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ON DEGENERATIONS OF MODULES WITH 
NONDIRECTING INDECOMPOSABLE SUMMANDS 

A. SKOWRONSKI AND G. ZWARA 

ABSTRACT. Let A be a finite dimensional associative /^-algebra with an identity 
over an algebraically closed field K, d a natural number, and mod^*/) the affine va­
riety of ^/-dimensional ^-modules. The general linear group Gl̂ (AT) acts on mod^C*/) 
by conjugation, and the orbits correspond to the isomorphism classes of ^-dimensional 
modules. For M and A/ in mod^(J), N is called a degeneration of M, if TV belongs to 
the closure of the orbit of M. This defines a partial order <<jeg on mod^ (d). There has 
been a work [1], [10], [11], [21] connecting <deg with other partial orders <ext and 
< on modA(d) defined in terms of extensions and homomorphisms. In particular, it is 
known that these partial orders coincide in the case A is representation-finite and its 
Auslander-Reiten quiver is directed. We study degenerations of modules from the ad­
ditive categories given by connected components of the Auslander-Reiten quiver of A 
having oriented cycles. We show that the partial orders <ex\, <deg a nd < coincide on 
modules from the additive categories of quasi-tubes [24], and describe minimal degen­
erations of such modules. Moreover, we show that M <deg N does not imply M <ext /V 
for some indecomposable modules M and N lying in coils in the sense of [4]. 

1. Introduction and main results. Throughout the paper K denotes a fixed alge­
braically closed field. By an algebra we mean an associative finite dimensional AT-algebra 
with an identity, and by an ,4-module a finite dimensional (unital) right ,4-module. We 
shall denote by mod A the category of ̂ 4-modules, by YA the Auslander-Reiten quiver of 
A, and by TA the Auslander-Reiten translation in TA. 

In this article we are interested in geometric properties of modules with indecompos­
able summands in connected Auslander-Reiten components of a prescribed form. Let 
A be an algebra with a basis a\ — 1,^2,... ,aw and the associated structure constants 
aft. For any natural number d we have the affine variety mod^oT) of ^-dimensional A-
modules consisting in w-tuples m = (m\,..., mn) ofdxd matrices with coefficients in 
K such that nt\ is the identity matrix and /w//wy = £ mkakij for all indices / and/ The gen­
eral linear group G1</(AT) acts on mod^dT) by conjugation, and the orbits correspond to the 
isomorphism classes of ^-dimensional ,4-modules (see [16]). We shall agree to identify 
a J-dimensional A -module M with its isomorphism class, and with the point of mod^(t/) 
corresponding to it. Then one says that a module M in modA(d) degenerates to a module 
TV in mod (̂̂ T), and writes M <deg N, if the Gl</(AT)-orbit 0(N) of N is contained in the 
closure 0{M) of the Gl̂ (A )̂-orbit 0(M) of M in mod,* ((f). Thus <deg is a partial order on 
the set of isomorphism classes of ̂ -dimensional A -modules. There has been an important 
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work by S. Abeasis and A. del Fra [1], K. Bongartz [10], [11] and Ch. Riedtmann [21] 
connecting <deg with other partial orders <ext, <virt and < on the isomorphism classes 
in modA(d) which are defined in terms of representation theory as follows: 

• M <ext N: <=> there are modules M,-, Uj, Vt and short exact sequences 0 —* 
Ui —> Mi -+ Vir -» 0 in modA such that M = MuMi+\ = Ut 0 Vh 1 < i < s, 
and JV = Ms+\ for some natural number s. 

• M <vin N: 4=> M 0 X <deg N0Xfor some,4-moduleX 
• M < TV: <̂ => [X9M] < [X, N] holds for all modules X. 

Here and later on we abbreviate dim^ Hom^Z, Y) by [X, Y]. Then for modules M and 
N in modA(d) the following implications hold: 

M <ext N=>M <deg iV => M <virt N^M<N 

(see [10], [21]). Unfortunately, the reverse implications are not true in general, and it is 
interesting to find out when they are. This is the case for all modules over representation-
finite algebras A with TA directed, and hence for representations of Dynkin quivers [10], 
[11]. Finally, for a module M in mod,4, we shall denote by [M] the image of M in the 
Grothendieck group KQ(A) of A. Thus [M] — \N\ if and only if M and N have the same 
simple composition factors including the multiplicities. Observe that, if M and N have 
the same dimension and M < N, then [M] = [N]. 

We are interested in the following problem. Let C be a family of connected compo­
nents of an Auslander-Reiten quiver TA and add(Q the additive category of C. We may 
ask when M <deg N for M and N in add(0 with [M] = [N]? For preprojective compo­
nents this problem has been investigated in [10]. In particular, it was shown in [10] that, 
for C preprojective, the partial orders <ext and < coincides on add(C). An important fea­
ture of preprojective components is that they consists of modules not lying on oriented 
cycles of nonzero nonisomorphisms between indecomposable modules (directing mod­
ules [22]), and hence such modules are uniquely determined (up to isomorphism) by their 
composition factors. Here, we are interested in degenerations of modules from add(C) 
for connected components C of TA containing oriented cycles. Our interest in such com­
ponents is motivated by a result due to L. Peng — J. Xie [19] and the first named author 
[25] saying that the Auslander-Reiten quiver YA of any algebra A has at most finitely 
many rA-orbits containing directing modules. A distinguished role in the representation 
theory is played by components consisting of rA -periodic modules, called stable tubes 
(see [13], [14], [15], [22], [26]), that is, components of the form ZK^Hf), r > 1. In 
[14] d'Este and Ringel investigated components, called (coherent) tubes, which can be 
obtained from stable tubes by ray and coray insertions. In recent investigations of tame 
simply connected algebras appeared a natural generalization of the notion of tube called 
coil, introduced by I. Assem and the first named author in [3], [4]. Roughly speaking 
a coil is a translation quiver whose underlying topological space, modulo projective-
injective points, is homeomorphic to a crowned cylinder. Special types of coils are quasi-
tubes [24] whose underlying topological space, modulo projective-injective vertices, is 
homeomorphic to a tube. It is shown in [4] that coils can be obtained from stable tubes 
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by a sequence of admissible operations. Moreover, it was shown in [29] (see also [28]) 
that a strongly simply connected algebra A is (tame) of polynomial growth if and only 
if every nondirecting indecomposable ^-module lies in a standard coil of a multicoil of 
T^. We note also that quasi-tubes frequently appear in the Auslander-Reiten quivers of 
selfinjective algebras (see [24]). Recall that a component C ofTA is called standard if the 
full subcategory of mod^4 formed by modules from C is equivalent to the mesh-category 
£ ( O o f H 1 2 ] , [ 2 2 ] . 

Our first main result shows that the partial orders <ext, <deg, <vin and < coincide on 
the additive categories of quasi-tubes. 

THEOREM 1. Let A be an algebra, C = ( C W be a family ofpairwise orthogonal 
standard quasi-tubes in FA, and M, N modules in add(C) with [M] — [N]. Then the 
following conditions are equivalent: 

(i) M<extN, 
(ii) M<N, 

(Hi) [X, M] <[X,N] for all modules X in C. 

Note that the condition (iii) is rather easy to check, so the above theorem gives a handy 
criterion to decide when TV is a degeneration of M. 

Our second theorem shows the convexity of the degenerations between modules from 
the additive categories of pairwise orthogonal standard quasi-tubes of YA in the lattices 
of all degenerations between ,4-modules of a given dimension. 

THEOREM 2. Let A be an algebra and C = (G)/e/ a family ofpairwise orthogonal 
standard quasi-tubes in T^. Assume that M, N, V are A-modules such that [M] = [V] = 
[N], M <deg V <deg N, and M and N belong to add(Q- Then V belongs to add(C). 

It is well known that if 0(M) is a G\d(K)-orbit in modA(d) then the set 0(M) \ 0{M) 
is a union of orbits of smaller dimension than dim 0(M), and dim 0(M) = dim G\d(K) — 
dim StabG\d(K)(M) = d2 — [M,M] (see [16]). Hence any chain of neighbours 

M = Mo <deg M\ <deg • • ' <deg Mr = N 

in mod^(tf) has at most [N,N] — [M,M\ members (see also [10]). We shall now describe 
the minimal degenerations in the additive categories of quasi-tubes. With each coil T one 
associates in [5] two numerical invariants (p(T), #(D) which measure respectively the 
number of rays and corays in T. For T a quasi-tube, we define in Section 4 canonical 
short exact sequences 

l(U,s,t):0->U-^E(U,s,t)^(p-s^U->0 

with U and ip~siftU indecomposable modules in T, and s and t measuring the size of the 
rectangle 

$SU,s,t) = {(/?~yV\ 0<i<s,0<j< t} 

determined by U and TAV — <p~s+l i//-1 U. Then our next main result is as follows. 
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THEOREM 3. Let A be an algebra, C = (Q/e/ a family ofpairwise orthogonal 
standard quasi-tubes in FA, and M, N modules in add(Q with [M\ — [N]. Then N is a 
minimal degeneration ofM if and only ifM=E®Um-l®Vr-leX,N=Um®Vr®X, 
m,r> 1, and the following conditions are satisfied: 

(i) U(&V and E(BX have no common nonzero direct summands. 
(ii) U and V are indecomposable modules lying in one quasi-tube F = QQ ofC. 

(Hi) There exists a canonical exact sequence 

0-+U->E(U9s,t)^np-5\l/U-^0 

with E ~ E(U,s, i), V ~ ip^iftU, and s, t satisfying one of the following condi­
tions: 

(a) s<p(F). 
(b) t<q(F). 
(c) s = p(T) and t = kq(F), for some k > 1. 
(d) s = kp(F) and t — q(F), for some k > 1. 

(iv) Any common indecomposable direct summand W ^ ip^iftU ofM and N does 
not belong to the rectangle %fj^ U, s, t). 

(v) Any common indecomposable direct summand W qt U of M and N does not 
belong to the rectangle $(XU, s, t). 

From the description of the exact sequences £(£/,.?, t) given in Section 4 we then get 
the following fact (cf [11, Lemma 5]). 

COROLLARY 1. Let A be an algebra, C = (G)/e/ a family ofpairwise orthogonal 
standard quasi-tubes in FA, and M, N modules in add(T) with [M] — [N] and without 
common nonzero direct summands. If there is a minimal degeneration M <deg N, then 
no indecomposable direct summand X occurs twice in M. 

For coils which are not quasi-tubes we shall prove the following fact. 

THEOREM 4. Let A be an algebra and C a standard coil of FA which is not a quasi-
tube. Then there exist indecomposable modules M and N in C such that [M] = [N] and 
M <deg N. 

As a direct consequence of Theorems 1 and 4 we get the following corollary. 

COROLLARY 2. Let A be an algebra and C a standard coil in FA- Then C is a quasi-
tube if and only if, for any M and N in add(C) with [M] = [N], M <deg N implies 
M<extN. 

The paper is organized as follows. In Section 2 we fix the notation, recall the relevant 
definitions and facts, and prove some preliminary results on modules which we apply in 
our investigations. Section 3 is devoted to coils and their construction from stable tubes 
by admissible operations. We prove also there that the additive category add(r) of a 
standard coil F of an Auslander-Reiten quiver FA is closed under extensions. In Section 4 
we prove several facts on additive functions determined by short exact sequences in the 
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additive categories of standard quasi-tubes. Sections 5,6 and 7 are devoted to the proofs 
of Theorems 1 and 2, 3, and 4, respectively. 

For a basic background on the topics considered here we refer to [11], [16], [22] and 
[26]. 

2. Preliminaries on modules. 
2.1. Throughout the papers denotes a fixed finite dimensional associative AT-algebra 
with an identity over an algebraically closed field K. We denote by mod.4 the category 
of finite dimensional right ^-modules, by ind^ the full subcategory of modv4 formed 
by indecomposable modules, by rad(mody4) the Jacobson radical of mod^, and by 
rad°°(mod^) the intersection of all powers rad^mod^), / > 1, of rad(mod,4). By an 
^-module is meant an object from mod^. Further, we denote by TA the Auslander-
Reiten quiver of A and by r = TA and r~ = r j the Auslander-Reiten translations 
DTr and TrD, respectively. We shall agree to identify the vertices of TA with the cor­
responding indecomposable modules. For M in mod A we denote by [M] the image of 
M in the Grothendieck group Ko(A) of A. Further, for X9 Y from mod^ we abbreviate 
dim/- Hom^X, Y) by [X9 Y], Finally, for a family T of A -modules, we denote by add(r) 
the additive category given by T, that is, the full subcategory of mod A formed by all 
modules isomorphic to the direct sums of modules from T. 

2.2 Following [21], forM, Â  from mod ̂ , we s e t M < N i f and only if[X,Af] < [X,N] 
for all ,4-modules X. The fact that < is a partial order on the isomorphism classes of A-
modules follows from a result by M. Auslander (see [6], [9]). M. Auslander and I. Reiten 
have shown in [7] that, if [M] = [N] for ,4-modules M and N, then for all nonprojective 
indecomposable A -modules X and all noninjective indecomposable modules Y the fol­
lowing formulas hold: 

[X,M] - [M,TX] = [X9N] - [N,TX\, 

[M9 Y] - [T-Y9M\ = [N9Y]- [T-Y9N]. 

Hence, if [M] = [N], then M < N if and only if [M,X] < [N9X] for all A -modules X. 

2.3. Let M and TV be ,4-modules with [M] = [N] and 

Z:0-*D^E-^F->0 

an exact sequence in mod ,4. Following [21] we define the additive functions 6M,N, 5'MN> 

8% and S'z for an ,4-module X as follows: 

W f l = [N,X\ - [M,X] 

6'MrfX) = [X9N]-[X9M] 

hW = SEJXBFW = [D® F9X\ - [E9X] 

« i W = 6'EJKFVO = [X,D®F\- [X9 E] 

From the Auslander-Reiten formulas (2.2) we get the following very useful equalities 

SMMX)
 = f>Mjt(T~X), 5M,N(JX) = 8'MN(X) 

https://doi.org/10.4153/CJM-1996-057-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-057-4


1096 A. SKOWRONSKI AND G. ZWARA 

and 
a z W = «i(T-*), h(TX) = ^(X) 

for all ^-modules X. Observe also that <5M,/VC0 = 0 for any injective ^-module /, and 
Sf

MN(P) = 0 for any projective ,4-module P. In particular, we get that the following 
conditions are equivalent: 

(1) M<N. 

(2) 6MiN(X) > 0 for all Jf e in<L4. 
(3) 6'MN(X) > 0 for all X e indA. 

2.4. For an ,4-module M and an indecomposable ̂ -module Z, we denote by [i(M, Z) the 
multiplicity of Z as a direct summand of M. For a noninjective indecomposable ^-module 
U we denote by £(£/) an Auslander-Reiten sequence 

E(t/): 0 -» U^E(U) -* T'U-* 0, 

and define TT(U) to be the unique indecomposable projective-injective direct summand 
of E(U), if such a summand exists, or 0 otherwise. 

We shall need the following lemmas. 

LEMMA 2.5. Let G be an A-module and U an indecomposable A-module. Then 
(i) IfUis noninjective, then Sz(i/)(G) = p,(G, U). 

(ii) IfUis nonprojective, then SLTir.(G) = /i(G, U). 

PROOF, (i) The Auslander-Reiten sequence £(£/) induces an exact sequence 

0 -> Hom^r" U, G) -> HomA(E(U), G) -> rad(t/, G) -* 0, 

and hence we get that 

SIOJ)(G) = [U®T~ U, G] - [E(U)9 G] = [U,G]- dim* rad(I/, G) = /x(G, U) 

(ii) The Auslander-Reiten sequence £(r£/) induces an exact sequence 

0 -* HomA(G,TU) -> Hom^(G,£(TL0) -* rad(G, LO -> 0 

and hence we get the equalities 

S'nrU)(G) =[G,TU®U]- [G9E(TU)] = [G9U]- dim^rad(G, U) = M(G, U) 

LEMMA 2.6. Let T bea standard component of FA and assume that there exists in V 
a mesh-complete subquiver of the form 

Ux _ U2 __> > Ui -* Ui+l - + • • • 

I i I I 
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with all Uj, Vit i > 1, pairwise nonisomorphic. Then for any Z G add(r) the following 
equality holds 

[vl9z\-[uuz\ = Y,riz,vi) 

PROOF. Since T is standard there exist irreducible maps^: V{ —> Vi+\, g,: Uj —> Ui+\, 
hr. Vt —> Ui9 / > 1, such thatg/A/ = hj+f for all / > 1. Moreover, by [18], for any in­
decomposable modules X and Y in T, rad°°(Z, Y) = 0 (r is generalized standard in the 
sense of [27]), and hence any nonzero morphism in rad(X, Y) is a linear combination of 
the composites of irreducible morphisms between indecomposable modules in T. Clearly, 
in order to prove the lemma, we may consider an indecomposable module Z in T. First 
observe that the induced map Hom^(/zi,Z):Hom^(6ri,Z) —» Hom^(Fi,Z)isamonomor-
phism. Indeed, take a nonzero map w in Hom^(Lri, Z). Then by the above remarks there 
exists r > 0 such that w G radr(U\, Z) \ rad^* (U\, Z). Applying now the dual of Corol­
lary 1.6 in [17], we get that h\\ V\ —+ U\ is of infinite right degree, and consequently 
wh\ G rad^1 (V\,Z) \ radrf2(Fj, Z). In particular, wh\ ^ 0 and we are done. Further, we 
know that any irreducible map Vt —» W with FT indecomposable is of the form af + tp, 
if G rad2(F/, Vi+]\ or aht + V>, V> £ rad2(F/, £/,), for some a e K. Hence, if Z ^ Vh for 
any / > 1, then using the equalities gfc = hi+ f we get that the map Hom^ (h \, Z) is an 
isomorphism. Then 

[vuz]-[uuz] = o = j2Kz,Viy 

Assume Z = Vj for somey > 1. Then we get 

HomA(VuZ) = imHomA(huZ)+Kfi-\ • • -f 

where, in casey = l,fo is the identity map V\ —> Kj. Moreover, by [8],j^-i • • -/i does 
not belong to imHom^(/zi,Z), because r~F/ = £//+i 9̂  Vi+2 for any i > 1. Therefore, we 
get 

[F,,Z] - [UUZ] = 1 - /x(Z, Vj) = Zv(Z> vi) 

because the modules V\, V2, • • • are pairwise nonisomorphic. 

LEMMA 2.7. Le/ T^ = T7 U T" be a decomposition ofYA into a disjoint sum of 
connected components. Assume that M and N are A-modules such that [M\ = [N] and 
&M,N{X) = Ofor allX G add(r'). Then the following statements hold: 

(i) IfM9N G add(r') then M~N. 

(ii) M G add(r") if and only ifN G add(r/;). 

PROOF. Since eachX G mod,4 has a decomposition X = X'®X" with A" G add(r') 
andX" G add(r") it is sufficient to prove that /x(M, U) = fi(N, U) for any indecompos­
able module U in T'. Take an indecomposable module U'mY'. Assume first that U is not 
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projective. Then by our assumption and Lemma 2.5(ii) we get the equalities 

fi(N9 U) - fi(M9 U) = 6'1{TU)(N) - ^{TU)(M) 

= [N,TU® U] - [N9E(TU)] - [M,TU@U\+ [M9E(TU)] 

= 6M,N(TU)+SMAU) ~ SM,N{E(TU)) = 0 

because U9 TU, and E{rU) belong to add(r'). Assume now that U is projective. Then we 
get the equalities 

[i(M9 U) = [M9U]- [M,rad U] = [N9U]- [N9rad U] = fi(N9 U) 

because rad U £ add(r') and 5M,N(U) — 0» <5M,w(rad U) = 0. This finishes the proof. 

2.8. Let r be a connected component of FA • For modules M and N in add(T) we set 

M <T N ^=> [X9M\ < [X9N] for all modules^in add(r). 

Clearly, M < N implies M <r N. The following direct consequence of the above lemma 
shows that < r is a partial order on the isomorphism classes of modules in add(T) having 
the same composition factors. 

COROLLARY. Let M and N be two modules in add(T) such that [M] = [N]. Then 
M ~ N if and only ifM < r N and N < r M. 

Moreover, if M and TV belongs to add(r) and [M] = [N] then the following conditions 
are equivalent (see (2.3)): 

(1) M<rN. 
(2) 6M,NW > 0 for all modules X in T. 
(3) 6f

MN(X) > 0 for all modules X in T. 

3. Coils. We shall recall some basic facts on coils introduced by I. Assem and the 
first named author in [3] (see also [4]) and prove that the additive categories of standard 
coils are closed under extensions. 

3.1. A translation quiver T is called a tube [14], [22] if it contains a cyclical path and 
its underlying topological space is homeomorphic to S1 x R+ (where S] is the unit circle, 
and R+ the non-negative real half-line). Tubes containing neither projective vertices nor 
injective vertices are called stable. The rank of a stable tube F is the least positive integer 
such that irX = X for all X e F. 

3.2 The one-point extension of an algebra B by a ^-module X is the matrix algebra 

with the usual addition and multiplication of matrices. The B[X]-modules are usually 
identified with the triples (V9M9 ip), where V is a AT-vector space, M is a ^-module and 
<p\V-> YlomA(X9M) is a ^-linear map. A £[X|-linear map (V9M9 <p) —> {V'9M'9 <//) is 
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then identified with a pair (/*, g), where/: V —+ V is AMinear, g:M ^ M' is ̂ -linear and 
(p'f — HomB(X, g)(p. One defines dually the one-point coextension [X]B ofB by X (see 
[22]). 

3.3. A coil is a translation quiver constructed inductively from a stable tube by a se­
quence of operations called admissible. Our first task is to define the latter. Let B be an 
algebra and r be a standard component of FB. Recall that r is called standard if the 
full subcategory of mod B formed by modules from F is equivalent to the mesh-category 
K(F) of r (see [22]). For an indecomposable module X in F, the support S(X) of the func­
tor Hom^(X, —)|r is the factor category of K(F) by the ideal Ix of K(T) generated by all 
morphisms/: M —> N such that WomB{X,f) = 0. For an indecomposable module X in T, 
called the pivot, one defines admissible operations (ad 1), (ad 2), (ad 3) and their duals 
(ad 1*), (ad 2*), (ad 3*), modifying (r , r) to a new translation quiver (r',77), depending 
on the shape of the support S(X). 

(ad 1) Assume that S(X) is the AMinear category of an infinite sectional path starting 
atX: 

X = XQ —> X\ —> X2 —>''' 

In this case, we let / > 1 be a positive integer, D denote the full t x /-lower triangular ma­
trix algebra and Y\,..., Yt denote the indecomposable injective D-modules with Y = Y\ 
the unique indecomposable projective-injective module. We define the modified algebra 
B' ofB to be the one-point extension 

B' = [Bx D][X@ Y] 

and the modified component Ff of r to be obtained by inserting in F a rectangle consisting 
of the modules Zy = (K,Xt 0 YJ9 (J)) for / > 0, 1 <j < t, a n d ^ = (K,Xh 1) for 1 > 0. 
The translation r' of r7 is defined as follows: r'Zy = Zj-\j-\ if 1 > \J > 2, r'Za = Xt-\ 
if/ > 1, r'Zy = Yj„x if 7 > 2, Z0] = P is projective, T% = Yu r

,Xt
i = Z,_u if 

/ > 1, T'(T~XJ) = Xf
i providedXt is not an injective Z?-module, otherwise^ is injective 

in T7. For the remaining vertices of T (or TD\ the translation r' coincides with T (or TD, 
respectively). 

If now t = 0, we define the modified algebra B' to be the one-point extension Bl = 
B[X] and the modified component Tf to be the component obtained from T by inserting 
only the sectional path consisting of the Xf

i, i > 0. 
(ad 2) Assume S(X) is the AMinear category given by two sectional paths starting at 

X, the first infinite and the second finite with at least one arrow 

Yt <— • • • <— Y2 <— Y\ <— X = XQ —> X\ —• X2 —> - - -

where t> 1. In particular, X is necessarily injective. We define the modified algebra B' 
ofB to be the one-point extension B' = B[X] and the modified component Tf of F to be 
obtained by inserting in F a rectangle consisting of the modules Ztj = (K,Xt 0 Yj, (J)) 
for / > 1, 1 <j < t, a n d ^ = (K,Xh 1) for i > 1. The translation r' of F' is defined as 
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follows: P = X0 is projective-injective, r'Zy = Zj-\j-\ if/ > 2, j > 2, T'Z/I = X\-\ if 
/ > 1, r'ZXj = 77-_i if/ > 2, r'Aj = Z,_u if/ > 2, r'X\ = 7„ r'fr-A}) = A* if / > 1, 
provided Xj is not injective 5-module, otherwise Xf

j is injective in T7. For the remaining 
vertices of T', the translation r' coincides with the translation r. 

(ad 3) Assume £(.¥) is the mesh-category of two parallel sectional paths 

Yx - Y2 

! ! 
X = Xo —> X\ 

where t > 2. In particular, X,_i is necessarily injective. We define the modified algebra 
B' of B to be the one-point extension B' = B[X] and the modified component Ff to be 
obtained by inserting in T a rectangle consisting of the modules Zy = (K,Xj 0 Yj, (\)) 
for / > 1,1 <j< /, emdXf

i — {K,Xt, 1) for / > 1. The translation r' of V is defined as 
follows: P = X'Q is projective, r'Zy = Zi-\j-\ if/ > 2, 2 <j < /, r'Za — X\-\ if/ > 1, 
r'Xf

i = Yt if 1 < i < U JXt = Zi-u ifi > U T'YJ = ^ - 2 i f 2 < 7 < U r'(r-Xi) = Xt 

if / > / provided^ is not an injective 5-module, otherwiseXf
i is injective in r ; . For the 

remaining vertices of r ' , the translation r' coincides with r. We note thatJ^j is injective. 
Finally, together with each of the admissible operations (ad 1), (ad 2) and (ad 3), we 

must consider its dual, denoted by (ad 1*), (ad 2*) and (ad 3*), respectively. 

3.4. A translation quiver T is called a coil if there exists a sequence of algebras B$,B\, 
. . . ,Bm = A and components T, of T^; 0 < / < m, such that r = Tw, To is a standard 
stable tube, and for each / (0 < / < m), Bi+\ is the modified algebra Bt of Bt and r /+i 
is the modified component of T/, by one of the admissible operations (ad 1), (ad 2), 
(ad 3), (ad 1*), (ad 2*), or (ad 3*). It is shown in [3] that such a coil T is a standard 
component of TA. We refer to [4] for an axiomatic definition of a coil and examples. 
Hence any stable tube is trivially a coil. A (coherent) tube in the sense of [14] is a coil 
having the property that each admissible operation in the sequence defining it is of the 
form (ad 1) or (ad 1*). If we apply only operations of the type (ad 1) (respectively, of 
the type (ad 1*)) then such a coil is called a ray tube (respectively, coray tube). Observe 
that a coil without injective (respectively, projective) vertices is a ray tube (respectively, 
coray tube). A quasi-tube (in the sense of [24]) is a coil having the property that each 
admissible operation in the sequence defining it is of the form (ad 1), (ad 1*), (ad 2) or 
(ad 2*). The quasi-tubes occur frequently in the Auslander-Reiten quiver of selfinjective 
algebras (see [24]). Note that a coil Y in the Auslander-Reiten quiver YA of an arbitrary 
algebra A is not necessarily standard. But for any coil T there exists a triangular algebra 
A (and hence of finite global dimension) such that Y is a standard component of TA. We 
shall show now that the additive categories of standard coils are closed under extensions. 

PROPOSITION 3.5. Let B be an algebra, Y a standard component ofYs, and assume 
that add(r) is closed under extensions. Let X be the pivot of an admissible operation, 

Y, 

X,- x, x, 7+1 
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B1 the modified algebra, and Y' the modified component. Then add(r') is closed under 
extensions. 

PROOF. We may assume, by duality, that the admissible operation leading from Y to 
Y' is one of (ad 1), (ad 2), or (ad 3). For a 5-module M, we let MQ denote its restriction to 
B x Z), if the operation is of type (ad 1) with t > 1, or to B in the remaining cases. Denoting 
by UJ the extension vertex of B'9 we represent a ^'-module M as a triple (MU9MO,1M% 
where M^ is a finite dimensional A -̂vector space and 7 A/ is a AT-linear map from Mu to 
Honi£X£>(X0 Y\,Mo) or to Hom#(X,Mo), respectively. Let now 

0 - > M - > £ - * W - > 0 

be an exact sequence in modB' with M and N in add(r/). Clearly, we may assume that 
this sequence is not splittable. We get an exact sequence 

0 -> M0 -> £0 -* M) -> 0 

in mod 5 with M0 and A^ in add(F). Since add(r) is closed under extensions, we infer 
that EQ £ add(r). From the description of admissible operations in (3.3) we know that 
the vector space category HoniflXz)(X0 Y\, add(r)), if the admissible operation is of type 
(ad 1) and t > 1, and Hom5 (X, add(r)) in the remaining cases, is given by a partially 
ordered set of width at most 2. Then, since E$ £ add(F), the indecomposable direct sum-
mands of E are of the form (0, Z, 0) with Z an indecomposable 5-module lying in V (and 
hence in T), (K9Xt 0 Yj9 (J)), (K,Xh 1) or (K9 YJ91) (see [23, (2.4)] for details). Therefore, 
we must show that E has no direct summand of the form (K, Yj, 1). Suppose this is not 
the case. Then there is a nonzero map from a module (K, Yj, 1) to an indecomposable 
direct summand, say V, ofN. By our assumption, V belongs to Y'. Observe now that any 
indecomposable 5-module U in Y' with Hom^}}, U) ^ 0 is isomorphic to 7/ with / >j. 
Since the modules (K, 7/, 1) do not belong to Y\ V is isomorphic to a module of the form 
(0, Yh 0) or (K,Xi 0 Yh ([)). But it is easy to check that any map in mod^' from (K, YJ91) 
to any of the modules (0, 7/,0) or {K9X{ 0 Yh (J)) is zero. Consequently, E belongs to 
add(r;). This shows that add(r7) is closed under extensions. 

THEOREM 3.6. Let A be an algebra and Y a standard coil O/YA. Then add(F) is 
closed under extensions. 

PROOF. Let I — ann(r) be the annihilator of T in A9 that is, the intersection of the 
annihilators annX of the modules X in Y9 and B = A/I. Clearly, T is a standard coil in 
r#. Moreover, if 0 —> M ^ E ^> N ~>0isan exact sequence in modv4 with M and N 
in add(r) then MI = 09NI = 0, and so EI = 0. Therefore, we may assume that B — A9 

that is, r is a faithful standard coil of YA. Repeating now the arguments from [4, (5.4)] 
we infer that there exists a sequence of algebras C = AQ9A\ , . . . 9Am —A and a standard 
faithful stable tube T in YQ such that, for each 0 < i < m9 Ai+\ is obtained from the 
algebra ,4/ by an admissible operation with pivot in the coil T/ of T^., obtained from the 
stable tube T by the sequence of admissible operations done so far, and Y is the modified 
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coil rw = T'm__x. Hence, by Proposition 3.5, it is sufficient to show that add(T) is closed 
under extensions in mod C. Since T is a faithful standard (hence generalized standard) 
stable tube of Tc, we infer that pdcJf < 1 for any X in T (see [27, (5.9)]). Let E\,...,Er 

be a complete set of modules lying on the mouth of T. Then the modules E\,...9Erare 
pairwise orthogonal with endomorphism rings isomorphic to K (because T is standard), 
and Ext2

c(Ej,Ej) = 0 for all 1 < ij < r. Then by [22, (3.1)], add(T) is a serial abelian 
category consisting of all C-modules X having a filtration 

X = X0DX]DX2D--DXS = 0, s > h 

with X\-\ /Xj being isomorphic to one of E\,... Er, for any 1 < i < s. But then add(T) 
is closed under extensions, and we are done. 

4. Exact sequences in quasi-tubes. 

4.1. Throughout this section T denotes a standard quasi-tube in the Auslander-Reiten 
quiver TA of an algebra A. We shall investigate short exact sequences in the additive 
category add(r) in mod A given by T. Since T is standard, add(F) is equivalent to the 
additive category add(^(r)) of the mesh-category A^(r) of T. Hence we may assume 
that T is a sincere quasi-tube in TA, A is obtained from an algebra C by a sequence of 
admissible operations of type (ad 1), (ad 1*), (ad 2), (ad 2*), and T is obtained from a 
sincere standard stable tube T of Tc by the same sequence of admissible operations. By 
f we denote the translation quiver obtained from T by removing all projective-injective 
vertices. Hence, f is a tube. A vertex X of f will be said to belong to the mouth off if X 
is starting, or ending, vertex of a mesh in f with a unique middle term. The arrows off 
may be subdivided into two classes: arrows pointing to the mouth and arrows pointing to 
infinity (from the mouth). Denote by f o the set of vertices in f. We define two functions 

<^:foU{0}-^f0U{0} 

such that: </>(0) = 0, ^(0) = 0, and for X G f 0: 
• (f(X) is the starting vertex of a (unique) arrow with end vertex X and pointing to 

the mouth, if such an arrow exists, and (f(X) = 0 otherwise; 
• ^(X) is the ending vertex of a (unique) arrow with starting vertex X and pointing 

to infinity, if such an arrow exists, and tp(X) = 0 otherwise. 
In an obvious way we define also partial inverse functions 

^ - , ^ : f o U { 0 } - f 0 U { 0 } 

such that for J € f 0 w e have: 
• if~(X)= Y if ip(Y) = X, and ip~(X) = 0 otherwise; 
• ^-(X) = Y ifil)(Y) = X, and t/r(*) = 0 otherwise. 

Recall also that an infinite sectional path in f starting from a module lying on the 
mouth off and consisting of arrows pointing to infinity is called a ray. Dually, an infinite 
path in f with the ending module lying on the mouth of f and consisting of arrows 
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pointing to the mouth is called a coray (see [22]). Then one associates two numerical 
invariants (p(T), q(Tfj such that p(T) is the number of rays in f and q(T) is the number 
of corays in f. We shall use the abbreviation/? = p(T) and q — q(F). Finally, observe 
that a module X E f o lies on a ray (respectively, coray) in f if and only if ipl (X) ^ 0 
(respectively, ^(X) ^ 0) for all i > 0. 

4.2 Following [20] by a short cycle in add(r) we mean a cycle X —• Y —> X of nonzero 
nonisomorphisms between modules X and Y from T. We collect now the following prop­
erties of ip and ijj, needed in our proofs. 

LEMMA. Let X be an indecomposable module in f. Then the following statements 
hold: 

(i) X lies on a short cycle in add(r) if and only ifX lies on a ray and on a coray in 
f. Moreover, if this is the case, then yPX — ^qXand there is a cycle X-^ ipX —> 

>^X= ipPX^ >pX->X. 
(ii) Xlies on a short cycle in add(r) if and only if(fp~]X ^ 0 and ^q~xX ^ 0. 

(Hi) If X lies on a short cycle in add(F) then, for any integers i,j\k > 0, (p'lft'X = 
i/V'X = pi-b^x lies on a short cycle, 

(iv) If iplr^X = X or ifJ(plX = X then there is an integer k such that i — kp and 

j = (-k)q-

Assume that U is a module in f and s, t are two positive integers such that the modules 
(p~lilSU, 0 < / < s, 0 <j < t, are nonzero. Then 

%JLU9s9t) = {^-y"l/;0 < J < 5,0 <j < t} 

is called a rectangle of size (s, t) in f determined by U. 

4.3. Let To be the set of vertices in T. For any noninjective vertex U G To we have in 
the notation of (2.4) an Auslander-Reiten sequence 

I(t/):0 -> t/—• E(U) --> T~U-+ 0 

where E(U) = TT(C/) © i)(U) 0 if~(U)9 and ^(U) ± 0. 

LEMMA. Let U E To, s,t > 1 be integers, and assume that there exists in T a 
rectangle ^ = H^(U,s, t) consisting of nonzero and noninjective modules. Then 

(i) There exists a nonsplittable exact sequence 

Z(t/,5,0:0 -+ U-+E(U,s, t) - • <?-y £/-> 0, 

where 

E(U9s,t) = 1/U®<p-sU® I 0 © TT^-^'U)). 
\0<i<s 0</<f / 

(ii) 6z(Uf,t) — T,o<i<sT,o<j<tl>i,(ip-iipnj)-
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(Hi) <?>i(£/,j,/)(Z) > 1 for any Z G %, and b^u^fflT) — 0 for ine remaining inde­
composable A-modules Z. Moreover, if s < p(T) = p or t < q(T) — q, then 
f>i(UM)(Z) = 1 for any Z G ^ -

PROOF, (i) From our assumptions we have for any 0 < i < s and 0 < j < t 
Auslander-Reiten sequences 

o -> ip-ty t/-> ^-'"-yi/e ^~y+1 u® Triif-^u) -* <^-/"V+,i/->o. 

Applying now [2, Corollary 2.2] we get the required short exact sequence 

T.(U9s9t):0->U-^E(U,s9t)-->(p-sxl/U-+0 

with 

E(U,s,t) = il/U®<p-sU® I 0 0 7 r ( ^ - y U ) l . 
\0<i<s 0<j<t 1 

(ii) Let 

^ = 1 0 0 <p-yu) e ( 0 0 ip-yu). 
\0<i<s0<j<t ) \0<i<s0<j<t ) 

Then 

0 0 (ip-itfU® ( ^ ' - y + 1 L 0 = W® U® (p-'il/U 
0<i<s 0<J<t 

and 

0 0 Eitp-'il/U) = W®E(U9s9t). 
0<i<s 0<j<t 

Hence, for eachX G mod^, we get 

E E ttv-vi/e ^-;-y+i t/,ja - [£(^-yy>,JG) 
0</<s 0<j<t 

= [U® Lp-si)lU9X\ - [E(U9s9t\X] 

Therefore, by Lemma 2.5(i), we get 

h(u,s,,W= E E h(v-^u){X)= E E nix^-'vu). 
0<i<s 0</</ 0<i<s 0<J<t 

Since ^ = {^"y'[/;0 < / < s90 < j < t} we conclude that <5I(^V)(Z) > 1 for 
all Z G ^ and 8z(u,s,t) — 0 for the remaining indecomposable ^-modules Z. Now, if 
s < p = /?(T) or r < q = g(r) then any module Lp~l^U G ^ is uniquely determined 
(up to isomorphism) by the pair (/,/), because T is obtained from a standard stable tube 
T by a sequence of admissible operations. This shows that 8i.(u,s,t)(Z) — E A ^ ^ W C Z ) 

has value 1 on any module Z G %^. This finishes the proof. 
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LEMMA 4.4. Assume that there exists a short exact sequenceT(U,p, kq)for some k > 

1 and U G f o- Then there exists a short exact sequence "L(W, kp, q)for W = ip~p^kqU. 

Moreover, h(U,P,kq) = h(W,kP,q) andE(U,p9kq) ~ E{W,kp,q). 

PROOF. First observe that (p~p+] U has the property: ^pP-](<p-P¥l U) = U ^ 0 and 
xjj^](if-P+]U) = ip-tP-^ilj^U ^ 0, because l(U,p,kq) exists. Hence, by 4.2(H), 

ip-p+\ jj iies o n a short cycle in add(r). Then clearly the modules (p^'iftU = i^(p~lU 
for 0 < / < / ? , 0 <y < kq, also lie on short cycles in add(F), by 4.2(iii). 

Take now nonnegative integers /, c, d such that i < p, c < k, and d < q. Since 
(p~lipcq+dU and W — Lp~pi\)kq lie on short cycles in add(T), we get, again by 4.2(iii), that 

= <p-i-{k-c)p*pd+kpu 

= yP-i-V-^Pxl/tp-Pxlftu 

= tp-i-^-'-VP^W. 

From the existence of T,(U,p, kq) we know that any module X in the rectangle 

Hi = ^(U,p,kq) = {tp-'tl/U, 0 < i < p , 0 <y < *qr} 

is nonzero and noninjective. Observe now that 

^ = {(p-t^U; 0<i<p,0<c<k,0<d<q} 

= {if-^-^P^W; 0<i<p,0<c<k,0<d<q}, 

and so ^ coincides with the rectangle 

^ = %SW,kp,q) = {if-e^dW; 0 < e < kp,0 < d < q}. 

Consequently, we infer, by Lemma 4.3, that there exists a short exact sequence 

Z(W,kp,q):0 ^ W-* E(W,kp,q) -> (f^^W-^ 0 

and for any indecomposable A -module X the equalities 

hold. This gives the equality 

[U® p-piikqU,X] - [E(U,p,kq),X] = [ ^ 0 ^kp^qW,X] - [E(W,kp,q),X] 

for any X G indA. Since {/ = ^'kp^qW and (p~P^kqU = W, we then obtain that 

[£(l/,p,*qr),JG = [ £ ( ^ , ^ ^ ) , f l 

for all X G indA Therefore, E(U,p, kq) ~ E{W, kp, q), by the theorem of Auslander [6]. 
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LEMMA 4.5. Let M and N be A-modules with [M] = [N], and W € f 0. Then 

H(N, W) - n(M, W) = 8MAW) - SuAfW) - W W " W) + SM^-<pW). 

Moreover, if W is noninjective and 7r( W) ^ 0 then 

li(NMW))-ii{MMW)) = SMAW). 

PROOF. We split the proof of the first formula into two cases. Assume first that W is 
nonprojective. T h e n r ^ = ip~LpW and E(rW)-= (pW(Bip~W(&7r(TW). Applying 2.5(ii), 
we get the equalities 

M(A, W) - M(Af, W) = 6'UTW)(N) - 8'Z{TW){M) 

= ([N,\l)-<pW® W] - [N,<pW®ij-W®Tr(TW)]) 

- ([M, i>-pW® W] - [M,ipW® ij-W® TT(TW)]) 

= <W( W) + 6M,N(^~ <fW)~ SMA<P W) 

Since TT(TW) is either zero or injective and [M] = [A] we have 8M,N{K(TW)) = 0. Hence 
the required formula is true. Assume now that W is projective. Observe that then W is 
noninjective, because W G f Q. Obviously, rad W = (pW® ip'Wand Hom^^rad W) ~ 
rad(Jf, W) as K-vector spaces. We then get that 

/i(A, W) - /i(Af, W) = ([A, W] - [A,rad W]) - ([M, W] ~ [M,rad W]) 

= 6MAW) - &MA<P W) ~ <W(<T W ) -

Since either ip~(pW = 0 or i/j'tpW is injective we have SMA^'^W) — 0» a n d s o the 
required formula is true. 

Finally, assume that W is noninjective and TT(W) ^ 0. Then W = rad7r(JF), and we 
obtain that 

/i(7V, TT(PF)) - /i(M, TT(FF)) = ([A, 7r(FF)] - [A, JF]) ~ ([M * W ] ~ [M *H) 

= ^jv(7r(»0) - W * 0 = ~ ^ W 

because TT(W) is injective and [M] = [A]. This finishes the proof. 

LEMMA 4.6. Lef M and N be A-modules with [M] = [A], and U G f 0. Assume that 
a rectangle ^ ( t / , s, i) consists of nonzero and noninjective modules. Then 

J2 E W <P~"V t/) ~ /i(A/, ̂ "'Vt^) = <WV>>t/) 
o</<o o</</ 

- W(V>~ <P~5+1 U) - 8MA^~1 U) + SMA^1 tf~l V)-
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PROOF. From Lemmas 2.5(i) and 4.3(H) we get the equalities 

£ £ (/x(JV, ip-'^U) - n(M, <p-'VU)) 
0<i<s 0</</ 

= E E {h(<p-wu)(M) - ^ - ^ W ) 
0</<5 0</</ 

= [ t / 0 <p-stl>'U9N] - [E(U,s,t)9N] - [ l / e <p~V£/,A/] + [£(l/,j,0,Afl 

= 4,/v(^® ^ V £/) - ^(£(I/,S ,0) 
= SMMrU 0 r^ -VJ7) - 8M(TE(U9S, 0) 

= SMATU® ^ y - 1 t/) - 6MiNiTip-sU®nl/U) 

which is the required formula. 

5. Proofs of Theorems 1 and 2. We shall divide our proof of Theorem 1 into sev­
eral steps. We use the notations introduced in Sections 3 and 4. 

5.1. Let T be a standard stable tube in TA, and E\,..., Er a complete set of modules 
lying on the mouth of T. Then T consists of the modules xft'Ej, i > 0, 1 <j<r. For 
each k9\ < k < r, we denote by 4 ' add(T) —> N the additive function defined on 
modules ?/;'£) by 

/*y£/) = #{f G {/J + 1,... J + /} ; r divides / - A:}. 

Then it is easy to see that 

[xl/Ej] = U{fEj)[Ex] + • • • + UfEj)[Er] 

for / > 0, 1 <j < r, and hence 

[»l = / l ( T O ] + " - + ' r ( W ] 

for any module JF in add(T). Moreover, we have also the following lemma. 

LEMMA. For i > m > 0 and 1 <j,t<r, the following equality holds: 

W"Et,il/Ej] = ljWHEi). 

PROOF. Straightforward because T is a standard stable tube. 
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LEMMA 5.2. Let Y be a standard quasi-tube in YA, and assume that M and N are 
two modules in add(T) with [M] = [N] andM < r N. Then 6M,N(X) = 0 andb'MN{X) = 0 
for all but finitely many modules X in Y. 

PROOF. Assume first that T is a stable tube, say of rank r. Take s > 0 such that for 
any / > s and 1 <j<r, the module i//(£)) is not a direct summand of M ® TV. Then 
applying Lemma 5.1 we get that [M, !/>'£)] = lj{M) and [N, ip'Ej] — lj(N), which implies 
lj(N) — lj(M) = bM^WEj) > 0, because M < r N. Hence, for / > s, we have 

E 6MMfEj)[Ej]= E P - P P ; ] 
1 </<r 1 </<r 

- I E i « ] | - I E WAO[£y]) 

= [AH - [M] = 0 

Therefore, E)M,N{^1EJ) — 0 for any / > s and 1 < j < r, and so ^M,/V(X) for all but 
finitely many module X in Y. Since ^MN(Y) = £)M,N{TY) for all nonprojective modules 
Y G add(r), we get that 8'M N(X) = 0 for all but finitely many ann modules X in Y. 

Assume now that Y is not a stable tube. Since Y is a standard tube in YA/ ann(r), where 
ann(r) is the annihilator of r in A, we may assume that ann(r) = 0. Then there exists (see 
[4, (5.4)]) a sequence of algebras C = A0,A\,... ,Am^\,Am — A and a standard faithful 
stable tube T in Tc such that, for each 0 < / < m,Ai+\ is obtained from the algebra A\ 
by an admissible operation with pivot in the quasi-tube T/ of YAi., obtained from *T by the 
sequence of admissible operations (of types (ad 1), (ad 1*), (ad 2), (ad 2*)) done so far, 
and Y — Ym. Therefore, we may proceed by induction on m. The case m = 0 is discussed 
above. By duality, we may assume that A is obtained from B = Am-\ by an admissible 
operation of type (ad 1) or (ad 2). Clearly B = eAe for some idempotent e of A. Further, 
T is the modified component C of the standard quasi-tube C = Ym-\ in T#. From the 
description of C given in Section 3, we infer that the ^-modules Me and Ne belong to 
add(Q. Moreover, [M] = [N] implies that [Me] = [Ate] in K0(B). Then, for any X G C 
we get 

dimKHomB(X,Me) = [X,M\ < [X,N] = d i m ^ H o m ^ ^ , ^ ) . 

Thus Me <Q Ne, and by induction we may assume that 8Me,Ne(X) — 0 and S'MetNe(X) — 0 
for all but finitely many modules X in C. Therefore, ^^^ = 0 for all but finitely many 
indecomposable ^-modules lying in Y. From the shape of the modified component Y — 
C (see Section 3) we deduce that there exists s > 1 such that the modules Xi9 Zy, Xf

i, 
i > s, 1 <j<t, are not direct summands of M 0 N9 and there are Auslander-Reiten 
sequences in mod A 

0->X;-+ Zn 0XM -> Z/+ij -* 0 

0 —•» Zy —> Zy+j 0 Zz+î  —> Zi+î +i —* 0 

o — zi, — A ; e zi+lf / -> A;+ 1 -> o 
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for s < i, 1 < j < t. Observe also that all but finitely many modules L in T with 
L(\ — e) 7̂  0 are of the above form Z,y, X,

j. Applying now Lemma 2.6, we get, for / > s9 

1 <j <t, the equalities 

K ,M] - [ZiUM] = X>(M,X*) = 0, 
k>i 

[ZiJ9M] - [ZiJ+uM] = J2KM,Zkj) = 0, 
k>i 

[zit9M] - MM = J2KKZkt) = o, 
k>t 

and similar ones if we replace M by N. Hence 8f
MN{Ztj) — 8'MN(Xi) = ^#(A^) for / > s 

and 1 <j <t. But the modules^ belong to mod B9 and so, by the above considerations, 
8'MN{Xi) = 0 for all but finitely many/. Therefore, 8'MN(X) = 0, and hence also 8M,N(X) = 
0, for all but finitely many modules X in T. This finishes the proof. 

LEMMA 5.3. Let T be a standard quasi-tube in FA, and M, N be modules in add(T) 
such that [M] = [N] and M < r N. Assume that 8M,N(Z) i1 0/or some module Z in T. 
Then there exists a nonsplittable exact sequence 

Z(U9s9t):0 -+ U-*E(U9s,t) -» ip -^ 'U-* 0, 

for some U G fo, with 1 < s < p(T) or 1 < t < q(F), such that E(U9s9t) is a direct 
summand ofM and 8M,N(X) > ^(u,s,t)(X)for all modules X in T. 

PROOF. Take a module W G fo for which 8M,N(W) > 0- We maY assume that 
8M,N((P~W) = 0,8M9N(xl)-W) = 0 and 6M,N(tp-\l)-W) = 0. Since 8M,N(W) ^ 0 and 
[M] = [TV], we infer that W is not injective. We put 8 = 8M,N- Observe first that <p~ W is 
a direct summand of M. It is clear \fip~W= 0. Assume ip~W ^ 0. Then by Lemma 4.5 
we get that 

n(N9 if'W)- y,{M9 if~W) = 8(<p- W) - 8(^~{Lp- W)) - 6(<p(ip- W)) 

+ 6(xl)-ip(<p-WJ) 

= 6(<p~W) - 6(\l)-(p-W) - 6(W) + 6ty-W) 

= -8{W) < 0 

by our assumption on W. Hence /i(M, (f~ W) ^ 0, and so (f~ W is a direct summand of 
M. 

Take now a > 0 minimal such that 8((paW) = 0. Observe that such a exists because 
8(X) = 0 for all but finitely many X G T, by the above lemma. Further, take a pair (b9 c) 
with 0 < c < a a n d 6 > 0 minimal such that 8(i)b(pcW) = 0. Then 8{^iipjW) > 0 for 
0 < i < b9 0 <j < a. Hence, for Z = i / ^ 1 JF, we get that <p-<fl-1-->V~1Z = ^ " ( F ^ 
0, for 0 < j < a9 0 < / < b9 and is noninjective, because [M] = [N]. Applying now 
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Lemma 4.6 we get 

E E (M^VW)-KM^V^) 
1 <i<b c<j<a 

= H £ (l*(N,<p-Wz)-p(M,<p-WZ)) 
0<i<b 0<J<a~c 

= £(V>~ <̂ Z) - (5((/ FF) - <$(/ LpaW) + 6(iljbipc W). 

Observe that 8(^~ipZ) = 0. Indeed, if Z is projective then either ^~<pZ — 0 or ip~(pZ is 
injective, and hence in the both cases b{%jj~(pZ) — 0. Assume Z is not projective. Then 
ip~(fZ = (pijj~Z = ipilj~^ipa~lW = ifaW, and so 8(ip~(fZ) = 8((faW) — 0 by our 
choice of a. Since &WipZ) = 0, bitf^W) = 0 and <S((/?C FF) > 0, we obtain that 

E E {v.(N9fip>w) - /i(M,^v'r>)< o. 
1 </<& C</<f l 

Thus there is a pair (5,0 such that c < s — 1 < a, 1 < t < b and i / / ^ - 1 W is a 
direct summand of M. We set (7 = (/?5-1 JP. From Lemma 4.3 we infer that there exists a 
nonsplittable exact sequence 

T.(U,s,t):0-* U-> E(U,s,t) -> ip-'tfU-+ 0. 

Moreover, ip~sU 0 ij/U = (p~~W 0 ift(ps~] W is a direct summand of M. 
Suppose now that 5 > /?(0 = p and / > (7(0 = 4. Then y^"1 FF ̂  0, ̂ _ 1 ̂  ^ 0, 

and so FT lies on a short cycle in add(r), by Lemma 4.2. Then ipa~pW lies on a short 
cycle, and ^{ya~P W) = ^{^a~pW) = tpaW. But then S(x^ (fa~p W) = 8(tpaW) = 0, 
which contradicts the minimality of b9 since 0 < s — p <a—p < a and 0 < q < t < b. 
Consequently, 1 < s < p(T) or 1 < / < q(T). Consider now the rectangle 

%. = 3L(U,s,t) = {ip-JtfU;0 <j <s,0<i< t}. 

By Lemma 4.3(iii) we have that 8^V^4){Z) = 1 for Z G %, and Sz(u,s,t)(Z) = 0 for the 
remaining indecomposable A -modules Z. Our choice of b and the inequalities s < a, 
t < b, imply that 8(X) > 0 for all X e l Hence 8 = 8MAX) > <W,v)W for all 
modules X in T. Further, by Lemma 4.5, if TT(X) ^ 0 for some X G ̂ , then 

/i(7V, 7T(Z)) - /i(M, 7rW) - -^M,^W < 0 

and so ix{X) is a direct summand of M. Finally, since s < p(T) or t < q(T), then 

E(U,sj)= <p-sU®\l/U® I 0 TTW) 

is a direct summand of M. This finishes the proof. 
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PROPOSITION 5.4. Let Y be a standard quasi-tube in YA and M, N two modules in 
add(r) with [M] = [N]. IfM < r N then M <ext N. 

PROOF. We shall proceed by induction on T,xer0 SM,NW > 0. Observe that, by 
Lemma 5.2, this sum is finite. If Hx^r0 SM,NW — 0 then 8M,N(X) — 0 for all X G r0 , and 
so alsoN <r M. Hence,M ~ Nby Corollary 2.8, and this impliesM <ext N. 

Assume that Y.XETQ^MA^) > 0. Applying Lemma 5.3 we infer that there exists a 
nonsplittable exact sequence 

E : 0 - » D - * £ - > F - > 0 

and W G add(r) such that M = E 0 M' and 6MA*) > 8^{X) for all X G r0 . Then, for 
any X G To, we get that 

&M><s>mF^X) = [N9X] - [M' 0 D 0 F9X] 

= ([N9X] - [Mf 0 E9X\) - ([D 0 F,X] - [E9X]) 

= SM'QEMX) ~ SE,D®F{X) = < W W ~ * i W > 0-

Thus M' 0 Z) 0 F < r W, because [Af 0 Z) 0 F] = [M' 0 F] = [M] = [TV]. Observe that 
E <ext £> © F implies E < r Z) 0 F, and hence ^(X) > 0 for all X G T0 and ^(Z)) > 0, 
because X is not splittable. Hence we get 

X! &M'®D®FAX) == Zl {&MAX) ~ h(X)) < Z &MAX)-

xer0 xer0 xer0 

Therefore, M' 0 Z) 0 F <ext N by our inductive assumption. Since M — M'' 0 F and 
M' 0 E <ext M' 0 D 0 F, we have M <ext N. This finishes the proof. 

LEMMA 5.5. Let C = (©/€/ be a family of pairwise orthogonal standard quasi-
tubes in YA and M, N modules in add(C) such that [M] — [N] and [X9M] < [X9N]for 
all modulesXin C. Moreover, let M = ©/E/M/ andN = ®ieINhfor Mi9Ni G add(G). 
Then [Mi] = [Nt] and M( <c Ntfor all i G Z. 

PROOF. Assume first that Q is a stable tube, say of rank r. From the orthogonality 
of quasi-tubes in C = (0), we deduce that [M9X] = [MhX\ and [N9X] = [NhX] for all 
X G G, and hence [NJ9X] > [Mi9X] for all X G add(Q. Let Eu... 9Er be a complete 
set of modules lying on the mouth of £}. Take now n > 0 such that if \jfEk is a direct 
summand of M/ 0 N„ for some 1 < k < r, then s < n. Applying Lemma 5.1 we obtain 
that 

[Mi9xlfEk] = lk(Mi) and [M,^£*] = « M ) , 

and so /*(M;) < 4(N,), for any 1 < k <r. Since 

[M] - £ /*(M,)[F*] and [M] - E «#«)[£*] 
1 <k<r 1 <*<r 

we infer that [Mi] < [Ni]. 
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Assume now that Q is not a stable tube. As in (5.2) we may assume that there exists an 
algebra B and a standard quasi-tube T/ in T# such that A is obtained from B by one of the 
admissible operations of type (ad 1), (ad 1*), (ad 2) or (ad 2*) with pivot in r,, and Q is 
the modified component T- of T,. By duality we may assume that,4 is obtained from B by 
one of the admissible operations (ad 1) or (ad 2). Let e be an indempotent of A such that 
B — eAe. Observe that [Xe9 Y] — dim# Hom#(.Y£, Ye). Moreover, from the description 
of Q = T- we know that Mie,Nje G add(r,). Since T/ has less projective modules than 
C, by induction, we get that [M/e] < [Nte]. Further, we have Mz(l — e) = M{\ — e) = 
N{\ -e) = Ni(\ -e)9 and hence [M,] - [A4e] + [M(1 -e)] < [A/ie] + [A/i(l -e)] = [M]. 
From the equality E/e/tM] = [M] = [N] = De/[#i] we then conclude that [M,] = [JV/] 
for all / G /. Moreover, M/ <£. A// for any / G /, because the quasi-tubes in C = (C)/e/ 
are pairwise orthogonal. This proves our lemma. 

5.6 Proof of Theorem L Let C = ( C k / be a family of pairwise orthogonal standard 
quasi-tubes in TA and M, N modules in add((T) with [A/] = [N]. Clearly, M <ext N => 
M < N^M<C N. Assume that [X,M] < [X,N] for all modules X in C. Then, by (2.8), 
we get that [M,X] < |7V,X| for all X G add(0- Consider decompositions M = ©/G/A// 
and Af = ®ieINi9 with A//, N/ G add(G), for / G /. It follows from Lemma 5.5 that, for 
any / G /, [Mi] = [A/,-] andM/ <£ A//. Then, by Proposition 5.4, we get A/, <ext A/,- for 
any / G /, which clearly implies that M <ext N. 

5.7 Proof of Theorem 2. Let C = ( O / G / be a family of pairwise orthogonal standard 
quasi-tubes in 1^. Assume that, for M9 N G add(C) and V G mod ,4, we have [M] = 
[V] = [N] and M <deg F <deg N. Clearly, then M<N.We first show that <V/vW = 0 
for all indecomposable ^-modules X which are not in C. Let M — ©/G/M, and N = 
(BieiN,; with Mj,Nj G add(C) for any / G /. Then, by Lemma 5.5, we get [A//] = [A/}] 
and A// <£. A// for any / G /. Observe that 

W W - [#,*] - [M,x\ = Y,(W,X] - [Mi9X]) = E ^ , , M W -

Therefore we may assume that M and N belong to the additive category of a quasi-tube 
T = G0. Applying now (5.3) and (5.4), we infer that there exists an exact sequence 

!(£/, s, t)\ 0 -» U -> E(U9 s9 t) -> if'S^U -> 0 

such that M = E(U9 s9 t) 0 A/7 and £A/,WW > S^y^X) for all X in T. Moreover, 

«z(i/^)W = [U®<p-srl/U,X\ - [E(U9s9t)9X\ 

= [U(Bv~s^U®M'9X]-[E(U9s,t)®M\X} = 5Zo^X) 

for any X G mod ^ and Z0 = M = E(U9s9i) 0 Af' and Z\ = U 0 ^ " V ^ © Af'. In 
particular, 8M,N(X) > fc0,z, W for all I G T , which gives Z\ < r Â . By Theorem 1 we 
then get Z\ < N. Repeating these arguments we obtain a sequence M = Z$ < Z\ < 
Z2 < • < Zk = N such that, for each 0 < / < k — 1, fc,,z/+I = S^uifSht.) for the 
corresponding exact sequence I,(Uj9Si9tj). Observe also that 5M,N = Eo</<*-i ̂ zhzJ+r 
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Hence, in order to prove our claim, we may assume that 5M,N — $i.(u,s,t) for a short exact 
sequence and some s, t > 1. Applying now Lemma 4.3(iii), we get that <5 / \ (X) = 0 

for any indecomposable module X which is not in T. Consequently, 8M,NOQ
 = 0 for all 

indecomposable modules X which are not in T. Let now T" = C = (G)/e/ and T' be 
the union of the remaining connected components of TA. Since M < V < N we have 
8M,N — ^My + fiv,N and 8M,V(X) > 0,8y^(X) > 0 for all ^-modules X. From the first part 
of our proof we know that SM,N(X) = 0 for all X in Yf. Clearly, then 6M,V(X) = 0 for all 
XinT'. Applying now Lemma 2.7(h), we conclude that V G add(r") = add(0- This 
finishes the proof. 

6. Proof of Theorem 3. 

6.1. Let C = ( O / G / be a family of pairwise orthogonal standard quasi-tubes in TA, and 
M, Â  two modules in add(C) with [M] — \N\. From Theorem 3.6 we know that add(Q 
is closed under isomorphism classes, extensions and direct summands. Moreover, by 
Theorem 1, the partial orders <ext and < coincide on isomorphism classes of modules in 
add(0 with the same composition factors. Therefore, by [ 11, Theorem 4], N is a minimal 
degeneration of M if and only if there exist an exact sequence 0 —-> U —> £ —•» V —• 0 
and integers m, r > 1 with the following properties: 

(a) U and V are indecomposable such that M = E © IF1-1 0 r - 1 0 X and JV = 
[ T 9 P ' ® ! , and U 0 K and £ 0 J f have no common nonzero direct summands. 

(/3) U 0 V is a minimal degeneration of £. 
(7) Any common indecomposable direct summand W qd V of M and Af satisfies 

[W,N] = [W,M]. 
(8) Any common indecomposable direct summand W qfa U of M and Af satisfies 

[N, W] = [M, FF]. 
Hence, in order to prove our theorem, it remains to show that the minimal degenera­

tions [ /®K <deg E given by the exact sequences 0—>£/—>£—> F —-» 0, with U, V 
indecomposable modules from C, coincide with those described in (iii) of Theorem 3, 
and (7), (8) are equivalent to (iv) and (v), respectively. Clearly, in our case, U and V must 
belong to the same quasi-tube in C. 

From now on let T be a standard quasi-tube in YA • We use the notations introduced in 
Section 4. 

LEMMA 6.2. Let M and N be two modules in add(T) with [M] = [N], and assume 
M <deg N. Then there exists a nonsplittable exact sequence 

I.(U,s,t):0-> U-*E(U,s,t) -> ip-'^U-* 0 

in add(L) such thatN=U® (p~sf U®N' andM <deg N' 0 E(U,s,t) <deg N. 

PROOF. Since any chain of neighbours M — M0 < M\ < • • < Mr = N has at most 
[N, N] - [M,M] members (see [10, (2.1)]) there exists a module W G add(f) such that 
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[M\ = [W] = [TV], M <deg W <deg N and W <deg TV is minimal. Applying Lemma 5.3, 
we infer that there exists an exact sequence 

S(LU, f): 0 -» £/ -> E(U,s, t) -> tp-'tp'U-* 0 

in add(r) such that JF = £(£/,$, 0 © # ' and S1{U^t)(X) = £ H W W for all modules X in 
T, because W <deg N is minimal, and <deg and <r coincide on add(T), by Theorem 1. 
Hence, for X in add(F), we get the equality 

[U®<p-sil/U9X] - [E(U9s,t),X] = [N,X] - [ £ ( U , s , 0 e i V , 4 

This gives that 
[U®ip-srl/UeN'9X] = [N9X] 

for all X G add(H, and finally N=U® ip-'tfU® N' by Corollary 2.8. This finishes the 
proof. 

PROPOSITION 6.3. Let I(£/,s, i) be an exact sequence 

o -> u -> £ ( L U , o -> ^ - - y jy --> o 

w///i Uin thequasi-tubeYands9t > 1. Then the degeneration E(U9s9t) <deg £/0(/?~yC/ 
induced by £(£/, s, 0 w minimal if and only if the pair (s9 t) satisfies one of the conditions: 

(a) s<p(T). 
(b) t < q(T). 
(c) s — /?(0 a«^/ / = kq(T)for some k > 1. 
fc/j ^ = Ap(r) aw*/ / = q(F)for some k > 1. 

PROOF. We set/7 = /?(r) and g = #(r). Assume first that one of the above conditions 
(a)-{d) is satisfied. Suppose that there is a chain of degenerations E(U, s9 t) <deg E1 <deg 

U 0 if~sfU for some £' in mod A with [£'] = [£(t/,s,0]. Since E(U9s9t) and t/ 0 
<^~y £/ belong to add(r) we infer by Theorem 2 that E' G add(r). Then by Lemma 6.2, 
applied to £' <deg U 0 < ^ - y £/, we conclude that there exists an exact sequence 

T(X9 /w, r): 0 -> X -> £(*, m, r) -* </T"y^ -> 0 

s u c h t h a t ^ 0 ( ^ y ^ ~ ^ 0 ( / ? - m V / T a n d £ ' <deg E(X, m,r). Hence we get E(U,s,t) <deg 

E(X, m9 r), î((/,5,o > h(X,m,r) but 5^/^) ^ <5i(A>,r)- We have two cases to consider: 
1° Assume U ~ X and (^~y U ~ (p~miprX. Then/7 divides m —s, and </divides r—t. 

Since s < /? and K ^, we get s < m and £ < r. Hence, by Lemma 4.3, we have 

<5l(A>,r) = Z Z ^Z(^-V^) > Z Z (̂̂ -''V'CO = <W,V)> 
0</<r 0</</w 0</</ 0</<5 

and consequently (̂A',™,/-) = <5x(t/,.s,rb a contradiction. 
2° Assume £/ ~ if~m^rX and X ~ ^ y (7. Then 17 ~ y-m\jfy~s$*U = 

(p-(m+s)t(j;H-ty a n (j ^j-g e x i s t s / > J s u c h t^ a t m + s = lp and r + t — Iq. If s < p 

or t < q then, by Lemma 4.3(iii), we get 8^UySj)(X) = ^{u^^i^^U) — 0 while 
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<5i(A>,r)W > 1- But this gives a contradiction because <$i(A>,r) < £i(t/,*,/)- Assume that 
^ = p and t = kq for some A: > 1. Then I > k,m >kp,r>q, and applying Lemma 4.3(ii) 
we have 

<5l(A>,r) = XI XI fiziip-J-VX) > X X ^(ip-J^X) ~ Sl.(X,kp,q)' 
0<i<r 0<j<m 0<i<q 0<j<kp 

But by Lemma 4.4 fa(u,P,kq) = ^(X,kP^)- T m s i m P l i e s <5i(A>,r) = &nuj,t)9 a contradiction. 
We get a similar contradiction in case s — kp and f = q for some & > 1. Therefore, the 
degeneration E(U, s, t) <deg U 0 ip^^U induced by £(£/, s, t) is minimal. 

Assume now that the pair (s, i) does not satisfy any of the conditions (a)-(d). We 
shall show that there exists an ,4-module E' with the properties [£(£/, s,t)] — [Ef] and 
E(U, s, i) <deg E' <deg £/ 0 tp'^'U. By our assumption we know that s > p and t > q, 
and hence applying Lemma 4.2, we infer that (p~{s~l)U lies on a short cycle in add(T), 
and (f^ifJU, for any 0 < / < s, 0 <j < t, also lies on a short cycle in add(r). We have 
three cases to consider: 

1° Assume s > p and t > q. Then by Lemma 4.3 there exists a nonsplittable short 
exact sequence £(£/, s — p,t — q) and 

h(U,s-p,t-q) = X X ^I(v?-''i/V'L0 - X X fil(ip-'i)iU) ~ bz(U,s,t)-
0<i<s-p 0<J<t~q 0<i<s 0<J<t 

Since tp^ifj'^U lies on a short cycle, we have <^((/?_5t//-<7(7) = ^(ip^^^U), and 
hence, by (4.2), ^-{s~P)f-qU = (f~s^U. Then h{v^-P,t-q) ^ ^ t / ^ a n d ^ ^ . ^ ) ^ 
Sz(u,s,t) imply that £(£/, 5, f) < £((/, s—p,t — q), and so £(£/, 5,0 <deg E(U,s—p,t — q). 
Moreover, £(<7, 5 - / ? , / - <?) <deg £/© ip-{s-p)\l)t~q U = (70 (f-sfU. Hence, in this case 
we may take E' = E(U,s — p,t — q). 

2° Assume 5 = /? and t — kq + mfox some w, 1 < m < q. We set F = (f^^U. Then 

^ - * / y ? - T = ip-kp^-mif-siljtU= ip-<
M^k+l*U= U. 

Applying Lemma 4.3(ii), we get 

fil(Uj,t) ~ X X ^I(^-'^L0 
0</</? 0<J<kq+m 

Further, by Lemma 4.4, we have 

^(^mU,p,kq) — ^lL{^P^^mU),kp,q) ~ ^(V,kp,q) 

> X X *z(< -̂'yn = ^(Kjip^-ifi). 
0</<Ap 0<j<q-m 

Hence, ̂ ( ^ ^ > 6nvMq-m) ^ 0,and<$Z((;,v) ^ h{v,kP,q-m)- Observe that U®ip~s\l/U = 
V 0 (f-kP^-mV. Consequently, E(U,s,t) < E(V,kp,q - m) and so E(U,s,t) <deg 

£(T, &/?, q — m) <deg £/ 0 (f~si>fU. Thus we may take £' = £(T> &/?, g — m). 
3° In case 5 = Ap + r, for 1 < r < p, and t — q, the proof of the existence of the 

required E' is similar. 
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LEMMA 6.4. Let £: 0 —> U —» E —> F —> 0 6e a nonsplittable exact sequence in 
add(C) vwYA £/ â af F indecomposable. Assume that the induced degeneration E <deg 

(7 © F w minimal. Then there exists an exact sequence 

Z(U9s9t):0 -> £/'-> E(U,s,t) -> </?->'£/'-* 0 

w/7/i 5, f > 1 such that V = (p~sipf U and E = E(U9s9 t). 

PROOF. Since the quasi-tubes in C are standard and pairwise orthogonal and the 
sequence is not splittable, we infer that U and V belong to one coil T = d0 of C. Applying 
now Lemma 6.2 for M = E9 N = U © V, we get a nonsplittable exact sequence 

Z(W9s9t):0^ ^ ^ £ ( ^ , M ) - - * < ^ V ^ - - * 0 

in add(H, with W indecomposable, such that U®V= W® (p'^W® N' and E <deg 

Nf © E( W, s9 t) <deg U®V. Hence AT7 = 0 and U © K ~ ^ © y r V ^ Moreover, since 
E <deg ^ © F is minimal, we have E = E{W9s9f) and 8% = <5s(^V). If U = W and 
K = ^""^'frthen l(£/ ,s ,0 is the required sequence. Assume that U = Lp~s'I/J* W and 
V —W. Then the exact sequence I induces an exact sequence 

0 —> Hom„(F, LO — • Hom„(£, U) -^ HomA(U9 U). 

Since X is not splittable, we infer that g is not epimorphism, and so we get 

« T O r V ^ = <W,^)W = h(U) =[U®V9U]-[E,U]>0. 

Applying now Lemma 4.3(ii) we obtain the inequality 

E E h(V-^w)^-s^w) > o. 
0<i<s 0<J<t 

Hence there exist / andy such that 0 < i < s, 0 <j < t9 and S^-i^w^ip^^W) > 0. 
Then (p^ip'W = tp~ltyW, by Lemma 2.5(i). But then, by Lemma 4.2(iv), there exists 
a positive integer / such that s — i — Ip and t—j = Iq. Clearly then s > p and t > q. 
The sequence Z(W9s9 t) induces the same degeneration as the sequence I , and hence 
the pair (s,t) satisfies one of the conditions (c) or (d) of Proposition 6.3. By duality, 
we may assume that s = p and t = kq for some k > 1. Now, applying Lemma 4.4, 
we infer that there exists an exact sequence H(Y9kp9q) such that Y = (p^ip'W — U9 

y-kp^qy = jy = V, E(Y9kp9q) = E(U9p9kq) = E. We see that T,(U9kp9q) is the 
required exact sequence. This finishes our proof. 

6.5. The required fact that the degenerations U © V <deg E induced by the exact se­
quences 0 —• U —> E —> V —-> 0, with U and V indecomposable from C, coincide 
with those described in (iii) of Theorem 3 is a direct consequence of Lemmas 6.3 and 
6.4. Further, since E — E(U9s9 t) and V = (p~sijJU9 we have that, for each indecompos­
able ^-module W, [N9W] = [M9W] if and only if 8MJ4W) = <W,v)W = 0- But 
fii.{Uj,t)(W) = 0 if and only if W $ %JU9s9i)9 by Lemma 4.3(iii). This shows that 
(6) is equivalent to (v). Dually, for each indecomposable ^4-module W9 we have that 

https://doi.org/10.4153/CJM-1996-057-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-057-4


ON DEGENERATIONS OF MODULE 1117 

[W,N] = [W,M] if and only if 6f
MN(W) = 8MIN(TW) = 0. Clearly, W E ^(T~U,s,t) if 

and only if rW E ^(U,sJ). Therefore, the conditions (7) and (iv) are also equivalent. 
This finishes the proof of Theorem 3. 

7. Proof of Theorem 4. 

7.1. Let C be a standard coil in FA which is not a quasi-tube. Then in any sequence 
of admissible operations leading from a stable tube T to C, we need at last one of the 
admissible operations (ad 3) or (ad 3*). But then C admits a full translation subquiver of 
the form 

Xi r'Xx 

/ * 2 \ y/lr-x\ 
TY • >• • • > • >%T~Y 

/ \ / \ / X 

• • 
/ Xi T~Xy \ 

• • T Z Z # # 

• • 
M M 

where M qkN. Moreover, if U is a module lying on the sectional path Z —> N —> • • • —> 
T 7 and different from rF, then the middle term of the Auslander-Reiten sequence with 
left term U is a direct sum of two indecomposable modules. Dually, if V is a module 
lying on the sectional path r~ 7 —* • • • —> TV —> r - Z and different from T~ F, then the 
middle term of the Auslander-Reiten sequence with right term V is a direct sum of two 
indecomposable modules. 

Applying now [2, Corollary 2.2] we get exact sequences 

ii:0->z->Ar
1eAr

2eM-+r->o 

and 

E2:0 -+ 7-> T"XI 0 T ~ Z 2 ® Z ^ #--> 0. 

Clearly, we have also exact sequences 

and 

S4:0 -> X2 -* Y -> T" X2 -> 0. 

Applying now Lemma (3 + 3 + 2) in [2, (2.1)] to the exact sequences I j and Z3 we get 
an exact sequence 
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0 - ^ Z - * X 2 ® M - > T - X , -->0. 

Similarly, from the exact sequences Z4 and I2 we get an exact sequence 

0^X2-^r-Xl ®Z->N-^0. 

Further, applying again [2, (2.1)] to the above two sequences we obtain an exact sequence 

Observe that [M] = [TV]. Finally, by [21, Proposition 3.4], we infer that M <deg N. Then 
M <deg N, since M qtN. This finishes the proof. 

7.2 We end the paper with an example illustrating the situation described above. Let A 
be the bound quiver algebra KQ/I given by the quiver 

a 

v ̂  \ 

and the ideal / in the path algebra KQ ofQ generated by A a, on, A/37 — 6/x (see [4, (2.5)]). 
Consider the algebraic family Mt, t G K, of indecomposable ,4-modules of dimension 9 
defined by 

2 Bil 2 
1/1 < 1/1 

™j Ti?T\[i] 
K K 

A: 

Let M = Mi and TV = Mo. It is easy to see that Mt ~ M for any t e K\ {0} and M cfcN. 
Clearly, M <deg N. Moreover, by [4, (2.5)], M and N lie in a standard coil in T^ of the 
form 
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• • • 
| \ / \ / \ 

| / \ / \ / \ / \ I 
• • • • • 
\\y \ / \ /• \ /1 
| • • • •# I 

i/\ / \ / \ / \ i 
• • • • • 

i\/ \ / \ / \ /1 
| • • • *M \ 

\ / \ / \ / \ / \ \ 
• • • • • 

where one identifies along the vertical dotted lines. Hence, M <deg N follows also from 
(7.1). 
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