sequence of algebras C = Ay, 41,...,4m_1,An = A and a standard faithful
stable tube 7 in "¢ such that, for each 0 < i < m, 4,4 is obtained from the algebra 4;
by an admissible operation with pivot in the quasi-tube I'; of [, obtained from 7 by the
sequence of admissible operations (of types (ad 1), (ad 1*), (ad 2), (ad 2*)) done so far,
andI" = I',,. Therefore, we may proceed by induction on m. The case m = 0 is discussed
above. By duality, we may assume that A4 is obtained from B = A4,,_; by an admissible
operation of type (ad 1) or (ad 2). Clearly B = eAe for some idempotent e of 4. Further,
[ is the modified component C’ of the standard quasi-tube C = I',,_; in I'p. From the
description of C’ given in Section 3, we infer that the B-modules Me and Ne belong to
add(C). Moreover, [M] = [N] implies that [Me] = [Ne] in Ko(B). Then, for any X € C,
we get

dimg Homp(X, Me) = [X, M] < [X, N] = dimg Hompg(X, Ne).

Thus Me < Ne, and by induction we may assume that 5y ve(X) = 0 and 6, 5 (X) = 0
for all but finitely many modules X in C. Therefore, 6}, = 0 for all but finitely many
indecomposable B-modules lying in I". From the shape of the modified component I" =
C’ (see Section 3) we deduce that there exists s > 1 such that the modules X;, Z;, X],
i >s,1 <j <t are not direct summands of M ¢ N, and there are Auslander-Reiten
sequences in mod A

0—X —Z) & Xy — Zin1) — 0
0—Zj — Zijn & Zin1j — Zinnjm — 0
0— Ziy— X D Zisyg— Xy — 0
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fors < i, 1 < j < ¢t Observe also that all but finitely many modules L in I" with
L(1 — e) # 0 are of the above form Z;, X!. Applying now Lemma 2.6, we get, for i > s,
1 <j <t, the equalities

(X, M] — [Zn, M] = 3 (M, X)) = 0,

k>i

[Zij, M] — [Zijr1,M] = kZH(M,ij) =0,
>i

[ZiIaM] - [X:’M] = kZ:,‘l’(M’Zkl) = 05

and similar ones if we replace M by N. Hence 6, \(Z;) = 6y 5(Xi) = &y y(X]) for i > s
and 1 <j <t. But the modules X; belong to mod B, and so, by the above considerations,
83 v(X;) = 0 for all but finitely many i. Therefore, 6, y(X) = 0, and hence also §y v (X) =
0, for all but finitely many modules X in I". This finishes the proof.

LEMMA 5.3. Let I be a standard quasi-tube in T 4, and M, N be modules in add(I")
such that [M] = [N) and M <r N. Assume that by N\(Z) # 0 for some module Z in T.
Then there exists a nonsplittable exact sequence

(U, s,£):0 — U— E(U,s,t) — ¢~ 4'U — 0,

for some U € Ty, with1 < s < p(T)or 1 <t < q('), such that E(U,s,1) is a direct
summand of M and by n(X) 2> b3 (v s(X) for all modules Xin T..

PROOF. Take a module W € Ty for which 8y x(W) > 0. We may assume that
oun(p™ W) = 0, bun(yp~W) = 0 and dyn(e Y~ W) = 0. Since Smn(W) 75 0 and
[M] = [N], we infer that ¥ is not injective. We put § = dy n. Observe first that o~ W is
a direct summand of M. It is clear if ¢~ W = 0. Assume ¢~ W # 0. Then by Lemma 4.5
we get that

WN, @~ W) — (M, o~ W) = 8(¢™ W) — 5(v~ (¢~ W) — 5(p(™ W)
+6(v (o™ W))
= 6(p" W) — 8(~ @~ W) — 6(W) + 6™ W)
=-6(W)<0

by our assumption on . Hence pu(M, o~ W) # 0, and so ¢~ W is a direct summand of
M.

Take now a > 0 minimal such that 6(¢? W) = 0. Observe that such a exists because
6(X) = 0 for all but finitely many X € T, by the above lemma. Further, take a pair (b, ¢)
with 0 < ¢ < g and b > 0 minimal such that §(y)* ¢ W) = 0. Then §(y/ @/ W) > 0 for
0 <i<b,0<j<a.Hence,forZ = 9p* ' W, we getthat o=@~ Nyi~1Z = )i g W #
0,for 0 <j < a,0 <i < b, and is noninjective, because [M] = [N]. Applying now
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Lemma 4.6 we get

Y (kNG W) — u(M, i)

1<i<b c<j<a
=z, OS%((MN, P IVZ) - p(M, o '2))
=™ 92) = 8(W™ ¢ T2 — ey Z) ol T2
= 0(”2) — 8 W) — 6" o W) + 5" o W).

Observe that §(y~ pZ) = 0. Indeed, if Z is projective then either Y~ ¢pZ = 0 or Yy~ pZ is
injective, and hence in the both cases (1)~ pZ) = 0. Assume Z is not projective. Then
V0Z = oY Z = oy P W = oW, and s0 5(YpZ) = 8(¢°W) = 0 by our
choice of a. Since 6(y~¢Z) = 0, 6(y* W) = 0 and §(¢° W) > 0, we obtain that

> 2 (WY GW) — (Mg W) < 0.

1<i<b c<j<a
Thus there is a pair (s,f) suchthatc < s — 1 < a,1 <t < band Y'¢* 'Wis a
direct summand of M. We set U = ¢*~' W. From Lemma 4.3 we infer that there exists a
nonsplittable exact sequence

(U, s,1):0 — U — E(U,s,1) — ¢~ ¢'U— 0.

Moreover, p U@ YU = o~ W @ ' ' W is a direct summand of M.
Suppose now that s > p(I') = pand t > q(I') = q. Then ='W # 0, 9~ 'W # 0,
and so W lies on a short cycle in add(I"), by Lemma 4.2. Then ¢“ P W lies on a short

cycle, and (¢ PW) = pP(¢* P W) = ¢*W. But then 67 o PW) = &(¢*W) = 0,
which contradicts the minimality of b, since0 <s—p <a—p<aand0 < g <t <b.
Consequently, | <s < p([')or 1 <t < g(I'). Consider now the rectangle

R =RWU,s,0)={p7YU,0<j<s, 0<i<t}

By Lemma 4.3(iii) we have that 05y5(Z) = 1 for Z € R and dxy5,(Z) = 0 for the
remaining indecomposable 4-modules Z. Our choice of b and the inequalities s < a,
t < b, imply that 6(X) > 0 for all X € K. Hence § = dun(X) > bxw,s.n(X) for all
modules X in I'. Further, by Lemma 4.5, if m(X) # 0 for some X € KX, then

(N, 1)) = u(M, 7(X)) = —oun(X) <0

and so 7(X) is a direct summand of M. Finally, since s < p(I') or ¢ < g(I'), then

EU,s,t) = o UDY'UD (@ W(X))
XeR.

is a direct summand of M. This finishes the proof.
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PROPOSITION 5.4. Let T be a standard quasi-tube in Ty and M, N two modules in
add(T") with [M] = [N]. If M <t N then M <¢x N.

PROOF. We shall proceed by induction on Y xer, Oun(X) > 0. Observe that, by
Lemma 5.2, this sum is finite. If X yer, opn(X) = 0 then dp n(X) = 0 forall X € Ty, and
so also N < M. Hence, M ~ N by Corollary 2.8, and this implies M <., N.

Assume that X yer, Oy n(X) > 0. Applying Lemma 5.3 we infer that there exists a
nonsplittable exact sequence

>20—-D—-E—F—0

and M’ € add(T') such that M = E ® M’ and 6y n(X) > 65(X) for all X € Ty. Then, for
any X € Iy, we get that

SmaparnX) = [N,X] — [M' @ D@ F, X]
= ([N,X] - [M' ® E,X]) — ([DDF,X] — [E,X])
= dprgeNX) — O£ par(X) = dpn(X) — 6x(X) 2> 0.

Thus M’ @ D® F <r N, because [M' ®& D @ F] = [M' ® E] = [M] = [N]. Observe that
E <ext D@ Fimplies E <r D @ F, and hence 65(X) > 0 for all X € I'y and 65(D) > 0,
because X is not splittable. Hence we get

> SmeparnX) = Y (bun(X) — (X)) < 3 Sun(X).

Xery Xer Xerlp
Therefore, M' @ D & F <. N by our inductive assumption. Since M = M’ @ E and
M ®E <qq M' & D@ F, we have M < N. This finishes the proof.

LEMMA 5.5. Let C = (G)ier be a family of pairwise orthogonal standard quasi-
tubes in Ty and M, N modules in add(C) such that [M] = [N] and [X,M] < [X, N] for
all modules X in C. Moreover, let M = @,c; M; and N = @/ N;, for M;, N; € add(().
Then [M;] = [N;] and M; <, N; foralli € I.

PROOF. Assume first that (; is a stable tube, say of rank r. From the orthogonality
of quasi-tubes in C = (), we deduce that [M, X] = [M;, X] and [N, X] = [N;, X] for all
X € (, and hence [N;,X] > [M;, X] for all X € add((}). Let E|,...,E, be a complete
set of modules lying on the mouth of (. Take now n > 0 such that if y°F; is a direct
summand of M; @ N,, for some 1 < k < r, then s < n. Applying Lemma 5.1 we obtain
that

(M, V" Ei] = I(M;) and [N;, " Ex] = I(N),

and so [,(M;) < [,(N;), forany 1 < k <r. Since
Mi]= 3 L(M)IE]and [N]= 3 L(N)[E]

1<k<r 1<k<r

we infer that [M;] < [N;].
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Assume now that ( is not a stable tube. As in (5.2) we may assume that there exists an
algebra B and a standard quasi-tube I'; in ' such that 4 is obtained from B by one of the
admissible operations of type (ad 1), (ad 1*), (ad 2) or (ad 2*) with pivotin I';, and C; is
the modified component I'; of I';. By duality we may assume that 4 is obtained from B by
one of the admissible operations (ad 1) or (ad 2). Let e be an indempotent of 4 such that
B = ede. Observe that [Xe, Y] = dimg Homg(Xe, Ye). Moreover, from the description
of (G = I, we know that M;e, Nje € add(I';). Since I'; has less projective modules than
G, by induction, we get that [M;e] < [N.e]. Further, we have M;(1 —e) = M(1 —e) =
N(1 —e) = Ni(1 —e), and hence [M;] = [M;e] +[M;(1 —e)] < [Nie] +[N;(1 —e)] = [Ni].
From the equality ¥";c,[M;] = [M] = [N] = Zic;[N;] we then conclude that [M;] = [V;]
for all i € 1. Moreover, M; <. N; for any i € I, because the quasi-tubes in C = (G)ies
are pairwise orthogonal. This proves our lemma.

5.6 Proof of Theorem 1. Let C = ((})ic; be a family of pairwise orthogonal standard
quasi-tubes in I’y and M, N modules in add(C) with [M] = [N]. Clearly, M <« N =
M < N= M <, N. Assume that [X, M] < [X, N] for all modules Xin C. Then, by (2.8),
we get that [M, X] < [N, X] for all X € add(C). Consider decompositions M = @;c; M;
and N = @;¢; N;, with M;, N; € add((), for i € I. It follows from Lemma 5.5 that, for
any i € I, [M;] = [N;] and M; < N;. Then, by Proposition 5.4, we get M; <ex N; for
any i € I, which clearly implies that M <., N.

5.7 Proof of Theorem 2. Let C = (()ics be a family of pairwise orthogonal standard
quasi-tubes in I'4. Assume that, for M, N € add(C) and V' € mod A4, we have [M] =
[V] = [N]and M <geg V <geg N. Clearly, then M < N. We first show that §y, p(X) = 0
for all indecomposable 4-modules X which are notin C. Let M = @;c;M; and N =
@ic; Ni, with M;, N; € add((;) for any i € 1. Then, by Lemma 5.5, we get [M;] = [N;]
and M; <. N; for any i € I. Observe that

5M,N(X) = [N’X] - [M’X] = Z([M,/Y] - [M’XJ) = Z(SMJV/(X)'
icl i€l

Therefore we may assume that M and N belong to the additive category of a quasi-tube
I' = G,. Applying now (5.3) and (5.4), we infer that there exists an exact sequence

2(U,s,0:0 - U— E(U,s,0) — ¢ p'U— 0
such that M = E(U, s, 1) ® M’ and 5y n(X) > 5y 5.(X) for all X in T'. Moreover,

bssnX) = [UD ¢~ Y'U,X] — [E(U,s,1),X]
=[U® ¢ " YUSM,X]— [E(U,s,0)®M,X] = b2,7,(X)

foranyX € mod4dandZy = M = E(U,s,)® M and Z; = UD pY'UD M. In
particular, 6y N(X) > 0z, 2, (X) for all X € T, which gives Z; <r N. By Theorem 1 we
then get Z; < N. Repeating these arguments we obtain a sequence M = Zy < Z; <
Zy < -+ <7, = Nsuchthat, foreach 0 < i < k— 1,622, = Osw.s. for the
corresponding exact sequence (U, s, ;). Observe also that dyy = Yo<j<k—107,2,.,-
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Hence, in order to prove our claim, we may assume that éy v = 65y s, for a short exact
sequence and some s,¢ > 1. Applying now Lemma 4.3(ii1), we get that 6): (U )) X=0
St

for any indecomposable module X which is not in I'. Consequently, 6y x(X) = 0 for all
indecomposable modules X which are not in . Let now I = C = (()ie; and I’ be
the union of the remaining connected components of I'4. Since M < V < N we have
MmN = Omy + 6y and prp(X) > 0, 6y n(X) > O for all A-modules X. From the first part
of our proof we know that 6y, y(X) = 0 for all X in I"’. Clearly, then 6/, y(X) = 0 for all
X inT". Applying now Lemma 2.7(ii), we conclude that ¥ € add(I"") = add((). This
finishes the proof.

6. Proof of Theorem 3.

6.1. Let C = ((3)ies be a family of pairwise orthogonal standard quasi-tubes in I'4, and
M, N two modules in add((C) with [M] = [N]. From Theorem 3.6 we know that add(()
is closed under isomorphism classes, extensions and direct summands. Moreover, by
Theorem 1, the partial orders <.y and < coincide on isomorphism classes of modules in
add(C) with the same composition factors. Therefore, by [11, Theorem 4], N is a minimal
degeneration of M if and only if there exist an exact sequence0 - U — E— V — 0
and integers m,r > 1 with the following properties:
(a) U and V are indecomposable suchthat M = E®@ U™ ' @ V"' @ Xand N =
U'"d V' @ X,and U V and E @ X have no common nonzero direct summands.
(8) U@ V is a minimal degeneration of E.
(Y) Any common indecomposable direct summand W % V of M and N satisfies

(W,N] = [W,M].
() Any common indecomposable direct summand W % U of M and N satisfies
[N, W] = [M,W].

Hence, in order to prove our theorem, it remains to show that the minimal degenera-
tions U @ V <geg E given by the exact sequences0 — U — E — V — 0, with U, V
indecomposable modules from C, coincide with those described in (iii) of Theorem 3,
and (7), (6) are equivalent to (iv) and (v), respectively. Clearly, in our case, U and ¥ must
belong to the same quasi-tube in C.

From now on let I" be a standard quasi-tube in I"4. We use the notations introduced in
Section 4.

LEMMA 6.2. Let M and N be two modules in add(I') with [M] = [N], and assume
M <geg N. Then there exists a nonsplittable exact sequence

(U,s,1):0 = U — E(U,s,0) — ¢ Y'U— 0

in add(T") such that N = U ® ¢ Y'U & N" and M <geg N' B E(U, s, 1) <geg N.

PROOF.  Since any chain of neighbours M = My < M, < --- < M, = N has at most
[N, N] — [M, M] members (see [10, (2.1)]) there exists a module W € add(T") such that
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M] = [W] = [N, M <geg W <qeg N and W <geg N is minimal. Applying Lemma 5.3,
we infer that there exists an exact sequence

(U, s,6):0 — U— EWU,s,t) — ¢ *¢Y'U— 0

in add(I") such that W = E(U, s,1) & N’ and O 5,(X) = dwn(X) for all modules X in
I, because W <geg N is minimal, and <¢ey and <r coincide on add(I"), by Theorem 1.
Hence, for X in add(I"), we get the equality

[U@ go;sd)IU’Xl - [E(U,S,t),X] = [Nv‘X] - [E(U,S, t) GBNI’X]’

This gives that
[U® ¢~ ¢'UD N, X] =[N, X]

for all X € add(T"), and finally N = U® ¢ *¢'U @ N’ by Corollary 2.8. This finishes the
proof.

PROPOSITION 6.3.  Let (U, s, t) be an exact sequence
0— U— E(U,s,t)— o *Y'U—0

with Uin the quasi-tubeT" and s, t > 1. Then the degeneration E(U, s, t) <geg Ubp—Sy'U
induced by (U, s, t) is minimal if and only if the pair (s, t) satisfies one of the conditions:
(a) s < p().
(b) t < q().
(c) s =p()and t = kq(T') for some k > 1.
(d) s = kp(T') and t = q(I) for some k > 1.

PROOF. Wesetp = p(I') and g = ¢g(I"). Assume first that one of the above conditions
(a)d) is satisfied. Suppose that there is a chain of degenerations E(U, s, f) <geg E' <geg
U ® o 5¢'U for some E' in mod A4 with [E'] = [E(U,s,)]. Since E(U,s,t) and U &
¢ ~5Y'U belong to add(I") we infer by Theorem 2 that £ € add("). Then by Lemma 6.2,
applied to £ <q4eg U @ ¢ 9’ U, we conclude that there exists an exact sequence

2(X,m,r):0 - X — EX,mr)— ¢ "Y' X—0

suchthat UD o ¢'U ~ X "y Xand E' <4eg E(X,m,r). Hence we get E(U, s, 1) <geq
EX,m,r), bsss = Osxmr) DUt s sn # Osx.mr)- We have two cases to consider:

1° Assume U ~ X and ¢ *¢'U ~ ¢~ ™" X. Then p divides m — s, and ¢ divides r —1.
Sinces < pand¢ < g, wegets < mand¢ < r. Hence, by Lemma 4.3, we have

dxmn = 25 2 dnpivin = 2 2 dxpiviny = OxUsan
0<i<r 0<j<m 0<i<r 0<5j<s

and consequently dsx m) = Ox(u..r), @ contradiction.

2° Assume U ~ o™X and X ~ o *'U. Then U ~ o "y oYU =
@~y and there exists / > 1 suchthat m+s = lpandr+t = lg. If s < p
or t < g then, by Lemma 4.3(iii), we get éxy5)(X) = dswsn(e*Y'U) = 0 while
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dsxmn(X) > 1. But this gives a contradiction because dsxm,) < Os(v,s,)- Assume that
s =pandt = kqforsomek > 1.Then!/ > k,m > kp,r > gq,and applying Lemma 4.3(ii)
we have

Ssxmny = 20 D0 Bspn 2 20 D0 dxeiwn = Ssurpay
0<i<r 0<j<m 0<i<q 0<j<kp
But by Lemma 4.4 65y kg) = O5(x kp.q)- This implies éz(x,m,) = d5(u.s,), a contradiction.
We get a similar contradiction in case s = kp and ¢t = g for some k > 1. Therefore, the
degeneration E(U, s, ) <d¢eg U ® ¢ *¢'U induced by X(U, s, £) is minimal.

Assume now that the pair (s, #) does not satisfy any of the conditions (a)+(d). We
shall show that there exists an 4-module £’ with the properties [E(U, s, )] = [E'] and
E(U, s,1) <deg E' <dgeg U® ¢ ~*¢'U. By our assumption we know thats > pand ¢ > g,
and hence applying Lemma 4.2, we infer that ¢ =~ U lies on a short cycle in add(T),
and oY/ U, forany 0 < i <s, 0 <j < 1, also lies on a short cycle in add(T"). We have
three cases to consider:

1° Assume s > p and ¢t > ¢g. Then by Lemma 4.3 there exists a nonsplittable short
exact sequence (U, s — p,t — q) and

Sss—pi—g = 2. Do Sxprony S 20 2 xurwny = bxws:
0<i<s—p 0<j<t—q 0<i<s 0<j<t

Since ¢ 519U lies on a short cycle, we have ¢”(p Y 9U) = YI(p~y'9U), and
hence, by (4.2), PP U = @ Y'U. Thendxys—pi—q) < O5,50 AN S5 5—pr—q) #
Os(v.s.py imply that E(U, s, t) < E(U,s —p,t—q), and so E(U, 5, t) <¢eg E(U,s —p,t—q).
Moreover, E(U,s —p,t—q) <geg UB " PY=9U = U ¢’ U. Hence, in this case
we may take E' = E(U,s — p,t — q).

2° Assumes = pandt = kq+m forsomem, 1 <m < q.WesetV = ¢~ *¢'U. Then

w*kpwq'm V= ‘p*kplpq*mw—sdj'u — (pf(kﬂ)pw(k‘rl)qy =U.
Applying Lemma 4.3(i1), we get
brusn = 2. 2 O

0<i<p 0<j<kg+m

>3

6 (.,
05y o;‘:‘kq s (v-iviwn))

Further, by Lemma 4.4, we have

= Os(ymU pkg)-

SxmUphg) = 5 (o rbawm Unkp.g) = O3V kp.g)

> Y2 bnpen = Oxwapgom
0<i<kp 0<j<q—m
Hence, 52((/’”) > 62( V kp.g—m) :,é 0, and 6Z(U,s,t) # 62( V kp.g—m)- Observe that U (p_sl[}'U =
V & p*Py?"V. Consequently, E(U,s,t) < E(V,kp,q — m) and so E(U,s,?) <deg
E(V,kp,q — m) <geg U P ¢*¢'U. Thus we may take E' = E(V, kp,q — m).
3° Incases = kp+r,for 1 <r < p,andt = g, the proof of the existence of the
required E’ is similar.
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LEMMA 6.4. LetX:0 — U — E — V — 0 be a nonsplittable exact sequence in
add(C) with U and V indecomposable. Assume that the induced degeneration E <4,
U ® V is minimal. Then there exists an exact sequence

(U,s,1):0 = U— E(U,s,t)— ¢ *Y'U—0
with s,t > 1 such that V = ¢*¢'U and E = E(U, s, t).

PROOF. Since the quasi-tubes in C are standard and pairwise orthogonal and the
sequence is not splittable, we infer that U and V' belong to one coil ' = (, of C. Applying
now Lemma 6.2 for M = E, N = U @ V, we get a nonsplittable exact sequence

S(W,s5,1):0 — W — E(W,s,t) — o ¢'W — 0

in add(T"), with W indecomposable, suchthat U@ V = W@ o'W ® N’ and E <g¢,
N ®EW,s,1) <¢eg UB V.Hence N' =0and U V ~ W & p~*y'W. Moreover, since
E <geg U® V is minimal, we have E = E(W,s,t) and 65 = bygw,sp. If U = W and
V = @ SyY'W then Z(U, s, ?) is the required sequence. Assume that U = ¢ ¢’ W and
V' = W. Then the exact sequence X induces an exact sequence

0 — Homy(V, U) — Homy(E, U) -~ Homy(U, U).

Since X is not splittable, we infer that g is not epimorphism, and so we get

Ssw s W' W) = bswsn(U) = 65(U) = [U® V,U] — [E, U] > 0.

Applying now Lemma 4.3(ii) we obtain the inequality

S T Sxpum(@ W) >0,
0<i<s 0<j<t

Hence there exist i and j such that 0 < i <'s,0 < j < t, and dg(,-iym(p W' W) > 0.
Then o'W = @'/ W, by Lemma 2.5(i). But then, by Lemma 4.2(iv), there exists
a positive integer / such thats — i = [pand ¢t —j = Ilg. Clearly thens > pand ¢ > gq.
The sequence Z(W,s, t) induces the same degeneration as the sequence %, and hence
the pair (s, ¢) satisfies one of the conditions (c) or (d) of Proposition 6.3. By duality,
we may assume that s = p and ¢t = kg for some £ > 1. Now, applying Lemma 4.4,
we infer that there exists an exact sequence (Y, kp,q) such that ¥ = o—¢'W = U,
oYty = W = V, E(Y,kp,q) = E(U,p,kq) = E. We see that X(U, kp, q) is the
required exact sequence. This finishes our proof.

6.5. The required fact that the degenerations U @ V' <4¢ E induced by the exact se-
quences 0 — U — E — V — 0, with U and V' indecomposable from C, coincide
with those described in (iii) of Theorem 3 is a direct consequence of Lemmas 6.3 and
6.4. Further, since E = E(U,s, ) and V = ¢ *y'U, we have that, for each indecompos-
able 4-module W, [N, W] = [M, W] if and only if Syn(W) = bswsy(W) = 0. But
Oxwsn(W) = 0O ifand only if W ¢ R (U,s,?), by Lemma 4.3(iii). This shows that
(0) is equivalent to (v). Dually, for each indecomposable 4-module W, we have that
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[W,N] = [W,M] if and only if 6}, (W) = émn(TW) = 0. Clearly, W € R (7~ U,s,1) if
and only if TW € R (U,s,t). Therefore, the conditions (7) and (iv) are also equivalent.
This finishes the proof of Theorem 3.

7. Proof of Theorem 4.
7.1. Let C be a standard coil in I’y which is not a quasi-tube. Then in any sequence
of admissible operations leading from a stable tube 7 to C, we need at last one of the
admissible operations (ad 3) or (ad 3*). But then C admits a full translation subquiver of

the form ~
X[ T X|

SN N

Y _0—e — e—e——er Y

IN NS

. VAP TS BN .
N./' . "\.N
N NN
NS N

where M % N. Moreover, if U is a module lying on the sectional pathZ - N — --- —
7Y and different from 7Y, then the middle term of the Auslander-Reiten sequence with
left term U is a direct sum of two indecomposable modules. Dually, if V' is a module
lying on the sectional path 7"Y — --- — N — 7~ Z and different from 77 Y, then the
middle term of the Auslander-Reiten sequence with right term V is a direct sum of two
indecomposable modules.

Applying now [2, Corollary 2.2] we get exact sequences

20— Z—-X1 X, M —Y—0

and
2H:0 =Y =17 X7 X ®Z—N—0.

Clearly, we have also exact sequences
23300 X1 —=Y—17X—0

and

240X —>Y—-1X,—0.

Applying now Lemma (3 + 3 + 2) in [2, (2.1)] to the exact sequences Z; and X3 we get
an exact sequence
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0—-Z—-XeM—17X —0.

Similarly, from the exact sequences X4 and X, we get an exact sequence
0—-X,—17XpZ—N—0O.
Further, applying again [2, (2.1)] to the above two sequences we obtain an exact sequence
0—-Z—-ZO&M—N—0.

Observe that [M] = [N]. Finally, by [21, Proposition 3.4], we infer that M <4, N. Then
M <g4eg N, since M % N. This finishes the proof.

7.2 We end the paper with an example illustrating the situation described above. Let 4
be the bound quiver algebra KQ/I given by the quiver

a
—
o

17N
0: ”\./5
A\

and the ideal / in the path algebra KQ of Q generated by A, a, A\BY—0u (see [4, (2.9)]).
Consider the algebraic family M,, ¢t € K, of indecomposable A-modules of dimension 9
defined by

Hy

K? —— K?

wn [T\
K K

v N,
N

Let M = M; and N = M. It is easy to see that M, ~ M forany ¢t € K\ {0} and M % N.
Clearly, M <4 N. Moreover, by [4, (2.5)], M and N lie in a standard coil in 'y of the
form
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'\/ RNZRN

|/\/\/\/\|
|\/\/\/\/g
|/\/\/\/\|
|\/\/\/\/|
|/\/\/\/\I

. ° .
|\ 7N 7N 7N /‘|

where one identifies along the vertical dotted lines. Hence, M <4z N follows also from

(7.1).
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