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Models for mapping quantitative trait loci (QTL) in
progeny of non-inbred parents and their behaviour in
presence of distorted segregation ratios
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Summary

In plants, models for mapping quantitative trait loci (QTL) based on flanking markers have been
mainly developed for progenies of inbred lines. We propose two flanking marker models for QTL
mapping in F1 progenies of non-inbred parents. The first is based on the segregation of four
different scorable alleles at a marker locus (the four-allele model) and the second (the common-
allele model) on one scorable allele per marker locus segregating in both parents. These models are
suitable for the majority of the allelic configurations which may occur in crosses between
heterozygous parents. For both cases, when four scorable or one common-allele per marker locus
segregate, additional algorithms were developed to estimate the recombination frequency between
two marker loci. Tests carried out with simulated populations of various sizes indicate that the
models provide a good estimate of QTL genotypic means and of recombination frequencies
between flanking markers and between the marker loci and the QTL. The estimates of QTL
genotypic means have a higher precision than the estimates of recombination frequencies. The
four-allele model shows a higher ability to detect QTLs than the common-allele model. If
segregation ratios are distorted, the power of both models and the precision of the estimates of
recombination frequencies are reduced, whereas the accuracy of estimates of QTL genotype means
is not affected by distorted segregation ratios. The power of the common-allele model is
substantially reduced if QTL genotypic means depend on additive allelic interactions, whereas the
four-allele model is less affected by the non-additive behaviour of QTL alleles.

1. Introduction

The quantitative variation which can be observed in
populations of living organisms has a genetic com-
ponent depending on small effects of numerous genes
distributed over the whole genome (Nilson-Ehle, 1909;
East, 1916). The loci influencing quantitative inherited
traits are called quantitative trait loci (QTLs,
Geldermann, 1975). The linkage between major genes
and QTLs was first analysed considering a limited
number of morphological markers (Sax, 1923;
Rasmusson, 1933). Molecular markers such as RFLP
(restriction fragment length polymorphisms), RAPDs
(random amplified polymorphic DNA), micro-
satellites and markers based on AFLP technique (Vos
et al. in press), have been recently developed, which
are, in principle, unlimited in number and allow the
construction of highly saturated linkage maps (Phillips

* To whom correspondence should be addressed.

& Vasil, 1994). In crop plants, RFLP markers map at
distances between 1 and 20 Centimorgans and can be
efficiently used for QTL mapping.

The linkage of a QTL to a single marker locus has
been investigated using linear models (Soller & Brody,
1976; Soller et al. 1979; Edwards et al. 1987, 1992;
Osborn et al. 1987; Stuber etal. 1987, 1992; Tanksley
& Hewitt, 1988; Martin et al. 1989). These models
tend to underestimate the effect of QTLs since the
contrast between the mean values of a trait in two
subpopulations with alternate marker alleles decreases
when distance from a putative QTL to a marker locus
increases (Lander & Botstein, 1986, 1989; Knapp,
1989). Nonlinear single marker models which estimate
the effect of a QTL and the recombination frequency
between a marker and a QTL have been published. In
these models, however, the precision of relevant
parameter estimates decreases when the recombi-
nation frequency increases (Weller, 1986).

Flanking marker models describe the location of
putative QTLs within an interval defined by two
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linked marker loci. These models utilize more genetic
information and, as a consequence, the estimate of the
recombination frequency between marker loci and the
QTL is more efficient (Weller, 1987; Lander &
Botstein, 1989; Knapp & Bridges, 1990; Knapp et al.
1990; Jansen, 1992; Knapp, 1994). Lander & Botstein
(1989) proposed a linear model where values of QTL
genotypes were estimated by treating them as missing
values. Jansen (1992) introduced a 'general mixture
model' for several flanking marker configurations.
Knapp et al. (1990) have elaborated nonlinear models
for several types of segregating populations and used
linear least square methods to estimate unknown QTL
parameters.

Methods and models published so far for QTL
analysis in plants are mainly designed for populations
descending from inbred lines. For several reasons,
however, inbred lines cannot be routinely obtained in
some crop plants. A few cases were reported where
QTLs have been allocated to chromosomes by
adapting models developed for progenies of inbred
lines (Leonards-Schippers et al. 1994). Haley et al.
(1994) described a linear least square method to be
used in crosses between outbred lines, where, for a
series of fixed putative QTLs, phenotypic values are
regressed onto additive and dominance coefficients for
each individual.

In this paper, we describe flanking marker-based
models for QTL analysis designed for F1 populations
derived from crosses among heterozygous parents. In
addition, we propose models for the estimation of the

2. Methods and results

(i) Flanking marker model based on four sorable
alleles per marker locus (the four-allele model)

In the F1 population derived from crossing of non-
inbred parents, up to four different alleles can exist at
a marker locus. Let A,, A2, A3, and A4 denote the
alleles at the marker locus A, and B,, B2, B3, and B4

those at the locus B. Q,, Q2, Q3, and Q4 denote four
different alleles at a putative QT locus lying in the
interval between loci A and B. When the parents PI
and P2 of a cross have the allelic configurations
A,A2Q,Q2B,B2 and A3A4Q3Q4B3B4, respectively, the
four non-recombinant genotypes AIA3Q,Q4B,B3,
A^&QtBfr, A2A3Q2Q3B2B3 and A2A4Q2Q4B2B4 are
expected in equal frequency in their Fa progeny (Fig.
1). In such a cross, however, and without consideration
of double crossover events, the recombination between
the two marker loci and the QTL generates up to 36
different genotypes. Given the fact that both the
existence and the position of the QTL are unknown,
only 16 different marker genotypes are scorable in the
Ft progeny (Table 1).

Let rl and r2 denote the recombination frequency
between A and QTL and B and the QTL, respectively,
while ql 3, ql4, q23 and q24 correspond to the average
value of the QTL genotypes Q,Q3, Q,Q4, Q2Q3 and
Q2Q4, respectively. When the alleles at the two marker
loci are linked in coupling (A,, B, and A2, B2 for PI
and A3, B3 and A4, B4 for P2), then
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recombination frequency R between two marker loci.
To test the accuracy of the parameter estimated by the
models, QTL mapping experiments have been simu-
lated and the results presented.

where Y represents the value expected for the trait
mean of the marker classes m, to ml6, while e is the
experimental error, m, to ml6 are dummy variables
given to the marker classes (a class groups all
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Fig. 1. Inheritance of a QTL flanked by marker loci A
and B in the F, generation derived from crosses of
heterozygous plants. Only the four non-recombinant
genotypes are shown.

individuals with identical marker genotypes). If, for
example, the marker genotype is A,A3B,B3, then the
variable m, = 1, m2 to m,6 are 0 and Y represents the
expected value of the marker genotype A,A3B,B3 (Y =
ql3), and so on. Y is a nonlinear function of the
unknown parameters rl, r2, ql3, ql4, q23 and q24,
which can be estimated using least square methods
(see below). The QTL parameters which are estimated
using this model are those listed in the first column of
Table 3.

(ii) Flanking marker model based on one scorable
allele per marker locus common to both parents
{common-allele model)

Flanking marker models for QTL analysis have been
developed for F2 populations derived from inbred
lines (Lander & Botstein, 1989; Knapp, 1990). In
these models, two marker alleles, A, and A2, are scored
at the locus A, and two others, B, and B2, at the linked
locus B. Given an F1 with the allelic configuration

A2Q2B2 A2Q2B

nine different marker genotypes will be present in F2.
Including the three QTL genotypes QtQ,, Q,Q2 and
Q2Q2, 27 different genotypes should be considered by
the model. When only one marker allele can be scored
per locus (in the case of, for example, genetic maps
based on RAPD markers), the marker will segregate
in an F2 with a 3:1 ratio (presence v. absence). In
crosses among heterozygous parents a proportion of
the segregating marker alleles are common to the
heterozygous parents PI and P2. In such an F1; if one
of the two alleles is scored as null ( = absence of the
RFLP band; Gebhardt et al. 1991, 1994), the markers
will segregate according to a 3:1 ratio. We will
consider a cross where two flanking marker loci are
flanking a QTL. This configuration can be written as

A0Q0B0

where A, and B, indicate the scorable, common
marker alleles and Ao and Bo the non-scorable ones.
The marker loci have to be linked in coupling, since

Table 1. Marker classes, marker genotypes and possible QTL genotypes
in an F, population where four alleles segregate at both marker loci A
and B

Marker class Marker genotype QTL genotypes

m0
mu
m,
m,

A,A3B,B3

A,A4B,B4

A,A3B,B4

A,A4B,B3

A,A3B2B3

A2A4B,B4

Q,Q3

Q,Q<
Q2Q3

Q2Q<
Q,Q3
Q,Q3
Q,Q3
Q,Q3
Q,Q<
Q,Q4
Q2Q3
Q2Q3
Q,Q3
Q,Q3
Q,Q3
Q,Q3

or Q,Q4

or Q,Q4

or Q2Q3

or Q2Q3

or Q2Q4

or Q2Q4

or Q2Q4

or Q2Q4or Q2Q4
or Q,Q4 or Q2Q3 or Q2Q4
or Q,Q4 or Q2Q3 or Q2Q4
or Q,Q4 or Q2Q3 or Q2Q4
or Q,Q4 or Q2Q3 or Q2Q4
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the repulsion type and coupling/repulsion type of
linkage cannot be distinguished based on distribution
of marker phenotypes (Ritter et al. 1990). In the F1

population only four different marker phenotypes will
be distinguished (Table 2).

Let rl and r2 again denote the recombination
frequency between the locus A and the QTL and locus
B and the QTL, respectively, while qll, qlO and qOO
correspond to the means of the QTL genotypes Q,Q,,
Q,Q0, and Q0Q0, respectively. Setting R = rl + r2,
where R is the recombination frequency between
Locus A and locus B, and assuming that the alleles at
the two marker loci are linked in coupling, then

where AW represents the number of individuals with
the same genotype expected to be present in the
marker classes from m, to ml6, and NT is the
population size of the F r NN is a nonlinear function
of the unknown parameter R, which can be estimated
using least square methods (see later).

The factorization of (3) leads to the equation

NN = (mt + m2 + m3 + m4) * ( | - | * Rf * NT

+ (m5 + ma + m7 + ms + mg + mw + w u + m12)

(4)*\*R2*NT.

j R2 * (qll * r22 + 2 * glO * rl • rl + g00 * r\2) 1

1 R2 *(q\l* r\2 + 2* qW * rl * * r22)

+ m,*-
2*rl*r2 + rl -+mi*q00 + e, (2)

where Y represents the expected value for the trait
mean of the marker classes m, to m4, and e is the
experimental error, m, to m4 are dummy variables
given to the marker classes as described for the
previous model. Y is a nonlinear function of the
unknown parameters rl, r2, qll, qlO and qOO, which
can be estimated using least square methods (see
later).

(iii) Estimation of the recombination frequency
between the marker loci A and B

In the models described above, rt and r2 are not
known. The relationship between r, and r2 can be
expressed as RHO = rl/(rl+r2) = rl/R (Knapp et
al. 1990, see Appendix I and II), thus, an estimation of
R is required to calculate the values for r, and r2.

An appropriate model for estimating R between
marker loci with four scorable alleles per locus is:

The equivalent equation for estimating the recom-
bination frequency R between two marker loci with
one common allele each is:

NN^m^il* ( f - i * R)2 + 2 * {\-\*R) *R)*NT

+ (m2 + m3)*(l* R2 + {\-\* R)* R)* NT

+ mt*l*R2*NT, (5)

where NN represents the expected number of marker
genotypes in the marker classes m, to m4, and NT is
the population size. Thus, NN is a nonlinear function
of the recombination frequency R, which can be
estimated as described below.

(iv) Simulations, parameter estimation and test
statistics

SAS programs were developed using the SAS-
functions RANNOR and RANUNI (SAS Institute

NN = mx * ( i - i* R)2 * NT+ m2 * (f-± * R)2 * NT+m3 * (i-f * R)2 * NT+m, * (i-f) * R2 * NT

+ m5*±*(l-R)*R*NT+m6*l*(l-R)*R*NT+m7*\*(l-R)*R*NT+ms*l*(l-R)*R*NT

+ m<)*±*(l-R)*R*NT+mlo*l*(l-R)*R*NT+m11*l*(l-R)*R*NT+m12*l*(l-R)*R*NT

+ m13 * ±R2 * NT+ m14 *±R2 * NT+ m15 * AR2 * NT+ m16 * ±R2 * NT, (3)
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Table 2. Marker classes, marker phenotypes, marker genotypes and
possible QTL genotypes in an F, population where one allele common to
both parents segregates at both marker loci A and B

Marker Marker
Marker class phenotype genotype QTL genotypes

A,AIB,B!

QiQ, or Q,Q0
Q,Q, or Q,Q0
QiQ, or Q,Q0 or Q0Q0
QiQi or QjQo or Q0Q0
QiQo or QoQo
Q,Q, or Q,Q0 or Q0Q0
Q,Qo or QoQo
QoQo

Inc., 1990) which assemble virtual populations with
the marker allele configurations as described in the
previous sections and with given values of the
parameters which are usually estimated by the two
models. Double crossover events were not considered.
Populations with a size of 100, 200 and 1000 Fx

individuals were created 200 times, each time with
different SEED-values for the RANNOR- and
RANUNI-functions. For each of these replications
new normal distributions were generated as follows:
with a variance of 2; with fixed values for the
parameters rl and r2; and with mean values for QTL
genotypes specified as parameter for the RANNOR-
function. Similar test simulations were performed
with 1000 datasets, enlarging the size of the T1 from
35 to 1035 in steps of 1, to analyse the relationship
between the population size and the average P value
(see also later and Table 3), where the P value is the
probability of the non-existence of a QTL. The lower
the value of p, the more likely is the existence of a
QTL. In all cases, the largest variation among QTL
genotypic values was approximately 1 standard
deviation.

In simulations performed with fixed population
sizes, the average values for QTL genotypes were
chosen assuming codominant inheritance and no
epistasis. In simulations with increasing population
sizes additional average values for QTL genotpes were
set according to non-additive allelic interactions.
Distorted segregations ratios were simulated by
reducing the frequency of one non-recombinant
gamete from 05 to 0-2, while adjusting the sum of all
gamete frequencies to 1. After having created the
populations according to the chosen frequencies of
gametes, Chi-square tests were performed to determine
the significance of the deviation of the observed
segregation ratio from the ratios 1:1:1:1 and 3:1.

The methods of parameter estimation and test
statistics described below for the analysis of a putative
QTL located in an interval between two segregating
markers have been first utilized and adopted for QTL

analysis in F2 and BC populations by Knapp et al.
(1990).

To estimate the parameters of the models, iterative
techniques of the NLIN procedure (SAS Institute,
Inc., 1989) were used. As the four-allele and the
common-allele models described above are nonlinear
regression functions with unknown parameters, NLIN
treats them as a series of linear regressions at each
iteration step and evaluates the residual error sum of
squares. The vector of the unknown parameters is
changed at each iteration step, until the error sum of
squares is minimized. The Gauss-Newton method
was chosen to compute parameter changes. To use
this algorithm, derivatives of the models had to be
specified (SAS Institute Inc., 1989, see Appendix).

Parameters were estimated for the full model
assuming that a QTL exists between a pair of markers
and for the reduced model which assumes that no
QTL is located between the same pair of markers. The
Likelihood ratio L for testing the hypothesis of no
QTL is

L =
(SSER-SSEF)/(dfB-dfF)

(SSEF/dfF) (6)

where SSEF and SSER are the error sum of squares
derived from the NLIN procedure for the full model
and the reduced model, respectively, and dfF and dfR
are the degrees of freedom for the full model and the
reduced model, respectively (Gallant, 1987; Knapp &
Bridges, 1990). dfF and dfB are given by N - P F and
N—PR, where M is the number of valid observations
and PF and PR are the number of the estimated
parameters for the full model and the reduced model,
respectively.

L is distributed as an F random variable (Gallant,
1987; Knapp & Bridges, 1990), such that if L >
£.drN,drF,o where F ^ K i d l f , is a value from the F-
distribution chosen for a desired a-threshold, and dfN
is dfF — dfR, the hypothesis of no QTL can be rejected.
The P value obtained for a Likelihood ratio is given
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Table 3. Simulated data, parameter estimates and their variances for a QTL flanked by two marker loci with
four alleles per locus (the four-allele model), assuming an F, population size of (a) 100 and (b) 200 individuals,
and normal and distorted segregation ratios

Para mptpr
A i l l CllllV' L^l w • .

Segregation...

R (%)
RHO" (%)
rl (%)
r2 (%)
^75
ql4
q23
q24
L
P (%)
Chie (%)

R (%)
7?//O" (%)
r i (%)

9 «
ql4
q23
q24
L
P (%)
Chie f%)

Simulated

1900
36-84

700
1200
50-60
51-30
51-30
5200
—
—
—

1900
36-84

700
1200
50-60
51-30
51-30
5200
—
—

Estimatec

(mean)" Normal

1 meanb

Distorted0

(a) 100 Individuals
17-78
41-62

7-53
10-25
50-59
51-30
51-32
52-07

3-72
5-60

77-82

1518
37-94

5-59
9-58

50-59
51-30
51-32
52-05
3-46
8-23

16-93

(b) 200 Individuals
18-51
34-25
6-36

12-37
50-60
51-33
51-29
5200

5-97
0-54

66-57

15-82
38-43

607
9-75

50-57
51-34
51-32
52-00

5-45
1-63
1-34

Variance"

Normal

10-81
984-74

35-56
3318
011
011
010
010
3-34
2-45

532-85

4-73
580-41
2108
22-14

005
006
005
005
6-23
2-45

796-31

Distorted0

28-35
895-88

25-47
37-23

0-22
018
O-08
O-09
3-60

227-99
397-24

13-05
580-38

17-72
20-96

0-08
0-08
0-03
0-04
4-94

40-14
23-72

a Data sets were created 200 times with new random parameters (seed values) each time.
b Means and variances were derived from parameter estimations performed for each of the 200 created datasets.
0 Distorted segregation ratios were simulated by reducing the frequency of non-recombinant gametes from 0-5 to 0-2.

Chi-square values obtained from #2-tests.

by 1 - PROBF(L, dfN, dfF, 0), where PROBF is a SAS-
function which returns the probability that an
observation of an F distribution is less than or equal
to L (SAS Institute Inc., 1990). If the P value was
smaller than the threshold a = 005, the hypothesis
that a QTL exists within the marker bracket was
accepted.

(v) Precision of estimates and sensitivity of models
in the presence of distorted segregation ratios and
non-additive allelic effects

Means of simulated and estimated parameters for Fj
populations with fixed size ranging between 100 and
1000 individuals are presented in Tables 3 and 4.
Separate simulations were performed for populations
with normal and distorted segregation ratios. The
variances of the values estimated for 200 replications
were calculated to measure the precision of the
estimates. Variance values ranging between 0 and 1
for parameters R, RHO, rl, r2, and for P and Chi
were transformed into percentage values to allow a
better comparison of variances. The estimations of
QTL genotypic mean provided by both models, as

indicated by the very small variances in Tables 3 and
4, were highly accurate, irrespective of the occurrence
of distorted segregations and of population sizes. For
both models, the estimates of RHO, which represents
the relationship between rl and r2, had a high degree
of variance. The means of the estimations for RHO
differed slightly from the values given in the simu-
lations. The accuracy of the estimate of this parameter
was better for the four-allele model than for the
common-allele model (Tables 3b, 4a). For both
models, the variance of the estimates and their
differences from the simulated values decreased as the
population size increased (compare a and b in Tables
3 and 4).

The models used for estimating the recombination
frequency R between the two marker loci slightly
underestimated this parameter when the segregation
ratios were not distorted. In the presence of distorted
segregation ratios, however, the estimates deviated
substantially from the expected values, even when the
variances of the estimated R means were relatively
small compared to the variances of RHO. In the
simulation with distorted segregation ratios, the
estimates of/? obtained with the common-allele model
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Table 4. Simulated data, parameter estimates and their variances for a QTL flanked by two marker loci both
with the same alleles in the two parents {the common-allele model), assuming an F, population size of (a) 100
and (b) 200 individuals, and normal and distorted segregation ratios

rdidiiitici . . .

Segregation...

R (%)
RBO" (%)

/•/ r%;r2(%)
qll
qlO
qOO
L
P (%)

/? (%)
/J/ZO" (%)

qu
qlO
qOO
L
P (%)
Chi° (%)

Simulated

1900
36-84

700
1200
50-60
51-30
5200
—
—
—

1900
36-84

7-00
1200
50-60
51-30
5200
—
—

Estimated

(mean)a Normal

1 mean"

Distorted0

(a) 200 Individuals
17-50
40-61

710
10-40
50-52
51-35
5201

5-52
2-41

50-57

35-67
40-36
14-52
21-15
50-67
51-37
52-00

5-15
3-36
501

(b) 1000 Individuals
1715
35-76
612

1103
50-61
51-29
5200
23-36
000

50-30

3501
38-34
13-44
21-57
50-59
51-39
51-99
23-54
000
000

Variance"

Normal

3704
996-50
42-69
47-98

1-45
0-44
005
7-85

2704
832-80

600
299-60

9-45
11-26
0-25
007
001

33-84
000

80012

Distorted0

39-72
787-27
113-83
111-99

1-60
0-51
004
5-79

9714
149-75

6-60
184-67
2400
24-56
0-22
007
001

33-80
000
000

" Data sets were created 200 times with new random parameters (seed values) each time.
b Means and variances were derived from parameter estimations performed for each of the 200 created datasets.
c Distorted segregation ratios were simulated by reducing the frequency of non-recombinant gametes from 0-5 to 0-2.
d RHO = rl/R.
e Chi-square values obtained from ^2-tests.

differed more from the expected values than those
from the four-allele model (compare Tables 3 and 4).
For both models, the precision of the estimates
increased with the population size.

Since rl and r2 were calculated from R and RHO,
the precision of the estimates of these parameters was
influenced by the same variables as found for R.

In the four-allele model, with an average P value of
0-54 %, 96-5 % of all P values derived from simulations
with 200 Fl individuals were significant at the 5%
level (a = 0-05), while only 86 % of them were
significant in the common-allele model. With a
population size of 1000 individuals the mean value of
P for both models resulted less than 10"5 (Table 4 b,
data for the four-allele model not shown). As shown
in Fig. 2, the power of both models increases as the
population size increases. On average, the values of P
obtained from the four-allele model were always
lower than the corresponding values computed for the
common-allele model (compare Fig. 2 a with 2 b and
Table 3b with 4a). In the presence of distorted
segregations the power of both models decreased, as
indicated by higher P-values for Dl compared to
those for DO (Fig. 2).

Using QTL genotypic means reflecting non-additive

allelic interactions, the power and precision of the
common-allele model decreased significantly, whereas
the estimation of relevant parameters by the four-
allele model was less affected by a non-additive
behaviour of QTL alleles (compare Fig. 2 a with 2 c
and 2b with 2d).

The usage of the models for QTL analysis performed
on experimental data has shown that the precision of
estimates and the P values obtained from the analysis
were not influenced by deviations of phenotypic trait
values from normal distribution (unpublished results,
data not shown).

3. Discussion

Numerical tests show that the models described in this
paper provide adequate estimates of QTL genotypic
values and recombination frequencies between a QTL
and flanking markers in an Fx population derived
from crosses between heterozygous parents. Using
these models on the same experimental data to which
models developed for progenies of inbred lines have
been applied previously (Leonards-Schippers et al.
1994), the overall significance levels for QTLs and
their chromosomal locations were comparable. Other
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Fig. 2. Relationship between population size and the average significance level P derived from the analysis of two series
{DO, and Dl, ) of 1000 simulated data with ascending population sizes and a maximum QTL mean difference
of one standard deviation for {a) the four-allele model with additive allelic interaction, (b) the common-allele model with
additive allelic interaction, (c) the four-allele model with non-additive allelic interaction and (d) the common-allele model
with non-additive allele interaction. Data sets of series DO were created with normal segregation ratios, and data sets of
series Dl with distorted segregation, by reducing the frequencies of non-recombinant gametes from 0-5 to 0-2, while
adjusting the sum of all gamete frequencies to 1.

statistical methods, like the analysis of variance at a
single marker locus, also detected, with approxi-
mations, the same QTLs. It is known that the mere
detection of QTLs is limited by marker density,
population size and differences between alternative
QTL alleles rather than by the method of QTL analysis
(Lander & Botstein, 1989). The best estimates of QTL
effects and QTL location may be derived from models
developed for particular types of crosses. The way we
perform QTL analysis is only one of several possible
existing approaches. Beside the fact that nonlinear
models provide good estimates, the kind of QTL
analysis chosen is relatively robust against deviations
from assumptions underlying the models: in addition
to the low sensitivity to distorted segregation ratios
(except for models providing the estimations of R),
the estimates and the significance levels are not
affected by non-normal distributions of phenotypic
trait values.

The 'four-allele model' was designed for a situation
where four putative QTL alleles are simultaneously

segregating in a progeny, together with four different
alleles at each of the flanking marker loci. The model,
however, does not necessarily require the presence of
four different QTL alleles. When, for example, only
two different QTL alleles are present in the parents,
e.g. A,A2Q,Q2B1B2 x ASA4Q,Q2B3B4, the estimates of
'ql4' ( = ql2) and 'q23' ( = q21) provided by the
four-allele model will be equal, whereas ' q l 3 ' ( =
ql 1) and' q24' ( = q22) will be different. The estimates
of ql3, ql4, q23 and q24 provide, therefore, in-
formation on the degree of homo- and heterozygosity
of the QTL alleles studied.

In addition, it is only required to score two different
marker alleles ( = two restriction fragments), one for
each parent, per marker locus. If, for example, A,
stands for the presence of fragment x in parent P,, the
A2 stands for the absence of the same fragment. The
same is true for alleles A3 and A4 of parent P2. The four
genotypic classes in the Fj for each locus are then
described with xy,x0,0y,00 (A, = fragment x, A3 =
fragment y). When two linked markers are scored in
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this way, all 16 marker classes can be distinguished in
the Fl generation.

Furthermore, it is possible to use different markers
each segregating for only one parent: if the marker
fragments are derived from two different probes,
which are known to approximately the same position,
they can be treated as allelic fragments although they
do not have to be so in the molecular sense.

As the four-allele model does not make assumptions
with respect to the parental QTL alleles, it is suitable
for a wide range of QTL and marker allelic con-
figurations occurring in crosses among non-inbred
plants. Thus, using a map with a sufficient density of
markers and the four-allele model only, it is possible
to perform a QTL analysis covering the whole genome
(a paper with results is in preparation). Only regions
distal to markers at the end of a linkage group may
contain QTLs lying outside of an interval which is
suitable for QTL analysis. In addition, this model
can be used, for example, in four-way crosses
((A x B) x (C x D)) between inbred lines.

In the four-allele model marker symbols are
assigned considering them to be linked in coupling.
The actual phase (coupling or repulsion) of marker
alleles in specific crosses can be readily defined by
using, for example, the algorithms described by Ritter
et al. (1990), and the assignment of allelic symbols can
be properly done electronically before computing.

The QTL analysis of common fragments with the
common-allele model has to be performed inde-
pendently from the four-allele model and provides
additional estimates for the questionable parameters,
possibly even for the same interval(s). The utilization
of the common-allele model is limited to con-
figurations in which the marker alleles are linked in
coupling. The other two possibilities, repulsion and
coupling/repulsion, as described in Ritter et al. (1990),
cannot be distinguished, and therefore an appropriate
reassignment of marker alleles is not possible. In
addition, the common-allele model can be used for
QTL analysis in organisms for which only genetic
maps based on dominant RAPD markers are
available.

The two models presented in this paper provide a
good estimate for QTL genotypic means, irrespective
of the population size and segregation distortion. The
simulation tests have shown, however, that the
estimates of the recombination frequencies between
the QTL and the flanking markers have lower precision
than the ones recorded for the QTL genotypic means.
This reflects both the relatively high variance of RHO,
resulting from the relationship between rl and r2, and
the underestimation of R characteristic of the models
written for estimating this parameter. In addition, if
segregation ratios are highly distorted, the two models
for estimating R, in particular the model for common-
alleles, do not provide precise estimates of this
parameter. Because of their sensitivity to deviation
from normal segregation ratios, these models should

be used with caution when a %2 test reveals distorted
segregation ratios. Particularly in the case of parents
with common-alleles, maximum likelihood estimation
is then to be preferred (e.g. Ritter et al. 1990) in order
to provide better estimates for R. The precision of
estimates of RHO provided by the two QTL models
discussed in this paper is, however, hardly influenced
by the occurrence of distorted segregation ratios and
is enhanced by using larger populations.

As expected, the four-allele model shows a better
estimation efficiency for RHO and provides more
power than the common-allele model. Using a
population size of 200 F1 individuals with the four-
allele model, QTL genotypic differences of one
standard deviation were significant in approximately
95 % of cases analysed, as compared to 86-5 % for the
common-allele model. In addition, the latter model is
more susceptible to deviations due to the codominant
behaviour of alleles. This results from the loss of
information generated by the phenotypic dominance
of the allele represented by the electrophoretic
fragment over the null allele; '11 ' , '01 ' and '10'
marker genotypes cannot, in fact, be distinguished
(Table 2). To optimize the power of the common-
allele model, a population size of more than 300
individuals should be used. Additionally, an analysis
of variance with specified linear contrasts should be
performed to detect putative allelic interactions.

The problems we have encountered while estimating
recombination frequencies are characteristic for non-
linear models (Knapp, 1990), but can exist even with
a higher degree of probability when using linear
mixture models (Jansen, 1992).
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Appendix: Alternative notation of the models and their derivatives required by common statistical software

I (a) Four-allele model (equation 1)

*(Q13*(l-RHO) + Q14
RHO) + X7*(Q13*(1-RHO) + Q23*RHO) + X8*(Q23*(1-RHO) + Q13
RHO) + xl0*(Q24*(l-RHO) + Q14*RHO) + xll*(Q23*(l-RHO) + Q24 (
RHO) + xl3*(Q13*(l-RHO)**2 + Q24*RHO**2 + Ql4*RHO*(l-RHO)H-q23*RHO*

*(Q24*(l-RHO)**2 + Q13*RHO**2 + Q14*RHO*(l-RHO) + q23*RHO*(l-RHO)) + xl5*
(Q14*(l-RHO)**2 + Q23*RHO**2 + Q13*RHO*(l-RHO) + q24*RHO*(l-RHO)) + xl6*(Q23*(l-RHO)**
2 + Q14*RHO**2 + Q13*RHO*(l-RHO) + q24*RHO*(l-RHO)).

\(b) Derivatives of the four-allele model

DER.Q13 = Xl+x5*(l-RHO) + x6*RH
RHO*(l-RHO) + xl6*RHO*(l-RHO).

*RHO*(l-RHO)+xl4*RHO*
(1-RHO) + X15*(1-RHO)**2 + X16*RHO**2.

DER.Q23 =x3 + x7*RHO + x8*(l-RHO) + xll*(l-RHO) + xl2*RHO + xl3*RHO*(l-RHO) + xl4
(1-RHO) + X15*RHO**2 + X16*(1-RHO)**2.

2 + xl5*RHO*(l-RHO) + xl6*RHO*(l-RHO).

( *(Q13*(-2*(l-RHO)) + Q24*
*(l-RHO)-q23*RHO + Q23*(l-RHO)) + xl4*(Q24*(-2*(l-RHO)) + Q13*2*

RHO + Q14*(l-RHO)-q23*RHO + Q23*(l-RHO)) + xl5*(Q14*(-2*(l-RHO)) + Q23*2*
RHO + Q13*(l-RHO)-Q24*RHO + Q24*(l-RHO)) + xl6*(Q23*(-2*(l-RHO)) + Q14*2*

RHO-Q13*RHO + Q13*(1-RHO)-Q24*RHO + Q24*(1-RHO)).

II (a) Common-allele model (equation 2)

Model Y = xll*((l/2-l/2*R)**2*Qll+l/2*(l-R)*R*(Qll*(l-RHO) + Q12*RHO) + l/2*(l-R)*R*(Qll
*(1-R)**2*Q12+1/2*R**2*(Q11*RHO*(1-RHO) + Q22

2 + Q12*(l-RHO)**2))/(3*(l/2-l/2*R)**2 + (l-R)*R+l/2*R**
**2*(Q11*(1-RHO)**2 + 2*Q12*RHO*(1-RHO) + Q22*RHO**2) + 1/2*(1-R)*R*(Q12*(1-RHO) + Q22
RHO))/(l/4*R**2 + l/2*(l-R)*R) + x01*(l/2*(l-R)*R*(Q12*RHO + Q22*(l-RHO))+l/4*R**2*(Qll*

2 + 2*Q12*RHO*(l-RHO) + Q22*(l-RHO)**2))/(l/4*R**

II (b) Derivatives of the common-allele model

DER.Q11 =(xll*((l/2-l/2*R)**2 + l/2*(l-R)*R*(l-RHO)+l/2*(l-R)*R*RHO + l/2*R**2*RHO*
(l-RHO)))/(3*(l/2-l/2*R)**2 + (l-R)*R + l/2*R**2)+l/4*((xl0*R**2*(l-RHO)**2)/(l/4*R**
2 + 1/2* (l-R)*R)) + l/4*((x01*R**2*RHO**2)/(l/4*R**2 + l/2*(l-R*R)).

= (xll*(l/2*(l-R)*R*RHO + l/2*(l-R)*R*(l-RHO) + l/2*(l-R)**2+l/2*R**2*(RHO**
2 + (l-RHO**2)))/(3* (1/2-1/2 * R)* *2 + ( l -R)* R + l/2* R**2) + (xlO*(l/2*R**2* RHO*(1-RHO) + l/2*
(l-R)*R*(l-RHO)))/(l/4*R**2+l/2*(l-R)*R) + (x01*(l/2*(l-R)*R*RHO+l/2*R**2*RHO*
(1 - RHO)))/(1 /4 * R * * 2 + 1 /2 * (1 - R) * R).

= l/2*((xll*R**2*RHO*(l-RHO))/(3*(l/2-l/2*R)**
**2*RHO**2+l/2*(l-R)*R*RHO))/(l/4*R**2+l/2*(l-R)*R) + (x01*(l/2*(l-R)*R*(l-RHO)+l/4*
R * • 2 * (1 - RHO) * * 2))/(l /4 * R * * 2 +1 /2 * (1 - R) * R) + xOO.

= xll*(l/2*(l-R)*R*(-Qll+Q12)+l/2*(l-R)*R*(Qll-Q12)+l/2*R**2*(Qll*
(l-RHO)-Qll*RHO + Q22*(l-RHO)-Q22*RHO + 2*Q12*RHO-2*Q12*(l-RHO)))/(3*(l/2-l/2*R)*»

l/2*R**2) + xl0*(l/4*R**2*(-2*Qll*(l-RHO) + 2*Q12*(l-RHO)-2*Q12*RHO + 2
*(l-R)*R*(-Q12 + Q22))/(l/4*R**2+l/2*(l-R)*R) + x01*(l/2*(l-R)*R*(Q12-Q22)+l/4*

R**2*(2*Q11* RHO + 2*Q12*(1- RHO) - 2 • Ql 2 * RHO - 2 * Q22 * (1 - RHO)))/(1 /4 * R * * 2 +1 /2 * (1 - R) * R).

Ill (a) Model for estimating the recombination
frequency R between two marker loci with four
different alleles (equation 3)

Model NN = xl*((l-R)/2)**2*NT + x2*((l-R)/2)**2*NT + x3*((l-R)/2)**2*NT + x4*((l-R)/2)**2*
((l-R)/2)*(R/2)*NT + x6*((l-R)/2)*(R/2)*NT + x7*((l-R)/2)*(R/2)*NT + x8*((l-R)/2)*(R/2)*
((l-R)/2)*(R/2)*NT + xlO*((l-R)/2)*(R/2)*NT + xll*((1-R)/2)*(R/2)*NT+xl2*((l-R)/2)*

/4)NT 5 ( 2 / 4 ) N T + xl6*(R**2/4)*NT.
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Derivatives

DER.R = -xl *(1/2-1/2*R)*NT-X2*(1/2-1/2*R)*NT-X3*(1/2-1/2*R)*NT-X4*(1/2-1/2*R)*
NT-l/4*x5*R*NT+l/2*x5*(l/2-l/2*R)*NT-l/4*x6*R*NT+l/2*x6*(l/2-l/2*R)*NT-l/4*x7*R*
NT+l/2*x7*(l/2-l/2*R)*NT-l/4*x8*R*NT+l/2*x8*(l/2-l/2*R)*NT-l/4*x9*R*NT+l/2*x9*
(1/2-1/2*R)*NT-l/4*xlO*R*NT+l/2*xlO*(1/2-1/2 *R)*NT-l/4*xll *R*NT+1/2*xll *(1/2-1/2*R)
*NT-l/4*xl2*R*NT + l/2*xl2*(l/2-l/2*R)*NT+l/2*xl3*R*NT + l/2*xl4*R*NT+l/2*xl5*R*
NT+l/2*xl6*R*NT.

IV (a) Model for estimating the recombination
frequency R between two marker loci with common
alleles {equation 4)

Model NN = xll *(3*((l-R)/2)**2 + 4*((l-R)/2)*(R/2))*NT + xl0*((R/2)**2 + 2*((l-R)/2)*(R/2))*
NT + xOl * ((R/2) **2 + 2*(( l - R)/2) * (R/2)) * NT + xOO • (R/2) * * 2 * NT.

IV (b) Derivatives

DER.R = xll * ( - 1 / 2 - 1 / 2 * R ) * N T + X 1 0 * ( 1 / 2 - 1 / 2 * R ) * N T + X 0 1 * ( 1 / 2 - 1 / 2 * R ) * N T + 1 / 2 * X 0 0 * R * N T .
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