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Complexity of OM factorizations of polynomials over local fields

Jens-Dietrich Bauch, Enric Nart and Hayden D. Stainsby

Abstract

Let k be a locally compact complete field with respect to a discrete valuation v. Let O be the
valuation ring, m the maximal ideal and F (x) ∈ O[x] a monic separable polynomial of degree
n. Let δ = v(Disc(F )). The Montes algorithm computes an OM factorization of F . The single-
factor lifting algorithm derives from this data a factorization of F (mod mν), for a prescribed
precision ν. In this paper we find a new estimate for the complexity of the Montes algorithm,
leading to an estimation of O(n2+ε + n1+εδ2+ε + n2ν1+ε) word operations for the complexity of
the computation of a factorization of F (mod mν), assuming that the residue field of k is small.

Introduction

Let A be a Dedekind domain whose field of fractions K is a global field. Let L/K be a finite
separable extension and B the integral closure of A in L. Let θ ∈ L be a primitive element of
L/K, with minimal polynomial f(x) ∈A[x].

Let p be a non-zero prime ideal of A, vp the canonical p-adic valuation, Kp the completion
of K at p, and Op the valuation ring of Kp.

The Montes algorithm [5, 6] computes an OM (Okutsu–Montes) representation of every
prime ideal P of B lying over p [7]. This algorithm carries out a program suggested by
Ore [15, 16], and developed by MacLane in the context of valuation theory [10, 11]. An
OM representation is a computational object supporting several data and operators, linked
to one of the irreducible factors (say) F (x) of f(x) in Op[x]. Among these data, the OM
representation contains all the Okutsu invariants of F , which reveal considerable arithmetic
information about the finite extension of Kp determined by F [4, 14].

The Montes algorithm has been used as the core of several arithmetic routines to compute
prime ideal decomposition, integral bases and the discriminant of L/K, generators of prime
ideals, the P-adic valuation, vP : L∗ −→ Z, the reduction mapping, B −→B/P, the Chinese
remainder algorithm in B, and the p-valuation of discriminants and resultants of polynomials
with coefficients in K [5, 7, 8, 13].

Also, if the Montes algorithm is combined with the single-factor lifting algorithm [9], together
they yield a fast factorization routine for polynomials over local fields, which turns into an
acceleration of some of the above mentioned routines.

The complexity of the Montes algorithm was analyzed by Ford–Veres [2] and Pauli [18].
Assuming p small, they obtained an estimation of O(n2+εδ2+ε) word operations for the
algorithm used as an irreducibility test for polynomials over local fields, where n= [L : K] and
δ = vp(Disc(f)). Then, by natural extrapolation arguments they concluded that this estimation
is valid for the general algorithm too.

In this paper, we present a new estimation for the complexity of the Montes algorithm.
To this end, we find the least precision ν such that the polynomial f(x) (mod pν) contains
sufficient information to detect that f(x) is irreducible over Op, and the least precision such
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that a factorization of f(x) (mod pν) determines a ‘sufficiently good’ approximate factorization
of f(x) over Op.

In Section 1 we review the role of the Okutsu invariants of the irreducible factors of f(x) over
Op, which are essential for our purposes. In Section 2, we introduce a new Okutsu invariant, the
exponent of the Okutsu discriminant, which is a key ingredient to prove that the irreducibility of
f(x) over Op may be tested by working at precision ν = b2δ/nc+ 1 (Theorem 2.3). In Section 3
we introduce the concept of OM factorization, giving a precise sense to what we mean by a
‘sufficiently good’ approximate factorization. We show that the OM representations satisfying
certain properties are adequate objects to deal with OM factorizations from a computational
perspective, and we prove that an OM factorization of f(x) over Op can be found by working
at precision ν = δ + 1 (Theorem 3.13). In Section 4, we review the Montes algorithm as a
device to compute an OM factorization of f(x) overOp. Finally, in Section 5 we use these results
to obtain an estimation of O(n2+ε + δ2+ε) word operations for the complexity of the Montes
algorithm used as a polynomial irreducibility test, and an estimation of O(n2+ε + n1+εδ2+ε)
word operations for the complexity of the general algorithm. This estimation yields improved
estimations for the complexity of all the arithmetic routines mentioned above. For instance, we
deduce an estimation of O(n2+ε + n1+εδ2+ε + n2ν1+ε) word operations for the complexity of
the factorization of f(x) over Op[x], with an arbitrary prescribed precision ν (Theorem 5.17).
The best known previous estimation for the factorization of polynomials over local fields had
total degree 4 + ε in n, δ and ν [9].

1. Okutsu invariants of an irreducible polynomial over a local field

Let k be a local field, that is, a locally compact and complete field with respect to a discrete
valuation v. Let O be the valuation ring of k, m the maximal ideal, π ∈m a generator of m and
F =O/m the residue field, which is a finite field. Let p be the characteristic of F.

Let ksep ⊂ k be the separable closure of k inside a fixed algebraic closure. Let v : k→Q ∪ {∞}
be the canonical extension of the discrete valuation v to k, normalized by v(k) = Z.

Let F (x) ∈ O[x] be a monic irreducible separable polynomial, θ ∈ ksep a root of F (x), and
L= k(θ) the finite separable extension of k generated by θ. Denote n := [L : k] = deg F . Let OL
be the ring of integers of L, mL the maximal ideal and FL the residue field. We indicate with
a bar, —: O[x]−→ F[x], the canonical homomorphism of reduction of polynomials modulo m.

Let [φ1, . . . , φr] be an Okutsu frame of F (x), and let φr+1 be an Okutsu approximation
to F (x). That is, φ1, . . . , φr+1 ∈ O[x] are monic separable polynomials of strictly increasing
degree

1 6m1 := deg φ1 < . . . < mr := deg φr <mr+1 := deg φr+1 = n,

and for any monic polynomial g(x) ∈ O[x] we have

mi 6 deg g <mi+1 =⇒ v(g(θ))
deg g

6
v(φi(θ))
mi

<
v(φi+1(θ))
mi+1

, (1.1)

for 0 6 i6 r, with the convention that m0 = 1 and φ0(x) = 1. It is easy to deduce from (1.1)
that the polynomials φ1(x), . . . , φr+1(x) are all irreducible in O[x].

The length r of the frame is called the Okutsu depth of F (x). Okutsu frames were introduced
by Okutsu in [14] as a tool to construct integral bases. Okutsu approximations were
introduced in [4], where it is shown that the family φ1, . . . , φr, φr+1 determines an optimal
F -complete type of order r + 1,

tF =

{
(ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr); (φr+1, λr+1, ψr+1)), or
(ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr); (F,−∞,—)),

(1.2)
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for φr+1 6= F or φr+1 = F , respectively. We call tF an OM representation of F . In the case
φr+1 = F , we say that the OM representation is exact.

Any OM representation of the polynomial F carries (stores) several invariants and operators
yielding strong arithmetic information about F and the extension L/k. Let us recall some of
these invariants and operators.

Attached to the type tF , there is a family of discrete valuations of the rational function field
k(x), the MacLane valuations

vi : k(x)−→ Z ∪ {∞}, 1 6 i6 r + 1,

such that 0 = v1(F )< . . . < vr+1(F ). The v1-value of a polynomial in k[x] is the minimum of
the v-values of its coefficients.

Also, tF determines a family of Newton polygon operators

Ni : k[x]−→ 2R2
, 1 6 i6 r + 1,

where 2R2
is the set of subsets of the Euclidean plane. Any non-zero polynomial g(x) ∈ k[x]

has a canonical φi-development

g(x) =
∑
06s

as(x)φi(x)s, deg as <mi,

and the polygon Ni(g) is the lower convex hull of the set of points (s, vi(asφsi )). Usually, we
are only interested in the principal polygon N−i (g)⊂Ni(g) formed by the sides of negative
slope. For all 1 6 i6 r, the Newton polygons Ni(F ) and Ni(φi+1) are one-sided and they
have the same slope, which is a negative rational number λi ∈Q<0. The Newton polygon
Nr+1(F ) is one-sided and it has an (extended) integer negative slope, which we denote by
λr+1 ∈ Z ∪ {−∞}.

The triple (φi, vi, λi) determines the discrete valuation vi+1 as follows: for any non-zero
polynomial g(x) ∈K[x], take a line of slope λi far below Ni(g) and let it shift upwards till it
touches the polygon for the first time; if u is the ordinate of the point of intersection of this
line with the vertical axis, then vi+1(g) = eiu.

In MacLane’s terminology [10, § 4], φi is a key polynomial over vi, and [6, Proposition 2.7,(4)]
shows that vi+1/ei is the augmented valuation attached to the pair φi, vi(φi) + |λi|.

There is a chain of finite extensions: F = F0 ⊂ F1 ⊂ . . .⊂ Fr+1 = FL. The type tF stores
monic irreducible polynomials ψi(y) ∈ Fi[y] such that Fi+1 ' Fi[y]/(ψi(y)). We have ψi(y) 6= y,
for all i > 0.

Finally, for every negative rational number λ, there are residual polynomial operators

Rλ,i : k[x]−→ Fi[y], 1 6 i6 r + 1.

We define Ri :=Rλi,i. For all 0 6 i6 r, we have Ri(F )∼ ψωi+1
i and Ri(φi+1)∼ ψi, where the

symbol ∼ indicates that the polynomials coincide up to a multiplicative constant in F∗i . For
i= 0 we take R0(F ) := F = ψω1

0 and R0(φ1) := φ1 = ψ0. The exponents ωi+1 are all positive
and ωr+1 = 1. The operator Rr+1 is defined only when φr+1 6= F ; in this case, we also have
Rr+1(F )∼ ψr+1, with ψr+1(y) ∈ Fr+1[y] monic of degree one such that ψr+1(y) 6= y.

From these data some more numerical invariants are deduced. Initially we take

m0 := 1, f0 := deg ψ0, e0 := 1, h0 := V0 := µ0 := ν0 = 0.

Then we define, for all 1 6 i6 r + 1,
hi, ei positive coprime integers such that λi =−hi/ei;
fi := deg ψi;
mi := deg φi = ei−1fi−1mi−1 = (e0 e1 . . . ei−1)(f0f1 . . . fi−1);
µi :=

∑
16j6i(ejfj . . . eifi − 1)hj/(e1 . . . ej);

νi :=
∑

16j6i hj/(e1 . . . ej);
Vi := vi(φi) = ei−1fi−1(ei−1Vi−1 + hi−1) = (e0 . . . ei−1)(µi−1 + νi−1).
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The general definition of a type may be found in [6, § 2.1]. In later sections, we shall consider
types which are not necessarily optimal nor F -complete. So, it may be convenient to distinguish
these two properties among all features of a type that we have just mentioned.

Definition 1.1. Let t = (ψ0; (φ1, λ1, ψ1); . . . ; (φi, λi, ψi)) be a type of order i and denote
mi+1 := eifimi. Let g(x) ∈K[x] be a polynomial.
• We say that t is optimal if m1 < . . . < mi. We say that t is strongly optimal if m1 < . . . <
mi <mi+1.

• We define ordt(g) := ordψi Ri(g) in Fi[y]. If ordt(g)> 0, we say that t divides g(x), and
we write t | g(x). This function ordt behaves well with respect to products: ordt(gh) =
ordt(g) + ordt(h).

• We say that t is g-complete if ordt(g) = 1.

• A representative of t is a monic polynomial φ(x) ∈ O[x] of degree mi+1, such that ordt(φ) = 1.
This polynomial is necessarily irreducible in O[x]. The degree mi+1 is minimal among all
polynomials satisfying this condition.

• For any 0 6 j 6 i, the truncation of t at level j, Truncj(t), is the type of order j obtained from
t by dropping all levels higher than j. We have ordTruncj(t)(g) > (ej+1fj+1) . . . (eifi) ordt(g).

Thus, for a general type of order i dividing F , we have m1 | . . . |mi and ωi > 0, but not
necessarily m1 < . . . < mi = deg F , and ωi = 1. These were particular properties of our optimal
and F -complete type tF of order i= r + 1, constructed from an Okutsu frame and an Okutsu
approximation to F .

An irreducible polynomial F admits infinitely many different OM representations. However,
the numerical invariants ei, fi, hi, for 0 6 i6 r, and the MacLane valuations v1, . . . , vr+1

attached to tF , are canonical invariants of F .
The data λr+1, ψr+1 are not invariants of F ; they depend on the choice of the Okutsu

approximation φr+1. The integer slope λr+1 =−hr+1 measures how close φr+1 is to F . We
have φr+1 = F if and only if hr+1 =∞.

Definition 1.2. An Okutsu invariant of F (x) is a rational number that depends only on
e1, . . . , er, f0, f1, . . . , fr, h1, . . . , hr.

We are specially interested in the following invariants of the polynomial F (x):

e(F ) := e(L/k), the ramification index of L/k;
f(F ) := f(L/k), the residual degree of L/k;
µ(F ) := max{v(g(θ)) | g(x) ∈ O[x] monic of degree less than n};
δ(F ) := v(Disc(F )).

The different ideal of L/k is Diff(L/k) = (mL)e−1+ρ, for some integer ρ> 0, which is not an
Okutsu invariant of F . Also, ρ= 0 if and only if L/k is tamely ramified.

The results of the next proposition are taken from [6, Corollary 3.8] and [13, Theorem 1.7].

Proposition 1.3. We have identities

e(F ) = e0 e1 . . . er, f(F ) = f0f1 . . . fr,

µ(F ) = µr =
∑

16j6r

(ejfj . . . erfr − 1)hj/(e1 . . . ej),

δ(F ) = nµ(F ) + f(F )ρ.

Thus, e(F ), f(F ) and µ(F ) are Okutsu invariants of F , but δ(F ) is not. Nevertheless, the
lower bound by an Okutsu invariant, δ(F ) > nµ(F ), will be essential for our purposes.
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Definition 1.4. The length of a Newton polygon N is the abscissa of its right end point;
we denote it by `(N).

The following lemma will be frequently used.

Lemma 1.5 [6, Proposition 2.7, Lemma 2.17, Theorem 3.1]. Let t be a type of order r.
Then:

(i) vi(a) = e0 . . . ei−1v(a), for all a ∈ k and all 1 6 i6 r + 1;
(ii) `(Nr+1(g)) = ordt(g), for any non-zero polynomial g(x) ∈ k[x];

(iii) v(φi(θ)) = (Vi + |λi|)/(e0 . . . ei−1) = µi−1 + νi, for all 1 6 i6 r + 1;
(iv) v(φi(θ))/mi = Vi+1/(mi+1e0 . . . ei), for all 1 6 i6 r.

We end this background section by recalling the Okutsu equivalence of irreducible separable
polynomials over O, and the concept of width of such a polynomial.

Lemma 1.6 [9, Lemma 3.1]. Let t be a strongly optimal type of order r, and let φ ∈ O[x]
be a monic polynomial of degree mr+1. Let F ∈ O[x] be an irreducible separable polynomial
such that t | F , and let θ ∈ ksep be a root of F . Then, the following conditions are equivalent:

(a) φ is a representative of t;
(b) v(φ(θ))> Vr+1/(e0 . . . er) = (mr+1/mr)v(φr(θ)).

Definition 1.7. Let F ∈ O[x] be a monic irreducible separable polynomial of Okutsu depth
r, and let tF be an OM representation of F as in (1.2). Let t := Truncr(tF ). We say that a
monic polynomial G ∈ O[x] is an Okutsu approximation to F , and we write F ≈G, if G is a
representative of t.

We also say that F and G are Okutsu equivalent polynomials.

By Lemma 1.6, this definition does not depend on the choice of the OM representation of F .
The binary relation ≈ is an equivalence relation on the set of all monic irreducible separable
polynomials in O[x] [4, Lemma 4.3]. Okutsu equivalent polynomials have the same Okutsu
invariants and the same MacLane valuations [4, Corollary 3.7].

For F as above, and 1 6 i6 r + 1, let Repi(F )⊆O[x] be the set of all representatives of
Trunci−1(tF ). Consider

Vi := {v(φ(θ)) | φ ∈ Repi(F )} ⊆Q ∪ {∞}.

By the formula (1.1), φi ∈ Repi(F ) and v(φi(θ)) = Max(Vi), for all 1 6 i6 r. By definition,
Repr+1(F ) is the set of all Okutsu approximations to F (x). The set Vr+1 is not finite, and it
contains ∞, because F ∈ Repr+1(F ).

The sets V1, . . . , Vr are finite and easy to describe [9, Proposition 3.4].

Proposition 1.8. For any λ ∈Q, let Mλ := {m ∈ Z | 1 6m< |λ|} ∪ {|λ|}. Then,

Vi = {(Vi +m)/(e0 . . . ei−1) |m ∈Mλi},

for all 1 6 i6 r. In particular, #Vi = d|λi|e= dhi/eie.

The width of F (x) is defined to be the vector of positive integers,

(#V1, . . . ,#Vr) = (dh1/e1e, . . . , dhr/ere).

As we shall see in Section 5, it is a fundamental invariant for the analysis of the complexity of
the Montes algorithm.
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2. The Okutsu discriminant

We keep all notation from the previous section. In this section we introduce a new Okutsu
invariant of an irreducible polynomial F (x) ∈ O[x], linked to the problem of determining the
least exponent ν such that all polynomials of degree n= deg F , belonging to F (x) + mν [x], are
irreducible in O[x].

Definition 2.1. Let F (x) ∈ O[x] be a monic irreducible separable polynomial of degree n
and tF an OM representation of F as in (1.2). If r is the Okutsu depth of F (x), we define the
Okutsu discriminant of F (x) as the ideal mδ0(F ), where

δ0(F ) :=
Vr+1

e(F )
= µr + νr =

∑
16i6r

|λi|
e0 . . . ei−1

n

mi
. (2.1)

The exponent δ0(F ) of the Okutsu discriminant coincides, up to a certain normalization,
with the ordinate of the left end point of Nr(F ).

Lemma 2.2. With the above notation, denote ui := vi(a0,i(F )), for 1 6 i6 r, where
a0,i(F ) ∈ O[x] is the 0th coefficient of the φi-development of F . Then:

(1) u1 < u2/e1 < . . . < ur/(e0 . . . er−1) = δ0(F );
(2) δ0(F ) 6 2δ(F )/n, and equality holds if and only if r = 0, or r = 1, e1f1 = 2, p > e1.

Proof. Denote ωi = n/mi = (eifi) . . . (erfr). The Newton polygon Ni(F ) is one-sided, with
end points (0, ui) and (ωi, vi(F )) [6, Lemma 2.17]. Also, the leading term of the φi-adic
expansion of F is φωii . Thus, vi(F ) = ωiVi and

ui
e0 . . . ei−1

=
vi(F ) + ωi|λi|
e0 . . . ei−1

=
ωi(Vi + |λi|)
e0 . . . ei−1

= n
v(φi(θ))
mi

, (2.2)

the last equality by Lemma 1.5(iii). By the properties (1.1) of the Okutsu frame, u1 < u2/e1 <
. . . < ur/(e0 . . . er−1). Also, by Lemma 1.5(iv),

ur/(e0 . . . er−1) = (n/mr)v(φr(θ)) = Vr+1/e(F ) = δ0(F ).

On the other hand, since eifi > 1, for all 1 6 i6 r, we have νr 6 µr = µ(F ). Thus, δ0(F ) 6
2µ(F ) 6 2δ(F )/n, by Proposition 1.3. Also, equality holds if and only if µr = νr and F
determines a tamely ramified extension of k (that is ρ= 0). The formulas for µr, νr in Section 1
lead to the conditions of item (2). 2

The aim of this section is to prove the following result.

Theorem 2.3. Let F (x), G(x) ∈ O[x] be monic separable polynomials of degree n, such that
F ≡G (mod mν), for some positive exponent ν.

(1) If F is irreducible and ν > δ0(F ), then G is irreducible and G≈ F .
(2) If G is irreducible and ν > 2δ(F )/n, then F is irreducible and F ≈G.

Corollary 2.4. Let F (x), G(x) ∈ O[x] be monic separable polynomials of degree n, such
that F ≡G (mod mν), for ν > 2δ(F )/n. Then, F is irreducible if and only if G is irreducible.
If this is the case, then F ≈G and the extensions of k determined by F and G are isomorphic.

Proof. By Theorem 2.3 and Lemma 2.2, F is irreducible if and only if G is irreducible, and
then F ≈G. In this case,

v(Res(F, G)) = v(Res(F, G− F )) > nν > 2δ(F ).
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In particular, for every root θ ∈ ksep of F , we have nv(G(θ)) = v(Res(F, G))> 2δ(F ). Thus, the
conditions of [17, Proposition 4.1] are satisfied, and [17, Lemma 4.3] shows that k(θ) = k(θ′),
for adequate choices of roots θ, θ′ ∈ ksep of F , G, respectively. 2

The first item of Theorem 2.3 follows immediately from Lemma 2.2. In fact, for θ ∈ ksep

a root of F , the assumptions of the first item imply that v(G(θ))> δ0(F ) = nv(φr(θ))/mr,
and this is precisely the condition to be an Okutsu approximation to F (cf. Lemma 1.6). As
mentioned in Definition 1.1, this implies that G is irreducible.

The second item is more subtle and its proof more involved. We need some previous results.

Definition 2.5. Let t = (ψ0; (φ1, λ1, ψ1); . . . ; (φi−1, λi−1, ψi−1)) be a type of order i− 1 >
0, and let F (x) ∈ O[x] be a monic polynomial. We say that F (x) is a polynomial of type t if it
satisfies the following conditions:

(i) R0(F ) = F = ψa0
0 , for a certain positive exponent a0;

(ii) Nj(F ) is one-sided of slope λj , for all 1 6 j < i;
(iii) Rj(F )∼ ψajj , for a certain positive exponent aj , for all 1 6 j < i.

If F is irreducible and tF is an OM representation of F , then F is of type tF . The following
properties of the polynomials of a certain type are taken from [6, Lemma 2.4, Corollary 2.18].

Lemma 2.6. Let t be a type of order i− 1 > 0, and let F (x) ∈ O[x] be a monic polynomial
of positive degree. Then, the following conditions are equivalent:

(i) F is of type t;
(ii) deg F =mi ordt(F );

(iii) all irreducible factors of F in O[x] are divisible by t.

In this case, we have Ni(F ) =N−i (F ).

Lemma 2.7. Let t be as above and let F, G ∈ O[x] be monic irreducible separable
polynomials, both divisible by t. Let `(F ), `(G), λ(F ), λ(G) be the lengths and the slopes
of the Newton polygons Ni(F ), Ni(G), respectively. Then,

v(Res(F, G)) > f0 . . . fi−1`(F )`(G)(Vi + min{|λ(F )|, |λ(G)|}).

Proof. For all 0 6 j < i, denote `j+1(F ) := `(Nj+1(F )) = ordTruncj(t)(F ) = ordψj Rj(F ), the
last equalities by Lemma 1.5(ii). Since Rj(F )∼ ψ`j+1(F )

j and deg Rj(F ) coincides with the
degree `j(F )/ej of the unique side of Nj(F ), we have

`j(F ) = ej deg Rj(F ) = ejfj`j+1(F ) = (ejfj) . . . (ei−1fi−1)`(F ), 1 6 j < i. (2.3)

We consider an analogous notation and equality for the polynomial G.
We now apply an inequality concerning the v-value of the resultant of two polynomials in

terms of their Newton polygons [6, Theorem 4.10]:

v(Res(F, G)) > Res1(F, G) + . . .+ Resi(F, G)

:=
∑

16j<i

f0 . . . fj−1`j(F )`j(G)|λj |+ f0 . . . fi−1`(F )`(G) min{|λ(F )|, |λ(G)|}

= f0 . . . fi−1`(F )`(G)(Vi + min{|λ(F )|, |λ(G)|}),

the last equality by (2.3) and the explicit formula for Vi in Section 1. 2

Lemma 2.8. Let t = (ψ0; (φ1, λ1, ψ1); . . . ; (φi−1, λi−1, ψi−1)) be a strongly optimal type of
order i− 1 > 0, and φ(x) ∈ O[x] a representative of t. Let F (x) ∈ O[x] be a monic polynomial
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Figure 1. Newton polygons Nj(Fs), Ni(Fs), for 1 6 j < i.

of type t and degree n >mi. Then,

vi(F ) + `|λmin|
e0 . . . ei−1

6
2δ(F )
n

,

where δ(F ) := v(Disc(F )), ` is the length of the Newton polygon Ni(F ) with respect to the
pair (t, φ), and λmin is the slope of Ni(F ) for which |λmin| is minimal.

Proof. Let F = F1 . . . Fg be the factorization of F into a product of monic irreducible
polynomials in O[x], with degrees n1, . . . , ng, respectively. By Lemma 2.6, all factors Fs(x)
are of type t, Ni(F ) =N−i (F ), and Ni(Fs) =N−i (Fs).

For 1 6 s6 g and 1 6 j 6 i, we introduce the following notation (see Figure 1):

` := `(Ni(F )), `j,s := `(Nj(Fs)), `s := `i,s = `(Ni(Fs));
ui,s := the ordinate of the left end point of Ni(Fs);
µs := the slope of Ni(Fs).

We may have Fs(x) = φ(x) for some factors. In this case, Ni(Fs) is one-sided of slope
µs =−∞ [6, § 1.1], and ui,s =∞, `s = 1.

By Lemmas 1.5 and 2.6, we have n=mi` and ns =mi`s, for all 1 6 s6 g. By the theorem
of the product [6, Theorem 2.26],

Ni(F ) =Ni(F1) + . . .+Ni(Fg), (2.4)

so that `= `1 + . . .+ `g and |λmin|= min16s6g{|µs|}. Now, we divide the factors Fs into two
categories, according to `s > 1 or `s = 1.

If `s > 1, then deg φ=mi < ns. Let θs ∈ k be a root of Fs and choose a representative φi
of t such that the value v(φi(θs)) is maximal (cf. Proposition 1.8). Denote by N ′i the Newton
polygon operator with respect to the pair (t, φi); let λi,s be the slope of the one-sided polygon
N ′i(Fs), and let ψi,s be the irreducible factor of the corresponding residual polynomial R′i(Fs).
By [4, Theorem 3.9], the Okutsu depth of Fs is greater than or equal to i, and the type

(ψ0; (φ1, λ1, ψ1); . . . ; (φi−1, λi−1, ψi−1); (φi, λi,s, ψi,s)),

is the truncation of an OM representation (1.2) of Fs. On the other hand, [5, Theorem 3.1]
shows that the Newton polygonsNi(Fs),N ′i(Fs) have the same right end point, and |µs|6 |λi,s|.
Thus, ui,s is less than or equal to the ordinate of the left end point of N ′i(Fs), and Lemma 2.2
and (2.2) show that

2δ(Fs) >
nsui,s

e0 . . . ei−1
=
ns`s(Vi + |µs|)
e0 . . . ei−1

>
(`s)2mi(Vi + |λmin|)

e0 . . . ei−1
. (2.5)

On the other hand, if `s = 1, the type t is Fs-complete (cf. Definition 1.1), deg Fs =mi and
the Okutsu depth of Fs is i− 1. In this case, the ordinate ui,s is not a canonical invariant of
Fs; for instance, we may have ui,s =∞, if Fs = φ. Nevertheless, if i > 1, let us denote by ui−1,s
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the ordinate of the left end point of Ni−1(Fs); by the very definition of the MacLane valuation
vi, we have `sVi = vi(Fs) = ei−1ui−1,s, and Lemma 2.2 shows that

2δ(Fs) >
nsui−1,s

e0 . . . ei−2
=

ns`sVi
e0 . . . ei−1

=
(`s)2miVi
e0 . . . ei−1

. (2.6)

If i= 1, we have V1 = 0, so that (2.6) holds in this case too.
We are ready to prove the lemma. On one hand, since vi(F ) = `Vi, we have

n(vi(F ) + `|λmin|) = n`(Vi + |λmin|) =mi`
2(Vi + |λmin|).

On the other hand, since f0 . . . fi−1 =mi/(e0 . . . ei−1) and

δ(F ) =
∑

16s6g

δ(Fs) + 2
∑

16s<t6g

v(Res(Fs, Ft)),

by (2.5), (2.6) and Lemma 2.7, we obtain

2e0 . . . ei−1δ(F ) > miVi

( ∑
16s6g

(`s)2 + 4
∑

16s<t6g

`s`t

)
+ mi|λmin|

(∑
s∈I

(`s)2 + 4
∑

16s<t6g

`s`t

)
,

where I := {1 6 s6 g | `s > 1}. Thus, in order to prove the lemma it is sufficient to check that∑
s∈I

(`s)2 + 4
∑

16s<t6g

`s`t > (`1 + . . .+ `g)2.

It is an easy exercise to show that this is always the case, with the only exception g = 1, `1 = 1.
But in this case, deg F =mi, which is against our assumption. 2

Lemma 2.9. Let t be a type of order i− 1 and φ a representative of t. Let F, G ∈ O[x] be
two polynomials such that F ≡G (mod mν), for some positive integer ν. Let S be a side of
N−i (F ) of slope λ and right end point (`, u), such that u+ `|λ|< e0 . . . ei−1ν. Then, S is a
side of N−i (G) and Rλ,i(F ) =Rλ,i(G).

Proof. Let F (x) =
∑

06s as(x)φ(x)s, G(x) =
∑

06s bs(x)φ(x)s, be the canonical φ-expansions
of F and G, respectively. For the elements a ∈ O, we have vi(a) = e0 . . . ei−1v(a),
by Lemma 1.5; thus, vi(F −G) > e0 . . . ei−1ν, by the hypothesis. Since F (x)−G(x) =∑

06s(as(x)− bs(x))φ(x)s is the canonical φ-expansion of F −G, [6, Lemma 2.17] shows that

e0 . . . ei−1ν 6 vi(F −G) = min{vi((as − bs)φs) | 0 6 s}.

Therefore, the two clouds of points {(s, vi(asφs)) | 0 6 s}, {(s, vi(bsφs)) | 0 6 s}, have the same
points with ordinate less than e0 . . . ei−1ν. Let L be the line of slope λ containing S. No point
of the cloud of F lies below the line L, and only the points of S lie on this line. The condition
u+ `|λ|< e0 . . . ei−1ν implies that the cloud of points of G has the same properties. Thus, S
is also a side of N−i (G).

Let λ=−h/e, with h, e positive coprime integers. Let vi+1 be the MacLane valuation
determined by t, φ, λ. By the definition of vi+1 (cf. Section 1),

vi+1(F −G) > e0 . . . ei−1eν > e(u+ `|λ|) = vi+1(F ) = vi+1(G).

Therefore, Rλ,i(F ) =Rλ,i(G), by [6, Proposition 2.8]. 2

Proof of Theorem 2.3. The first item of Theorem 2.3 was proved right after Corollary 2.4. Let
us prove the second item. Let r be the Okutsu depth of G(x). Let tG be an OM representation

https://doi.org/10.1112/S1461157013000089 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000089


148 J.-D. BAUCH, E. NART AND H. D. STAINSBY

Figure 2. Newton polygon Ni(F ) in the context of the proof of Theorem 2.3.

of G(x) as in (1.2), and consider the strongly optimal type

t := Truncr(tG) = (ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr)),

admitting G as a representative. In order to prove the theorem, it is sufficient to show that

Ni(F ) =Ni(G), Ri(F ) =Ri(G), 1 6 i6 r. (2.7)

In fact, Rr(F ) =Rr(G) implies that t is F -complete too; thus, F is a representative of t, and
F ≈G, by the definition of ≈.

By hypothesis, F ≡G≡ ψa0
0 (mod m), for a certain positive exponent a0. Let us prove (2.7)

by induction on i. We assume that it is true for all 1 6 j < i (thus, we make an empty
assumption if i= 1). Since G is a polynomial of type t, our assumption implies that F satisfies
the conditions of Lemma 2.8; thus,

vi(F ) + `|λmin|
e0 . . . ei−1

6
2δ(F )
n

< ν, (2.8)

where `= `(Ni(F )) and λmin is the largest slope of this polygon (|λmin| is minimal).
Let Smin be the side of Ni(F ) of slope λmin. By Lemma 2.9, Smin is one of the sides of Ni(G)

(see Figure 2). Since G is irreducible, Ni(G) is one-sided, so that Ni(G) = Smin. Thus, the left
end point of Smin has abscissa zero, so that Ni(F ) = Smin =Ni(G). Also, Ri(F ) =Ri(G), again
by Lemma 2.9. 2

Remark 1. In [1], the reduced discriminant mδ∗(F ) of an arbitrary polynomial F (x) ∈ O[x]
is introduced, and it is shown that Corollary 2.4 holds with 2δ∗(F ) in the place of 2δ(F )/n.
However, the reduced discriminant does not satisfy δ∗(F ) 6 δ(F )/n, so that Theorem 2.3
cannot be deduced from this result.

For instance, suppose p is odd and consider F (x) = x4 + aπx2 + bπ2 ∈ O[x], with ab(a2 −
4b) 6∈m. This polynomial is irreducible; in fact, if we choose φ1(x) = x as a lift of the irreducible
factor of F , the Newton polygon N1(F ) is one-sided of slope −1/2 and R−1/2,1(F )(y) =
y2 + ay + b is irreducible in F[y]. One checks easily that

δ0(F ) = 2, δ∗(F ) = 3, δ(F ) = 6.

By the first item of Theorem 2.3, any monic polynomial G(x) ∈ O[x] of degree four such that
F ≡G (mod m3), is irreducible. If we do not know the irreducibility of F , Corollary 2.4 shows
that we can test its irreducibility by working modulo m4. However, according to the criterion
of the reduced discriminant, we should work modulo m7 to test the irreducibility of F .
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3. OM factorizations of polynomials

In this section, we deal with the problem of finding ‘sufficiently good’ approximations to the
irreducible factors of a polynomial in O[x]. We first extend the notion of Okutsu equivalence
in Section 1 to non-irreducible polynomials.

Definition 3.1. Let F, G ∈ O[x] be monic separable polynomials, and let F = F1 . . . Fg,
G=G1 . . . Gg′ be their factorization into a product of monic irreducible polynomials in O[x].
We say that F and G are Okutsu equivalent, and we write F ≈G, if g = g′ and Fs ≈Gs for all
1 6 s6 g, up to ordering.

An expression of the form, F ≈ P1 . . . Pg, with P1, . . . , Pg ∈ O[x] irreducible, is called an
Okutsu factorization of F .

Clearly, every F ∈ O[x] admits a unique (up to ≈) Okutsu factorization. However, this
concept is too weak for our purposes. For instance, if all factors of F are Okutsu equivalent
to P , then F ≈ P g is an Okutsu factorization of F which is unable to distinguish the true
irreducible factors of F .

Definition 3.2. Let F ≈ P1 . . . Pg be an Okutsu factorization of a monic separable
polynomial F ∈ O[x]. For each 1 6 s6 g, let Fs be the irreducible factor of F which is Okutsu
equivalent to Ps, and let θs ∈ ksep be a root of Fs.

We say that F ≈ P1 . . . Pg is an OM factorization of F if

v(Ps(θs))> v(Ps(θt)), ∀ 1 6 s 6= t6 g. (3.1)

3.1. OM factorizations and OM representations

In this section, we study basic properties of the OM factorizations and we find a characterization
of condition (3.1) in terms of OM representations of the factors of F , which facilitates the
computation of these factorizations in practice.

We denote by φt
i , λ

t
i , ψ

t
i , V

t
i , etc. the data at the ith level of a type t.

Lemma 3.3. Let t, t′ be two strongly optimal types over O. The following conditions are
equivalent:

(a) Rep(t) = Rep(t′), where Rep(t) denotes the set of representatives of the type t;
(b) there exist representatives φ, φ′ of t, t′, respectively, such that φ≈ φ′;
(c) ordt(F ) = ordt′(F ), for all polynomials F ∈ O[x].

When these conditions are satisfied, we say that the types t and t′ are equivalent.

Proof. By Definition 1.7, (a) and (b) are equivalent. Suppose that t and t′ admit a common
representative φ. By [4, Theorem 3.9], [φt

1, . . . , φ
t
r] and [φt′

1 , . . . , φ
t′

r′ ], are Okutsu frames of
φ; thus, r = r′ and the two types have the same Okutsu invariants and MacLane valuations
v1, . . . , vr+1 [4, Corollary 3.7]. Hence, the two types have the same Newton operators Nr+1,
and (c) follows from Lemma 1.5(ii). Finally, since the representatives of t are monic polynomials
φ of minimal degree such that ordt(φ) = 1, (c) trivially implies (a). 2

If two strongly optimal types t, t′ of order r are equivalent, then Lemmas 1.5 and 1.6 show
that φt

i ≈ φt′

i , for all 1 6 i6 r. Since φt
i is a representative of Trunci−1(t), the truncations of t

and t′ of any order 0 6 i6 r are equivalent too.
By [4, Theorems 3.5,3.9], the mapping, t 7→ Rep(t), induces a 1–1 correspondence between

equivalence classes of strongly optimal types and equivalence classes of monic irreducible
separable polynomials in O[x], under Okutsu equivalence.
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Let F ∈ O[x] be a monic irreducible separable polynomial, and let r be its Okutsu depth.
We recall that an OM representation of F is just an optimal type tF of order r + 1, satisfying
any of the following equivalent conditions:

– tF is F -complete; that is ordtF (F ) = 1;
– tF | F and F ≈ φtF

r+1.
By Lemma 3.3, if tF and t′F are OM representations of F , the types Truncr(tF ) and Truncr(t′F )
are equivalent.

Definition 3.4. Let F, G ∈ O[x] be monic irreducible separable polynomials of Okutsu
depth rF , rG, and let tF , tG be OM representations of F , G. Take φtF

0 = 1 = φtG
0 , by convention.

The index of coincidence of F and G is the maximal index 0 6 j 6 min{rF + 1, rG + 1}, such
that φtF

j ≈ φ
tG
j . We denote this index by i(F, G).

The following properties of i(F, G) are easy to check:
– i(F, G) does not depend on the chosen OM representations tF , tG;
– i(F, G) depends only on the classes of F and G modulo ≈;
– F ≈G if and only if i(F, G) = rF + 1 = rG + 1.
The next result is easily deduced from [6, Proposition 3.5,(5)].

Proposition 3.5. Let F, G ∈ O[x] be monic irreducible separable polynomials, and let
θ ∈ ksep be a root of F . Let t be a type of order i> 1 overO, such that t | F and Trunci−1(t) |G.
Let λ(G) be the slope of (the one-sided polygon) Ni(G).Then,

v(G(θ))/deg G> (Vi + min{|λi|, |λ(G)|})/(mie0 . . . ei−1),

and equality holds if and only if t -G.

Lemma 3.6. Let F, G ∈ O[x] be monic irreducible separable polynomials, and let θ ∈ ksep

be a root of F . Let t be a strongly optimal type of order i over O, such that t | F . Then, the
following conditions are equivalent:

(a) t |G;
(b) i(F, G)> i;
(c) v(G(θ))/deg G> Vi+1/(mi+1e0 . . . ei) = v(φi(θ))/mi.

Proof. By [5, 6], the type t may be extended to an OM representation tF of F . If t |G,
it may be extended to an OM representation tG of G too; thus, φtF

i+1 ≈ φ
tG
i+1, because they

are both representatives of t. Thus, (a) implies (b). Conversely, let tG be an arbitrary OM
representation of G, and suppose φtF

i+1 ≈ φ
tG
i+1. This implies that φtG

i+1 is a representative
of t; thus, the types t and Trunci(tG) are equivalent. By the last item of Definition 1.1,
0< ordtG(G) 6 ordTrunci(tG)(G) = ordt(G). Therefore, (a) and (b) are equivalent.

Let us show that (a) and (c) are equivalent. If ψt
0 -G, then v(G(θ)) = 0 and t -G; thus (a)

and (c) are both false in this case. Suppose ψt
0 |G, and let 1 6 j 6 i+ 1 be maximal such that

Truncj−1(t) |G. Let λi+1 be the slope of Ni+1(F ). The Newton polygon N−j (G) with respect
to t has a positive length by Lemma 1.5; let λ(G) ∈Q<0 be its slope. By Proposition 3.5,

v(G(θ))/deg G> (Vj + min{|λj |, |λ(G)|})/(mje0 . . . ej−1),

and equality holds if j 6 i, because Truncj(t) -G. If t |G, then j = i+ 1, and v(G(θ))/deg G>
Vi+1/(mi+1e0 . . . ei). If t -G, then j 6 i, and

v(G(θ))
deg G

6
Vj + |λj |

mje0 . . . ej−1
=
v(φj(θ))
mj

6
v(φi(θ))
mi

=
Vi+1

mi+1e0 . . . ei
,

by Lemma 1.5 and the properties (1.1) of the Okutsu polynomials. 2
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Lemma 3.7. Let P, Q ∈ O[x] be monic irreducible separable polynomials such that P ≈Q.
Let t = (ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr)) be a strongly optimal type admitting P as a
representative. Then, there exist unique data (λQ, ψQ) (or (−∞,—), if P =Q), such that
tQ := (ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr); (P, λQ, ψQ)), is an OM representation of Q.

Proof. Since Q is also a representative of t, we have ordt(Q) = 1, and the Newton polygon
N−r+1(Q) with respect to t and P has length one by Lemma 1.5. Let λQ ∈ Z ∪ {−∞} be the
slope of this polygon. If λQ 6=−∞ (that is P 6=Q), the residual polynomial RλQ,r+1(Q) has
degree one; let ψQ be the monic polynomial obtained by dividing this polynomial by its leading
coefficient. By construction, tQ |Q. By the last item of Definition 1.1, ordtQ(Q) 6 ordt(Q) = 1;
thus, ordtQ(Q) = 1, so that tQ is an OM representation of Q. Also, once we choose P as a
representative of t, the condition tQ |Q uniquely determines these data (λQ, ψQ). 2

The computation of an Okutsu factorization F ≈ P1 . . . Pg of a monic separable polynomial F
is equivalent to the computation of a family tF1 , . . . , tFg of OM representations of the
irreducible factors of F . In fact, from the Okutsu factors P1, . . . , Pg and strongly optimal
types t1, . . . , tg such that each ts admits Ps as a representative, we may construct the OM
representations of F1, . . . , Fg, as shown in Lemma 3.7. Conversely, from the family tF1 , . . . , tFg
we may take Ps := φ

tFs
rs+1 ≈ Fs, as Okutsu factors, where rs is the Okutsu depth of Fs.

We now describe the property of being an OM factorization in terms of the family
tF1 , . . . , tFg of OM representations.

Proposition 3.8. Let F ∈ O[x] be a monic separable polynomial and F1, . . . , Fg ∈ O[x] its
monic irreducible factors, with Okutsu depth r1, . . . , rg, respectively. Let tF1 , . . . , tFg be OM

representations of the factors, and let Ps := φ
tFs
rs+1. Let I be the set of ordered pairs (s, t) of

indices such that i(Fs, Ft) = rs + 1, and for each (s, t) ∈ I, let λs,t be the slope of Nrs+1,tFs
(Ft).

Then, the Okutsu factorization F ≈ P1 . . . Pg is an OM factorization if and only if

|λs,s|> |λs,t|, ∀(s, t) ∈ I, s 6= t. (3.2)

Proof. Denote ts := Truncrs(tFs), and choose a root θs ∈ ksep of Fs, for each 1 6 s6 g. Let
(s, t) be an ordered pair of indices, 1 6 s, t6 g. Suppose i(Fs, Ft) = rs + 1. Then, Lemma 3.6
shows that ts | Ft, and

v(Ps(θt)) = (V ts
rs+1 + |λs,t|)/e(Fs),

by Lemma 1.5. Suppose now i := i(Fs, Ft) 6 rs. Since i(Ps, Ft) = i(Fs, Ft) = i, Lemma 3.6
shows that Trunci(tFt) - Ps. By Proposition 3.5,

v(Ps(θt)) =
mts
rs+1

mi

Vi + min{|λts
i |, |λ

tt
i |}

e0 . . . ei−1
6
mts
rs+1

mi

Vi + |λts
i |

e0 . . . ei−1

=
mts
rs+1

mts
i+1

V ts
i+1

ets0 . . . etsi
6
V ts
rs+1

e(Fs)
,

the last inequality by the explicit formulas of Vj in Section 1. Hence, the condition (3.1) is
equivalent to (3.2). 2

Definition 3.9. Let F ∈ O[x] be a monic separable polynomial and F1, . . . , Fg ∈ O[x] the
monic irreducible factors of F . We say that a family tF1 , . . . , tFg of OM representations of the
factors faithfully represents F if any of the two following equivalent conditions is satisfied:

(a) tFs - Ft, ∀ 1 6 s 6= t6 g;
(b) ordtFs

(F ) = 1, ∀ 1 6 s6 g.
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By construction, ordtFs
(Fs) = 1; hence, the conditions (a) and (b) are equivalent because

ordtFs
(F ) =

∑
16t6g ordtFs

(Ft).

Corollary 3.10. With the notation in Proposition 3.8, if F ≈ P1 . . . Pg is an OM
factorization, then the family tF1 , . . . , tFg faithfully represents F .

Proof. If tFs | Ft, then Ft is a polynomial of type tFs (Lemma 2.6) and this implies λs,t = λs,s
(Definition 2.5). 2

Finally, we show that any family of OM representations that faithfully represents a
polynomial F , leads immediately to an OM factorization of F .

Lemma 3.11. Let F ∈ O[x] be a monic separable polynomial and tF1 , . . . , tFg a family of
OM representations of the irreducible factors of F , that faithfully represents F . Then, if we take
arbitrary representativesQ1, . . . , Qg of these types, we get an OM factorization, F ≈Q1 . . . Qg,
of F .

Proof. We keep the notation from Proposition 3.8. Consider an index 1 6 s6 g. All data
ej , fj , hj , Vj we are going to use correspond to the type tFs . Since ordtFs

(Fs) = 1, the Newton
polygon N−rs+2,tFs

(Fs) has length one and slope −hs ∈ Z<0 ∪ {−∞}. By [6, Theorem 3.1],

v(Qs(θs)) = (Vrs+2 + hs)/e(Fs) = (Vrs+1 + |λs,s|+ hs)/e(Fs),

the last equality by the recurrence Vrs+2 = ers+1frs+1(ers+1Vrs+1 + hrs+1), in Section 1, having
in mind that ers+1 = frs+1 = 1 and hrs+1 = |λs,s|.

For all t 6= s, we have tFs - Ft. If ts | Ft, then Proposition 3.5 shows that

v(Qs(θt)) = (Vrs+1 + min{|λs,s|, |λs,t|})/e(Fs)< v(Qs(θs)).

If ts - Ft, then i := i(Fs, Ft) = i(Qs, Ft) 6 rs, and Trunci(tFt) -Qs, by Lemma 3.6. Thus,
v(Qs(θt)) 6 Vrs+1/e(Fs)< v(Qs(θs)), as in the proof of Proposition 3.8. 2

Let us see an example. Take a, b ∈ O such that v(ab) = 0 and consider

F1 = x+ π + π2 + π4a, F2 = x+ π + π3 + π4b, F = F1F2.

The Okutsu factorizations, F ≈ x2 ≈ x(x+ π), are not OM factorizations of F , because they
both lead to tF1 = (y; (x,−1, y + 1)) | F2.

The Okutsu factorization F ≈ (x+ π)2 leads to a family of OM representations that faithfully
represents F , because these Okutsu factors are sufficiently close to the true factors to distinguish
them:

tF1 = (y; (x+ π,−2, y + 1)) - F2, tF2 = (y; (x+ π,−3, y + 1)) - F1.

Let us choose as representatives of the above types tF1 , tF2 , the polynomials Q1 = x+
π + π2, Q2 = x+ π + π3. By Lemma 3.11, F ≈Q1Q2 is an OM factorization. The new OM
representations of F1, F2 determined by Q1, Q2 are:

tF1 = (y; (x+ π + π2,−4, y + a)), tF2 = (y; (x+ π + π3,−4, y + b)).

The Montes algorithm computes a family tF1 , . . . , tFg of OM representations faithfully
representing F , and derives from it an OM factorization F ≈ P1 . . . Pg, as indicated in
Lemma 3.11 (cf. Section 4). This is the starting point for the fast computation of an
approximate factorization of F with a prescribed precision, by means of the single-factor
algorithm [9].
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3.2. Polynomials having the same OM factorizations

The aim of this section is to prove Theorem 3.13, where we find the least precision ν such that
two polynomials congruent modulo mν have the same OM factorizations. To this end, we need
a result similar in spirit to Lemma 2.8.

Lemma 3.12. Let t be a strongly optimal type of order i− 1 > 0, and φ ∈ O[x] a
representative of t. Let F ∈ O[x] be a monic polynomial such that `(N−i (F ))> 1, and denote
δ(F ) := v(Disc(F )). Let Smax be the first side (from left to right) of N−i (F ) and let λmax be
its slope. Let u > u′ be the ordinates of the end points of Smax. If `(Smax) = 1, let Snext be the
second side of N−i (F ) and let λnext be its slope. Then,

δ(F ) >

{
u, if `(Smax)> 1,
u′ + |λnext|, if `(Smax) = 1.

Proof. Let F = F1 . . . Fg be the factorization of F into a product of monic irreducible
polynomials in O[x]. For all 1 6 j 6 i, 1 6 s6 g, denote:

tj−1 := Truncj−1(t);
`j,s := `(N−j (Fs)) = ordtj−1(Fs), the abscissa of the right end point of N−j (Fs);
uj,s := the ordinate of the left end point of N−j (Fs).

By [6, Lemma 2.17], the right end point of N−j (Fs) is (`j,s, vj(Fs)). If tj−1 | Fs, then Lemma 2.6
shows that deg Fs =mj`j,s. In particular, vj(Fs) = `j,sVj and uj,s = `j,s(Vj + |λj,s|), where λj,s
is the slope of N−j (Fs). If tj−1 - Fs, then `j,s = 0 and uj,s = vj(Fs).

By the theorem of the product (2.4), u= ui,1 + . . .+ ui,g, and there exists an irreducible
factor Fs0 such that N−i (Fs0) is one-sided of slope λmax. Since Fs0 is a polynomial of type t,
Lemma 2.6 shows that deg Fs0 =mj`j,s0 , for all 1 6 j 6 i.

Claim. For all s 6= s0, we have v(Res(Fs, Fs0)) > ui,s.

In fact, suppose first that t - Fs. Let 0 6 j < i be the first level such that tj - Fs. For all
j < k 6 i, the Newton polygon N−k (Fs) is the single point (0, vk(Fs)). By the definition
of the MacLane valuations, ui,s = vi(Fs) = ei−1 . . . ej+1vj+1(Fs). If j = 0, then v1(Fs) = 0
and we deduce that ui,s = 0. If 0< j < i, then tj−1 | Fs, and vj+1(Fs) = ej(vj(Fs) +
`j,s min{|λj,s|, |λj |}), by the definition of vj+1. Hence,

ui,s = ei−1 . . . ej`j,s(Vj + min{|λj,s|, |λj |}) 6 ei−1 . . . ej`j,s(Vj + |λj,s|).

On the other hand, Lemma 2.7 applied to the type tj−1 shows that

v(Res(Fs, Fs0)) > f0 . . . fj−1`j,s`j,s0(Vj + min{|λj,s|, |λmax|})

= mj`j,s`j,s0
Vj + |λj,s|
e0 . . . ej−1

= deg(Fs0)`j,s
Vj + |λj,s|
e0 . . . ej−1

> mi`j,s
Vj + |λj,s|
e0 . . . ej−1

> ei−1 . . . ej`j,s(Vj + |λj,s|) > ui,s.

If t | Fs, we have directly ui,s = `i,s(Vi + |λi,s|) 6 v(Res(Fs, Fs0)), by Lemma 2.7 applied to
the type t. This ends the proof of the claim.

From now on, we denote ρs,t := v(Res(Fs, Ft)). We are ready to deduce the lemma from the
claim and the equality

δ(F ) =
∑

16s6g

δ(Fs) +
∑

16s,t6g

ρs,t.
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Suppose first that there is at least one Fs1 6= Fs0 , such that t | Fs1 and λi,s1 = λmax. In this
case, the claim shows by symmetry that ρs1,s0 > ui,s0 ; hence,

δ(F ) > 2ρs1,s0 +
∑

s6=s0,s1

ρs,s0 >
∑

16s6g

ui,s = u.

Suppose now that for all Fs 6= Fs0 , such that t | Fs, we have λi,s 6= λmax. In this case,
`i,s0 = `(Smax) and u= u′ + `i,s0 |λmax|. If `i,s0 > 1, we have deg Fs0 =mi`i,s0 > 2mi, so that
the Okutsu depth of Fs0 is greater than or equal to i. Lemma 2.2 shows that 2δ(Fs0)/deg Fs0 >
ui,s0/(e0 . . . ei−1), and we deduce that δ(Fs0) >miui,s0/(e0 . . . ei−1) > ui,s0 . Hence,

δ(F ) > δ(Fs0) +
∑
s6=s0

ρs,s0 >
∑

16s6g

ui,s = u.

Finally, suppose that `i,s0 = `(Smax) = 1. In this case, ordt(Fs0) = `i,s0 = 1, vi(Fs0) = `i,s0Vi =
Vi, and ui,s0 = Vi + |λmax|. Since `(N−i (F ))> 1, this polygon has at least a second side Snext

of slope λnext. Let I be the set of all indices 1 6 t6 g such that N−i (Ft) has slope λnext. By
the claim, for all t ∈ I, we have

2ρt,s0 > 2ui,t = `i,t(Vi + |λnext|) + ui,t > vi(Fs0) + |λnext|+ ui,t,

so that

δ(F ) > 2
∑
t∈I

ρt,s0 +
∑

s6∈I∪{s0}

ρs,s0 > vi(Fs0) + |λnext|+
∑
s6=s0

ui,s

= |λnext|+
(∑

s

ui,s

)
− |λmax|= |λnext|+ u′. 2

Remark 2. In Lemma 3.12, if φ divides F , then we understand that Smax is a side of slope
λmax =−∞, and u=∞ [6, § 1.1]. The statement of the lemma and all arguments in the proof
remain valid in this case.

It is easy to construct examples showing that the inequalities of Lemma 3.12 are sharp.
For instance, F (x) = x2 + πν has u= δ = ν (if v(2) = 0); while F (x) = (x+ πν)(x+ π) has
u′ = |λnext|= 1 and δ = 2, if ν > 1.

Theorem 3.13. Let F, G ∈ O[x] be monic separable polynomials, and denote δ(F ) :=
v(Disc(F )). If F ≡G (mod mδ(F )+1), then F ≈G and any OM factorization F ≈ P1 . . . Pg of
F is also an OM factorization G≈ P1 . . . Pg of G.

Proof. Let F1, . . . , Fg be the monic irreducible factors of F , ordered so that Fs ≈ Ps, for all
1 6 s6 g. Our aim is to attach to every Ps an irreducible factor Gs of G, such that Gs ≈ Ps
and either (3.1) or (3.2) are satisfied for the pair Ps, G.

Let us fix an index 1 6 s6 g. Let r be the Okutsu depth of Ps and let

tFs = (ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr); (Ps, λFs , ψFs)),

be the OM representation of Fs determined by Ps, satisfying tFs - Ft for all t 6= s. We admit
exact OM representations in which λFs =−∞ and ψFs is not defined.

Consider the strongly optimal type t := Truncr(tFs). Since Fs ≈ Ps, the polynomial Fs is
a representative of t too; thus, ordt(Fs) = 1. The proof of the theorem requires different
arguments according to ordt(F ) = 1 or ordt(F )> 1.
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Figure 3. Newton polygon N−
i (F ) in the context of Lemma 3.12.

Case ordt (F ) = 1. Since 1 = ordt(F ) =
∑

16t6g ordt(Ft), we have ordt(Ft) = 0, for all t 6= s.
By Definition 1.7, Ft 6≈ Fs ≈ Ps, for all t 6= s.

For monic polynomials P, Q ∈ O[x] of Okutsu depth zero we have P ≈Q if and only if
P =Q. Thus, if r = 0, then Ps = Fs = ψ0 is coprime to Ft, for all t 6= s. By hypothesis,
G= F = F1 . . . Fg; thus, by Hensel’s lemma, G has a unique irreducible factor (say) Gs, such
that Gs = ψ0 is coprime to G/Gs. Hence, Ps ≈Gs, v(Ps(θs))> 0 and v(Ps(θ)) = 0, for any
choice of roots θs, θ ∈ ksep of Gs and G/Gs, respectively. Thus, (3.1) is satisfied for the pair
Ps, G.

If r > 0, we may consider tr−1 := Truncr−1(t). By the last item of Definition 1.1,
ordtr−1(F ) > ordtr−1(Fs) > erfr ordt(Fs)> 1. Since t | Fs, the polygon N−r (Fs) is one-sided
of slope λr and it has length ordtr−1(Fs)> 1, by Lemma 1.5. By (2.4), N−r (F ) has a side S of
slope λr and length `(S)> 1, where `(S) is the length of the projection of S to the horizontal
axis.

We now apply Lemma 3.12 to the pair tr−1, F . If `(Smax) = 1, then S 6= Smax, because
`(S)> 1. In any case, Lemma 3.12 shows that δ(F ) + 1 is greater than the ordinate of the
point of the vertical axis lying on the line determined by S. By Lemma 2.9, the Newton
polygon N−r (G) has a side of slope λr and Rr(G) =Rr(F ); thus, ordt(G) := ordψr Rr(G) =
ordψr Rr(F ) =: ordt(F ) = 1. Hence, there is a unique irreducible factor (say) Gs of G, such
that ordt(Gs) = 1, and ordt(G0) = 0, for any other irreducible factor G0 of G. By Lemma 2.6,
deg Gs =mrs+1 ordt(Gs) =mrs+1; thus, Gs is a representative of t, and Gs ≈ Ps. Finally, the
set I in Proposition 3.8 contains only the pair (s, s), so that (3.2) is trivially satisfied.

Case ordt (F )> 1. Since Fs ≈ Ps is a representative of t, we have ordt(Fs) = 1, so that
Nr+1(Fs) has length one and slope λs,s, in the notation from Proposition 3.8. Since F ≈
P1 . . . Pg is an OM factorization, (3.2) holds; this implies that N−r+1(F ) indeed has a side Smax

of slope λmax = λs,s and end points (0, u) and (1, u′), by the theorem of the product (2.4).
We now apply Lemma 3.12 to the pair t, F . Arguing as before, N−r+1(G) coincides with

N−r+1(F ), except for, eventually, the ordinate u of the point of abscissa zero (see Figure 3). Thus,
N−r+1(G) also has a first side Smax(G) of length one and slope λs,s(G), with |λs,s(G)|> |λs,t|,
for all t such that t | Ft. The equality of the Newton polygons (up to the first side) and the
theorem of the product, show that all irreducible factors G0 6=Gs of G, which are divisible by
t, have Nr+1(G0) one-sided of slope λs,t for some t 6= s. Hence, (3.2) is satisfied for Ps, G as
well. 2
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Figure 4. The λ-component of a polygon; Lλ is the line of slope λ having first contact with the
polygon from below.

4. The OM factorization algorithm

Let us go back to the global setting of the introduction. Let A be a Dedekind domain whose
field of fractions K is a global field. Let L/K be a finite separable extension and B the
integral closure of A in L. Let θ ∈ L be a primitive element of L/K, with minimal polynomial
F (x) ∈A[x].

Let p be a non-zero prime ideal of A, v := vp the canonical p-adic valuation,Kp the completion
of K at p, and Op the valuation ring of Kp. We denote by F =A/p the residue field of p. We fix
a local generator π of p; that is, an element π ∈A, whose image in the local ring Ap generates
the maximal ideal. If A is a principal domain, we assume moreover that p = πA.

We review in this section the factorization algorithm developed by Montes in his 1999 PhD
thesis, inspired by the ideas of Ore and MacLane. It was first published in [5], based on the
theoretical background developed in [6]. A short review may be found in the survey [12] as
well.

The algorithm is based on four routines: Factorization, Newton, ResidualPolynomial and
Representative. Let us briefly review them.

Routine Factorization(F,ϕ)
INPUT:
− A finite field F .
− A monic polynomial ϕ(y) ∈ F [y].

OUTPUT:
− The factorization of ϕ(y) into a product of irreducible polynomials of F [y].

Routine Newton(t,ω, g)

INPUT:
− A type t over A, of order i− 1 > 0, and a representative φ ∈A[x] of t.
− A non-negative integer ω.
− A non-zero polynomial g(x) ∈K[x].

Compute the first ω + 1 coefficients a0(x), . . . , aω(x) of the canonical φ-expansion of g(x) and
the Newton polygon N of the set of points (s, vi(asφs)), for 0 6 s6 ω.

OUTPUT:
− N =N−i (g), the principal ith order Newton polygon of g with respect to the pair (t, φ).

Definition 4.1. Let λ ∈Q<0 and let N be a Newton polygon. We define the λ-component
of N to be Sλ(N) := {(x, y) ∈N | y − λx is minimal}. If N has a side S of slope λ, then
Sλ(N) = S; otherwise, Sλ(N) is a vertex of N (see Figure 4).
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Routine ResidualPolynomial(t, λ, g)
INPUT:
− A type t over A, of order i− 1 > 0, and a representative φ ∈A[x] of t.
− A slope λ=−h/e ∈Q<0, with h, e positive coprime integers.
− A non-zero polynomial g(x) ∈K[x].

Let g(x) =
∑

06s as(x)φ(x)s be the canonical φ-adic expansion of g(x). Let S be the λ-
component of Ni(g), and let s0 be the abscissa of the left end point of S. Let d := d(S) be the
degree of S, so that s0 + de is the right end point of S. The points of integer coordinates lying
on S have abscissa sj := s0 + je, 0 6 j 6 d.

Compute, for each abscissa sj , the residual coefficient cj ∈ Fi defined as

cj :=

{
0, if (sj , vi(asjφ

sj )) lies above S,
z
ti−1(sj)
i−1 Ri−1(asj )(zi−1), if (sj , vi(asjφ

sj )) lies on S,

where t0(sj) := 0, ti−1(sj) is described in [6, Definition 2.19] for i > 1, and zi−1 ∈ Fi is the
image of y through the isomorphism Fi ' Fi−1[y]/(ψi−1(y)).

OUTPUT:
− The residual polynomial Rλ,i(g)(y) := c0 + c1y + . . .+ cdy

d ∈ Fi[y], with respect to the triple
(t, φ, λ).

The routine Construct carries out the procedure described in [6, Proposition 2.10]. It will
only be used to construct representatives of the types.

Routine Construct(t, λ,ϕ, V )
INPUT:
− A type t over A, of order i− 1 > 0, and a representative φ ∈A[x] of t.
− A slope λ=−h/e ∈Q<0, with h, e positive coprime integers.
− A polynomial ϕ(y) ∈ Fi[y], of degree d.
− A positive integer V > ed(eVi + h).

Let (s, u) be minimal non-negative integers such that V = ue+ sh. Our aim is to construct a
polynomial g(x) ∈A[x], whose ith order Newton polygon with respect to (t, φ) is contained in
the segment of slope λ, degree d and left end point (s, u) (see Figure 5), and having moreover
a prescribed residual polynomial.

Let ϕ(y) = a0 + a1y + . . .+ ady
d ∈ Fi[y]. If i= 1, the coefficients aj ∈ F1 = F[y]/(ψ0(y)) can

be expressed as polynomials in z0 of degree less than f0, with coefficients in F. If we denote by
aj(x) their arbitrary liftings to A[x], we take

g(x) = φ(x)s(a0(x)πu + a1(x)πu−hφ(x)e + . . .+ ad(x)πu−dhφ(x)de).

If i > 1, the polynomial we are looking for is

g(x) = φ(x)s(g0(x) + g1(x)φ(x)e + . . .+ gd(x)φ(x)de),

where gj(x) ∈A[x] are the output of Construct(Trunci−1(t), λi−1, ϕj, wj), for adequate
polynomials ϕj(y) ∈ Fi−1[y] with deg ϕj < fi−1, and integers wj > Vi.

OUTPUT:
− A polynomial g(x) ∈A[x] such that vi+1(g) = V and yordy(ϕ)Rλ,i(g)(y) = ϕ(y).

Routine Representative(t)
INPUT:
− A type t over A, of order i> 1.
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Figure 5. Routine Construct.

Express ψi(y) = yfi + ϕ(y) ∈ Fi[y], for some polynomial ϕ(y) of degree less than fi. Let g(x) be
the output of Construct(t,λi,cϕ,Vi+1), for an adequate constant c ∈ Fi [6, Theorem 2.11].

OUTPUT:
− A representative of t, constructed as: φ(x) = φi(x)eifi + g(x).

We now describe the Montes algorithm in pseudocode. Our design is slightly different from
the original one. The output OM representations are optimal and complete types of order r + 1,
as described in (1.2), where r is the Okutsu depth of the corresponding p-adic irreducible factor.
In the original version, types of order r + 2 were used in some occasions (cf. [4, Theorem 4.2]).
The changes we introduce do not affect the complexity. The order of a type t is the largest
level i for which all three fundamental invariants (φi, λi, ψi) are assigned.

THE MONTES ALGORITHM

INPUT:
− A monic separable polynomial F (x) ∈A[x].
− A non-zero prime ideal p of A.

1 Initialize an empty list OMReps.
2 Factorization(F,F).
3 FOR each monic irreducible factor ϕ of F DO
4 Take a monic lift, φ(x) ∈A[x], of ϕ and create a type t of order zero with

ψt
0← ϕ, ωt

1← ordϕ F , φt
1← φ.

5 Initialize an empty list Leaves, and the list Types =[t].

WHILE #Types >0 DO

6 Extract (and delete) the last type t0 from Types. Let i− 1 be its order.
7 Newton(t0,ω

t0
i ,F). Let N be the Newton polygon.

8 FOR every side S of N DO
9 Set λt0

i ← slope of S. IF λt0
i =−∞, THEN add t := (t0; (φt0

i ,−∞, –)) to Leaves

and continue to the next side S.
10 ResidualPolynomial(t0,λ

t0
i ,F).

11 Factorization(Fi,Ri(F )).
12 FOR every monic irreducible factor ψ of Ri(F ) DO
13 Set t← t0, and extend t to an order i type by setting ψt

i ← ψ.
14 IF ωt0

i = 1, THEN add t to Leaves and go to 6.
15 Set ωt

i+1← ordψ Ri(F ), and call Representative(t) to fill φt
i+1.
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Figure 6. Connected tree of OM representations of the irreducible factors of F whose reduction
modulo p is a power of ψ0. The leaves are represented by N.

16 IF deg φt
i+1 = deg φt

i THEN set φt
i ← φt

i+1, ω
t
i ← ωt

i+1, and delete all data in
the (i+ 1)th level of t.

17 Add t to Types.
END WHILE

18 Add all elements of Leaves to the list OMReps.

OUTPUT:
− An OM factorization of F over Op[x], and the corresponding family tF1 , . . . , tFg of OM

representations of the irreducible factors of F . The Okutsu factors are the φ-polynomials at
the last level of these types.

When the WHILE loop (corresponding to some irreducible factor ϕ of F ) ends, the list
Leaves contains a tree of F -complete optimal types in 1–1 correspondence with all irreducible
factors of F (x) over Op[x], which are congruent to a power of ϕ modulo p. The nodes of this
tree (except for the root node) are labelled with a triple of fundamental invariants (φi, λi, ψi).
Each leaf of the tree determines the type obtained by gathering the invariants of all nodes in
the unique path joining the leaf to the root node. See Figure 6.

Step 16 takes care of the optimization. The list Types stores only strongly optimal types.
If the enlarged type t of order i of step 13 still has this property, then it is added to Types.
Otherwise, we send the (i− 1)th order type t0 to Types again, but equipped with a different
(and better) representative; this is called a refinement step [5, § 3.2].

When the algorithm ends, the list OMReps contains a forest (disjoint union of trees) of optimal
F -complete types. Nevertheless, the list OMReps is only a sequence of the leaves of all these
trees, and the tree structure is not preserved.

The Montes algorithm as an irreducibility test

For any level i, the existence of two sides of different slope in N−i (F ), or two coprime factors of
Ri(F ) in Fi[y], implies that F (x) is not irreducible [6, Theorems 3.1,3.7]. On the other hand, if
no factorization has been detected in lower levels, the Newton polygon N−i (F ) is one-sided and
the corresponding residual polynomial Ri(F ) is irreducible in Fi[y], then F (x) is irreducible
[6, Corollary 3.8].

Therefore, we can use the following version of the Montes algorithm as an irreducibility test
for polynomials over Op[x].

IRREDUCIBILITY TEST
INPUT:
− A monic separable polynomial F (x) ∈A[x].
− A non-zero prime ideal p of A.

1 Factorization(F,F). IF there are at least two irreducible factors THEN return false.
2 Consider a monic lift, φ(x) ∈A[x], of the unique irreducible factor ϕ of F and create a

type t of order zero with: ψt
0← ϕ, ωt

1← ordϕ F , φt
1← φ.

3 Initialize the list Types =[t].
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WHILE #Types > 0 DO
4 Extract (and delete) the last type t0 from Types. Let i− 1 be its order.
5 N=Newton(t0,ω

t0
i ,F). IF N has at least two sides THEN return false.

6 Set λt0
i ← slope of the unique side of N . IF λt0

i =−∞, THEN return true.
7 ResidualPolynomial(t0,λ

t0
i ,F).

8 Factorization(Fi,Ri(F )). IF there are at least two irreducible factors THEN return
false, ELSE let ψ be the unique irreducible factor of Ri(F ).

9 Set t← t0, and extend t to an order i type by setting ψt
i ← ψ.

10 IF ordψ Ri(F ) = 1, THEN return true.
11 Set ωt

i+1← ordψ Ri(F ), and call Representative(t) to fill φt
i+1.

12 IF deg φt
i+1 = deg φt

i THEN φt
i ← φt

i+1, ω
t
i ← ωt

i+1, and delete the (i+ 1)th level of t.
13 Add t to Types.

END WHILE
OUTPUT:
− true if F (x) is irreducible over Op[x] and false otherwise.

5. Complexity analysis of the Montes algorithm

All tasks we are interested in may be performed modulo pν , for a sufficiently high precision ν.
Thus, we may assume that the elements of A are finite π-adic developments. In particular, the
computation of the p-adic valuation v = vp has a negligible cost.

Definition 5.1. An operation of A is called p-small if it involves two elements belonging
to a fixed system of representatives of A/p.

Working at precision ν, each multiplication in A costs O(ν1+ε) p-small operations if we
assume the fast multiplications techniques of Schönhage–Strassen [19].

Let q := #F. We assume that a p-small operation is equivalent to O(log(q)1+ε) word
operations, the cost of an operation in the residue field F =A/p. This is the case in most
of the Dedekind rings that naturally arise in practice.

5.1. Complexity of the basic subroutines

Lemma 5.2 [3, Corollary 14.30]. Let F be a finite field with qF elements, and g(x) ∈
F [x] a polynomial of degree d. The cost of the routine Factorization(F, g) is O(d2+ε +
d1+ε log(qF )) operations in F .

The following observation is easy to prove by an inductive argument.

Lemma 5.3. Let m1, . . . , mi be positive integers such that m1 | . . . |mi and m1 < . . . < mi.
Then, m1 + . . .+mi 6 2mi.

Lemma 5.4 [18, Lemma 18]. Let t be a strongly optimal type of order i− 1 > 1. Let
a(x) ∈ O[x] be a polynomial with deg a <mi. The computation of the multiadic expansion
of a(x),

a(x) =
∑

j=(j1,...,ji−1)

aj(x)φ1(x)j1 . . . φi−1(x)ji−1 , deg aj <m1, (5.1)

where 0 6 jk < ekfk, for all 1 6 k < i, has a cost of O((mi)1+ε) operations in A.
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Actually, in [18] it was proved an estimation of O(m2
i ) operations in A, assuming ordinary

arithmetic. If we assume fast multiplication, the cost of the computation of the φi−1-expansion
of a(x) may be estimated in O((mi)1+ε) operations in A [3, Theorem 9.15]. By using this
estimation, the proof of [18, Lemma 18] leads to Lemma 5.4.

Lemma 5.5. Let t be a strongly optimal type of order i− 1 > 0, with representative φ(x).
Let ω be a positive integer and g(x) ∈A[x] a polynomial of degree d> ωmi. Then, the cost of
the routine Newton(t,ω,g) is O(ωd1+ε) operations in A.

Proof. The computation of the first ω + 1 coefficients of the φ-development of g(x) requires
ω + 1 divisions with remainder

g = φ · q1 + a0, q1 = φ · q2 + a1, . . . , qω = φ · qω+1 + aω.

The number of operations in A that are necessary to carry out each one of these divisions is
O(d1+ε) [3, Theorem 9.6]. Thus, we want to see that this cost dominates the whole routine.

The next step is the computation of vi(ak), for 0 6 k 6 ω. Denote by a(x) = ak(x) any of these
ω + 1 coefficients, and consider the multiadic development (5.1) of a(x). By [8, Lemma 4.2],

vi(a(x)) = min
j=(j1,...,ji−1)

{vi(aj) + j1vi(φ1) + . . .+ ji−1vi(φi−1)}. (5.2)

By [6, Proposition 2.15], we may use closed formulas for the values vi(φj) in terms of the
Okutsu invariants, and since deg aj <m1, [6, Proposition 2.7] shows that

vi(aj) = e0 . . . ei−1 min{vp(c) | c coefficient of aj(x)}.

Thus, the cost of computing vi(ak) is dominated by the cost of the computation of the multiadic
development of ak. By Lemma 5.4, the total cost of this step is (ω + 1)O((mi)1+ε) operations
in A. This cost is clearly dominated by the cost of the first divisions with remainder.

Finally, the computation of the Newton polygon has a cost of O(ω2) multiplications of
integers. If we work at precision ν, (5.2) shows that e0 . . . ei−1ν is an upper bound of vi(ak);
hence, each multiplication of integers of this size requires O(log(miν)1+ε) word operations.
Since ω 6 d/mi, this complexity is also dominated by that of the first divisions with remainder,
which is O(ω(dν log(q))1+ε) word operations. 2

Lemma 5.6. Let t be a strongly optimal type of order i− 1 > 0, with representative
φ(x), and take λ ∈Q<0, g(x) ∈A[x]. Let S be the λ-component of Ni(g), and
let d= d(S) be the degree of S. Then, the cost of ResidualPolynomial(t,λ,g) is
O(d(f0 . . . fi−1)(mi)1+ε log(q)) p-small operations.

Proof. Let e be the least positive denominator of λ. Let s0 be the abscissa of the left end point
of S, and take sj := s0 + je, for 0 6 j 6 d. We assume that in a previous call to the routine
Newton, we computed (and stored) the coefficients asj of the φ-adic expansion of g(x), and
their (φ1, . . . , φi−1)-multiadic expansion. Also, along this computation it is easy to store the
necessary data to compute the exponents ti−1(sj) at zero cost [6, Definition 2.19].

Thus, the computation of the coefficients c0, . . . , cd ∈ Fi of the residual polynomial Rλ,i(g),
requires two tasks:

(a) compute Ri−1(asj )(y) ∈ Fi−1[y], for each 0 6 j 6 d;
(b) compute cj := z

ti−1(sj)
i−1 Ri−1(asj )(zi−1) ∈ Fi, for each 0 6 j 6 d.

Denote by Ci(d) the cost of the computation of Rλ,i(g), measured by the number of p-small
operations. Since deg asj <mi = ei−1fi−1mi−1, the Newton polygon Ni−1(asj ) has length less
than ei−1fi−1; hence, the λi−1-component of this polygon has degree less than fi−1. Therefore,
the cost of task (a) is dominated by Ci−1(fi−1).
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The computation of z
ti−1(sj)
i−1 requires O(log(#Fi)) multiplications in Fi. Since #Fi =

qf0...fi−1 , the cost is O((f0 . . . fi−1)2+ε log(q)) p-small operations.
Since deg Ri−1(asj )< fi−1, the cost of the computation of Ri−1(asj )(zi−1) by Horner’s rule

is O(fi−1) multiplications in Fi; thus, it is dominated by the computation of a power of zi−1.
Altogether, we get

Ci(d) 6 (d+ 1)(Ci−1(fi−1) + (f0 . . . fi−1)2+ε log(q)).

From this recurrence, it is easy to derive

Ci(d) = (d+ 1)O(f0 . . . fi−1 log(q)
(
f1+ε
0 + (f0f1)1+ε + . . .+ (f0 . . . fi−1)1+ε

)
).

Finally, we may use Lemma 5.3 to estimate

f1+ε
0 + . . .+ (f0 . . . fi−1)1+ε 6 (m0)1+ε + . . .+ (mi)1+ε =O(m1+ε

i ). 2

Lemma 5.7. Let t be a strongly optimal type of order i− 1 > 0, with representative φ(x).
Let λ=−h/e, where h, e are positive coprime integers. Let ϕ(y) ∈ Fi[y] be a polynomial of
degree d, and V > ed(eVi + h) a positive integer. Then, the cost of Construct(t,λ,ϕ,V ) is
O((f0 . . . fi−1d)2+εV 1+ε) p-small operations.

Proof. The output polynomial is constructed as

g(x) = φ(x)s(g0(x) + g1(x)φ(x)e + . . .+ gd(x)φ(x)de),

where 0 6 s < e, and the polynomials gj(x) ∈A[x] may be taken as the output of an adequate
call to Construct at level i− 1. In particular, deg gj <mi, for all j.

We must compute the polynomials φ(x)s, φ(x)e, g0(x), . . . , gd(x), and finally compute
g(x) by Horner’s rule. This latter task requires d+ 1 multiplications of polynomials. In each
multiplication, the two factors have degree (bounded by)

(mi, emi), ((e+ 1)mi, emi), ((2e+ 1)mi, emi), . . . , (((d+ 1)e+ 1)mi, emi),

respectively. The multiplication of two polynomials of degrees m′ 6m requires O(m1+ε)
operations in A. Thus, if we denote mi+1 := edmi, the number of operations in A required
for the final evaluation of g(x) is of the order of

(emi)1+ε(11+ε + 21+ε + . . .+ d1+ε) =O((emi)1+εd2+ε) =O(d(mi+1)1+ε).

This estimation clearly dominates the cost of the computation of φ(x)s and φ(x)e. Thus, we
analyze only the cost of the computation of g0(x), . . . , gd(x).

Denote by Ci(d) the total cost of Construct, measured by the number of operations in A.
We have seen that Ci(d) = d(Ci−1(fi−1) +O((mi+1)1+ε)). By using Lemma 5.3, this recurrence
leads to

Ci(d) = O(d (mi+1)1+ε + d fi−1(mi)1+ε + . . .+ d fi−1 . . . f0(m0)1+ε)
= O(d fi−1 . . . f0((mi+1)1+ε + (mi)1+ε + . . .+ (m0)1+ε))
= O(d fi−1 . . . f0 (mi+1)1+ε). (5.3)

Finally, we may work with precision ν := bV/(e0 . . . ei−1e)c+ 1, without changing the desired
properties of g(x):

vi+1(g) = V, yordy ϕRλ,i(g)(y) = ϕ(y),

where vi+1 is the valuation determined by t, φ and λ. In fact, suppose G(x) = g(x) + h(x),
for a polynomial h(x) ∈A[x], all of whose coefficients c satisfy vp(c)> V/(e0 . . . ei−1e).
Then, vi+1(c) = (e0 . . . ei−1e)vp(c)> V , by Lemma 1.5, so that vi+1(h)> vi+1(g), and vi+1(G)
= vi+1(g). Also, we get Rλ,i(G)(y) =Rλ,i(g)(y) by [6, Proposition 2.8].
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Therefore, the total cost of Construct, measured in number of p-small operations, is obtained
by multiplying the estimation of (5.3) by ν1+ε. 2

Corollary 5.8. Let t′ = (ψ0; (φ1, λ1, ψ1); . . . ; (φi−1, λi−1, ψi−1); (φ, λ, ψ)) be an optimal
type of order i> 1, where λ=−h/e for some positive coprime integers h, e, and y 6= ψ(y) ∈
Fi[y] is a monic irreducible polynomial of degree f . Let V := ef(eVi + h). The cost of the
computation of a representative φ′ of t′ is O((f0 . . . fi−1f)2+εV 1+ε) p-small operations.

Proof. The polynomial φ′(x) is constructed as φ(x)ef + g(x), where g(x) is the output of the
routine Construct(t,λ,ψ(y)− yf,V ). The computation of φef by repeated squarings costs
O((efmi)1+ε) operations in A; this cost is dominated by the estimation (5.3) of the cost of the
computation of g(x). Thus, the corollary is an immediate consequence of Lemma 5.7. 2

5.2. Complexity of the polynomial irreducibility test

The aim of this section is to prove a new estimation for the complexity of the polynomial
irreducibility test based on the Montes algorithm. In comparison with previous estimations [2,
18], the total degree in n and δ is reduced from 4 + ε to 2 + ε.

Theorem 5.9. The cost of the irreducibility test over Op[x], applied to a monic separable
polynomial F ∈A[x] of degree n, is O(n2+ε + n1+ε(1 + δ) log(q) + δ2+ε) p-small operations,
where δ := vp(Disc(F )).

Corollary 5.10. If we assume p small (that is, log(q) =O(1)), we obtain an estimation of
O(n2+ε + δ2+ε) word operations.

Before proving this theorem, we discuss some features of the flow of the algorithm. The
irreducibility test provides as a by-product an optimal type t of order r, represented by a tree
with unibranch nodes and a unique leaf.

If ordt(F ) = 1, then F was recognized to be irreducible. Otherwise, after several refinement
steps, a representative φr+1 of t was eventually found, such that Nr+1(F ) had more than one
side, or Rr+1(F ) had more than one irreducible factor; then, F was recognized to be reducible.
In this latter case, all irreducible factors of F are of type t (Definition 2.5), and they have
degree a multiple of mr+1, by Lemma 2.6. In particular, n= fmr+1, for some integer f > 2.

We may choose a monic irreducible polynomial ψ ∈ Fr+1[y] of degree f and use Re-
presentative to construct a representative φ ∈A[x] of the type of order r + 1:

t′ = (ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr); (φr+1,−1, ψ)).

The polynomial φ is irreducible overOp and it has degree mr+2 = fmr+1 = n. The irreducibility
test applied to φ performs the same steps at all levels i6 r, the same refinement steps at level
r + 1 to find φr+1, and it will compute Nr+1(φ) and Rr+1(φ), to deduce the irreducibility of
φ from the property Rr+1(φ)∼ ψ. We shall see below that the cost of reaching φr+1 depends
only on n and φr+1. By Lemmas 5.5, 5.6, the cost of the computation of Nr+1(φ), Rr+1(φ) is
not lower than the cost of the computation of Nr+1(F ), Rr+1(F ), respectively. Hence we have
the following remark.

Remark 3. For the estimation of the complexity of the irreducibility test, we may assume
that the input polynomial is irreducible.
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For the estimation of the complexity we need to estimate the cost of advancing from the
(i− 1)th node of the tree to the ith node. This step may require several iterations of the WHILE
loop, because of the refinement steps at the ith level. Thus, the crucial questions are the
evaluation of the cost of each iteration at the ith level and to find an upper bound for
the number of these iterations.

Lemma 5.11. The width of F at the ith level, d|λi|e, is an upper bound for the number of
iterations of the WHILE loop at the ith level, that are necessary to reach the right values
of (φi, λi, ψi).

Proof. The first WHILE loop at the ith level picks the type of order i− 1 > 0,

t = (ψ0; (φ1, λ1, ψ1); . . . ; (φi−1, λi−1, ψi−1)),

and a representative φ of degree mi (a first candidate to be the polynomial φi), from the list
Types. Then, it computes the slope λ=−h/e, with h, e positive coprime integers, of the one-
sided Newton polygon Ni(F ) with respect to (t, φ), and the unique irreducible factor ψ ∈ Fi[y]
of the residual polynomial Rλ,i(F ). Finally, it constructs a representative φ′ of the type

t′ = (ψ0; (φ1, λ1, ψ1); . . . ; (φi−1, λi−1, ψi−1); (φ, λ, ψ)).

Let f = deg ψ, V = ef(eVi + h). By [6, Theorems 2.11, 3.1], deg φ′ = efmi, and

v(φ(θ)) = (Vi + |λ|)/(e0 . . . ei−1)< v(φ′(θ)) = (V + |λ′|)/(e0 . . . ei−1e),

where θ is a root of F in Kp, v is the canonical extension of vp to Kp, and λ′ is the slope of
the Newton polygon Ni+1(F ), computed with respect to (t′, φ′).

The loop is a refinement step if and only if deg φ′ =mi, or equivalently, e= f = 1. In this
case, φ′ is also a representative of t, and we proceed to a new iteration of the WHILE loop
at the ith level, with the pair (t, φ′) as starting data. Otherwise, [5, Theorem 3.1] shows that
v(φ(θ)) is maximal among all other representatives of t; thus, it may be taken as an Okutsu
polynomial of the ith level. We take φi := φ, λi := λ, ψi := ψ and we proceed to a new iteration
of the WHILE loop at the (i+ 1)th level with the pair (t′, φ′) as starting data.

Therefore, the number of iterations of the WHILE loop at the ith level is bounded from
above by the number of values of v(φ(θ)), where φ runs on all possible representatives of t.
This number of values is d|λi|e by Proposition 1.8. 2

Proof of Theorem 5.9. By Remark 3 we may assume that the input polynomial F is irreducible
over Op[x]. Let r be the Okutsu depth of F and tF,r = (ψ0; (φ1, λ1, ψ1); . . . ; (φr, λr, ψr)) the
strongly optimal type of order r computed along the flow of the algorithm.

We shall frequently use an estimation that is an immediate consequence of formula (2.1) and
the inequality δ0(F ) 6 2δ/n of Lemma 2.2:∑

16i6r

|λi|
e0 . . . ei−1

n2

mi
=O(δ). (5.4)

The initial steps compute the pair (t, φ), where t = (ψ0) is the type of order zero determined
by the unique irreducible factor of F modulo p and φ is a monic lift to A[x] of ψ0. The
cost of these operations is dominated by the factorization of F modulo p, which costs
O(n2+ε + n1+ε log(q)) p-small operations.

Each iteration of the WHILE loop calls each subroutine Newton, ResidualPolynomial,
Factorization and Representative only once. Let R be one of these subroutines; by
Lemma 5.11, the total cost of the calls to R of all iterations of the WHILE loop is not greater
than ∑

16i6r

|λi| CR,i, (5.5)
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where CR,i is an upper bound of the cost of any call to R along the different iterations of the
WHILE loop at the ith level. We proceed to estimate CR,i and (5.5), for each subroutine. We
keep the notation introduced in the proof of Lemma 5.11 for the data t, φ, λ, ψ, e, f , h, φ′,
V , t′, used in any of these iterations.

R = Newton. By Lemma 5.5, the cost of one call to Newton depends only on n= deg F and
ω := `(Ni(F )) = n/deg φ. Since deg φ=mi = ei−1fi−1mi−1 does not depend on the choice
of φ, the cost is constant for all the iterations at the ith level. By Lemma 5.5, this cost is
O((n/mi)n1+ε) operations in A.

By Theorem 2.3, we may work at any precision ν > 2δ/n, so that we may take

CR,i =O((n/mi)n1+ε(δ/n)1+ε) =O((n/mi)δ1+ε)

p-small operations. By (5.4), we obtain∑
16i6r

|λi| CR,i = δ1+ε
∑

16i6r

|λi|
n

mi
6 δ1+ε

∑
16i6r

|λi|
e0 . . . ei−1

n2

mi
=O(δ2+ε).

R = ResidualPolynomial. By Lemma 5.6, the cost of one call to ResidualPolynomial depends
only on f0, . . . , fi−1 and the degree of the side d(Ni(F )) = ω/e= n/(mie). Thus, the cost is
constant for all refinement steps (e= 1) and eventually lower in the last iteration of WHILE
(ef > 1). By Lemma 5.6, we may take

CR,i =O((n/mi)(f0 . . . fi−1)m1+ε
i log(q)) =O((n/e0 . . . ei−1)n1+ε log(q)) (5.6)

p-small operations. By (5.4), we obtain∑
16i6r

|λi| CR,i 6 n1+ε log(q)
∑

16i6r

|λi| n
e0 . . . ei−1

=O(n1+ε log(q)δ).

R = Factorization. The cost of one call to Factorization depends only on deg Rλ,i(F ) =
d(Ni(F )) = ω/e= n/(mie), and it is O((n/mi)2+ε + (n/mi)1+ε(f0 . . . fi−1) log(q)) operations
in Fi, by Lemma 5.2. We may estimate

CR,i = O((n/mi)2+ε(f0 . . . fi−1)1+ε + (n/mi)1+ε(f0 . . . fi−1)2+ε log(q))
= O(n2+ε/(mi(e0 . . . ei−1)1+ε) + (n/e0 . . . ei−1)1+εf0 . . . fi−1 log(q))

p-small operations. Both summands of this expression are dominated by the estimation of (5.6).
Thus, the total cost of Factorization is dominated by the total cost of ResidualPolynomial.

R = Representative. The cost of one call to Representative is O((f0 . . . fi−1f)2+εV 1+ε) p-
small operations, by Corollary 5.8. Along the refinement steps, we have f = 1, V = Vi + h;
since the value of h= |λ| grows at each iteration, the cost is dominated by the cost of the last
iteration, where f = fi, V = Vi+1 = eifi(eiVi + hi). Thus, we may take

CR,i =O((f0 . . . fi−1fi)2+ε(Vi+1)1+ε)

p-small operations. We have, Vi+1/(e0 . . . ei) 6 Vr+1/(e0 . . . er) 6 2δ/n, by the recurrent
formulas for Vi (Section 1), and Lemma 2.2. Hence, f0 . . . fiVi+1 6 2δ. By (5.4), we obtain∑

16i6r

|λi| CR,i 6 (2δ)1+ε
∑

16i6r

|λi| f0 . . . fi = (2δ)1+ε
∑

16i6r

|λi|
e0 . . . ei−1

mifi

6 (2δ)1+ε
∑

16i6r

|λi|
e0 . . . ei−1

n2

mi
=O(δ2+ε). 2
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5.3. Complexity of the general factorization algorithm

Let F1, . . . , Fg ∈ Op[x] be the monic irreducible factors of the input polynomial F ∈A[x].
Denote ns = deg Fs, δs = δ(Fs), and let rs be the Okutsu depth of Fs, for all 1 6 s6 g.

The output of the Montes algorithm is a forest T = T1 ∪ . . . ∪ Tk, a disjoint union of k
connected trees, one for each irreducible factor of F . Let R⊂ T be the set of the k root nodes
of T , each one labelled by an irreducible factor ψ0 of F (see Figure 6). If we agree that the
root nodes have level zero, the level of a node n ∈ T \ R is, by definition, the level of its
unique previous node plus one. These nodes are labelled by a triple of fundamental invariants,
n = (φn, λn, ψn).

Notation. For each n ∈ T of level i, we denote:
tn := the type of order i obtained by gathering the fundamental invariants of all nodes in

the unique path joining n with its root node;

Fn := the product of all irreducible factors of F which are divisible by tn;

Bn := the set of nodes of level i+ 1 whose previous node is n. We say that the nodes of Bn

are branches of n.

Let L ⊂ T be the set of all leaves of T . These leaves are in 1–1 correspondence with the g
irreducible factors of F over Op. Suppose that n is the leaf attached to Fs. The level of n is
rs + 1, and we denote by ts := tn the corresponding type of order rs + 1. By construction, ts
is an OM representation of Fs, and the family of the φrs+1 polynomials of t1, . . . , tg is an OM
factorization of F over Op. In particular, Fn = Fs, by Corollary 3.10.

The root nodes are determined by the factorization of F over F[y]. Hence, their computation
has a cost of O(n2+ε + n1+ε log(q)) p-small operations. Let

Rout:={Newton, ResidualPolynomial, Factorization, Representative},

be the family of the four fundamental subroutines of the Montes algorithm. For each routine
R ∈ Rout and each node m ∈ T \ L, let BR,m be an upper bound of the cost, measured by the
number of p-small operations, of any call to R along the different iterations of the WHILE loop
that are necessary to compute all nodes of Bm. Then, the total cost of the Montes algorithm is

O

(
n2+ε + n1+ε log(q) +

∑
R∈Rout

∑
m∈T \L

BR,m

)
. (5.7)

Our first task is to find estimations for these upper bounds BR,m.

Lemma 5.12. For all m ∈ T \ L, we have Fm =
∏

n∈Bm
Fn.

Proof. For an arbitrary node n ∈ T , let Ln ⊂ L be the set of leaves that are connected to n.
By definition, Fn is the product of all irreducible factors of F attached to the leaves in Ln. On
the other hand, Lm is clearly the disjoint union of all Ln, for n ∈ Bm. 2

Lemma 5.13. Let m ∈ T \ L be a node of level i− 1 > 0. Let ej , fj , hj , 0 6 j < i, be the
Okutsu invariants of the type tm, and take mi := ei−1fi−1mi−1. Denote

B :=
∑

n∈Bm\L

|λn|
deg Fn

mi
+

∑
n∈Bm∩L

vp(Res(Fn, Ft))
f0 . . . fi−1

,

where, for each n ∈ Bm ∩ L, Ft 6= Fn is an adequate choice of an irreducible factor of F such
that tm | Ft. Then, for R = Newton or Representative, we have BR,m =O(n1+εδ1+εB), whereas
for R = ResidualPolynomial or Factorization, we have BR,m =O(n1+εf0 . . . fi−1 log(q)B).
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Proof. Denote for simplicity t = tm, B = Bm. Since m is not a leaf, the type t is strongly
optimal. Along the construction of the node m, the algorithm computes an initial representative
φ of t (of degree mi) and the positive integer ω := ordt(F ). By the definition of Fm, and
Lemmas 2.6, 5.12,

ω = ordt(F ) = ordt(Fm) = deg Fm/mi =
(∑

n∈B
deg Fn

)
/mi. (5.8)

Suppose R = Newton. In the first iteration of the WHILE loop concerning m, the routine
Newton(t,ω,F) is called to compute the polygon Ni,ω(F ) determined by the first ω + 1
coefficients of the φ-expansion of F . By Lemma 5.5, this has a cost of O(ωn1+ε) operations in
A. By Theorem 3.13, we may work with precision δ + 1, so that the computation requires
O(ωn1+εδ1+ε) p-small operations. By (5.8), this cost may be distributed into a cost of
O((deg Fn/mi)n1+εδ1+ε) p-small operations for each node n ∈ B.

The WHILE loop yields a factorization, Fm =
∏
λ,ψ Fλ,ψ, where λ runs on all slopes of

Ni,ω(F ) and, for each λ, the polynomial ψ runs on the monic irreducible factors of Rλ,i(F ).
For each ‘branch’ (λ, ψ), a representative φλ,ψ of the type tλ,ψ := (t; (φ, λ, ψ)) is computed, and
the positive integer ωλ,ψ := ordtλ,ψ (F ) is determined. The polynomial Fλ,ψ is, by definition,
the product of all irreducible factors of F that are divisible by tλ,ψ. The factorization of Fm

determines in turn a partition, B =
∐
λ,ψ Bλ,ψ, where Bλ,ψ contains all nodes n ∈ B such that

tλ,ψ | Fn. If eλ is the least positive denominator of λ and fψ = deg ψ, we have

deg φλ,ψ = eλfψmi, ω =
∑
λ,ψ

eλfψωλ,ψ. (5.9)

In order to analyze these branches, there are four different situations to consider.

(a) When λ=−∞. Then, Bλ,ψ = {n} has a single node, which is a leaf of T . The irreducible
factor attached to this leaf is Fs = φ, and we take n = (φ,−∞,—).

(b) When ω = 1. There is only one branch (λ, ψ), with eλ = fψ = ωλ,ψ = 1. The set Bλ,ψ = {n}
has a single node, which is a leaf of T , and we take n = (φ, λ, ψ).

(c) When eλfψ > 1. Then, n := (φ, λ, ψ) ∈ B is already a node of level i of T \ L. In other
words, Bλ,ψ = {n} already singles out a node of B, which is not a leaf of T .

(d) When ω > 1, eλfψ = 1. We fall in a refinement step; the slope λ is a negative integer
(eλ = 1), and ψ has degree fψ = 1. We consider φλ,ψ as a new representative of t, and ωλ,ψ as
the new future length of the Newton polygons of ith order to analyze.

In case (d), we take (t, φλ,ψ, ωλ,ψ) as the input data of a future call of the WHILE loop,
yielding a further factorization of Fλ,ψ and a further partition of Bλ,ψ. This loop will follow
the same pattern as above, with a minor difference. In the first iteration, Ni,ω(F ) =N−i (F )
is the principal Newton polygon of F with respect to (t, φ); however, after a refinement step,
Ni,ωλ,ψ (F ) is only the part of N−i (F ) (now with respect to (t, φλ,ψ)) formed by the sides of
slope greater than |λ| in absolute size [5, § 3]. In any case, the cost of the new call to Newton
is again O(ωλ,ψn1+εδ1+ε) p-small operations, and it may be distributed again into a cost of
O((deg Fn/mi)n1+εδ1+ε) p-small operations for each node n ∈ Bλ,ψ.

Therefore, the total cost of the computation of B is obtained by counting a cost of
O((deg Fn/mi)n1+εδ1+ε), for each n ∈ B and for each iteration of the WHILE loop where
this node was concerned (that is n ∈ Bλ,ψ). Let us find upper bounds for these numbers of
iterations. The discussion is different for n being a leaf or not. Note that if n is a leaf then
deg Fn/mi = 1.

Suppose that n = (φn, λn, ψn) ∈ B is not a leaf. Let Fs be one of the irreducible factors of Fn,
and θs ∈ ksep a root of Fs. Along the different iterations of the WHILE loop where this node
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is concerned, we consider different representatives φ of the type t such that v(φ(θs)) increases
strictly (cf. the proof of Lemma 5.11). By Proposition 1.8, the total number of iterations before
we reach the node n is bounded from above by d|λn|e.

Suppose now n ∈ B ∩ L, and let Fs be the irreducible factor attached to this leaf. We may
assume that there are at least two iterations of the WHILE loop concerning n. Let (t, φ, ω)
be the input data of the penultimate of these iterations. Since we do not fall in case (b),
we necessarily have ω > 1. Let (λ, ψ) be the branch such that n ∈ Bλ,ψ. If #Bλ,ψ > 1, we
take Ft to be an irreducible factor of Fλ,ψ such that Ft 6= Fs. If Bλ,ψ = {n}, then Fλ,ψ = Fn,
and the formula (5.8) shows that ωλ,ψ = deg Fλ,ψ/mi = 1. By (5.9), there is some branch
(λ′, ψ′) 6= (λ, ψ), because ω > 1 and eλ = fψ = 1; in this case we take Ft to be one of the
irreducible factors of Fλ′,ψ′ . Lemma 2.7 shows in any case that

v(Res(Fs, Ft))/(f0 . . . fi−1) > `(Fs)`(Ft)(Vi + min{|λ|, |λ′|}) > min{|λ|, |λ′|},

where `(Fs), `(Ft) are the lengths of Ni(Fs), Ni(Ft), respectively. In all previous iterations
of WHILE, the branch concerning n was a refinement step, and the absolute size of the
corresponding slope was an integer that grows strictly in each iteration; thus, the total number
of iterations concerning n is bounded from above by 1 + |µ|, for every slope µ of the Newton
polygon of the penultimate iteration.

Therefore, all estimations of the lemma about the contributions of the different nodes n ∈ B
to the total cost of Newton are correct. This ends the proof of the lemma in the case R = Newton.

Assume now R 6= Newton. In every iteration of the WHILE loop, with input data (t, φ, ω),
we compute the residual polynomials Rλ,i(F ), for λ running on all slopes of Ni,ω(F ). Then
we factorize these polynomials over Fi, and for each monic irreducible factor ψ of Rλ,i(F ), we
compute a representative of the type tλ,ψ.

Let `(λ), d(λ) be the length and degree of the side of slope λ. Lemma 5.6 shows that the cost
of the computation of Rλ,i(F ) is O(d(λ)(f0 . . . fi−1)(mi)1+ε log(q)) p-small operations. Since
ω is the length of Ni,ω(F ), we have

ω =
∑
λ

`(λ) =
∑
λ

eλd(λ) >
∑
λ

d(λ).

Therefore, the total cost of all calls to ResidualPolynomial during this iteration is bounded
from above by O(ω(f0 . . . fi−1)(mi)1+ε log(q)). As in the case R = Newton, this cost is the
product of a constant part, (f0 . . . fi−1)(mi)1+ε log(q), times a variable part, ω. As before,
we can distribute ω into a cost of deg Fn/mi, for every node of B, and the same arguments
lead to an analogous estimation for BR,m, for R = ResidualPolynomial, just by changing the
constant part.

Assume now R = Factorization. By Lemma 5.17, the cost of the factorization of Rλ,i(F )
over Fi is O(d(λ)2+ε(f0 . . . fi−1)1+ε + d(λ)1+ε(f0 . . . fi−1)2+ε log(q)) p-small operations. Since
d(λ) 6 ω = deg Fm/mi 6 n/mi 6 n/(f0 . . . fi−1), this cost is O(d(λ)n1+εf0 . . . fi−1 log(q)).
Thus, the cost of all calls to Factorization during this iteration is O(ωn1+εf0 . . . fi−1 log(q)).
We obtain the estimation of BR,m by the same arguments as in the previous cases.

Finally, let R = Representative. Let Vλ,ψ := (eλ)2fψ(Vi + |λ|). By Lemma 5.8, the cost of the
computation of a representative of tλ,ψ is O((f0 . . . fi−1fψ)2+ε(Vλ,ψ)1+ε) p-small operations.
Along all refinement steps, we have fψ = 1 and Vλ,ψ = Vi + |λ|, where |λ| is a positive integer
that grows strictly at each iteration; thus, the higher cost occurs at the last iteration.

Instead of distributing the cost into the nodes of Bλ,ψ, we now attach the whole cost to
every node n ∈ Bλ,ψ, so that our estimation is sharp only when #Bλ,ψ = 1. Let us estimate the
accumulated cost of every node n ∈ B.

Suppose n ∈ B \ L. Eventually, after some refinement steps, in the last iteration, fψ = fi,n,
Vλ,ψ = Vi+1,n, are Okutsu data of the type tn. Let Fs be any irreducible factor of Fn. As in
the proof of Theorem 5.9, f0 . . . fi−1fi,nVi+1,n 6 2δ(Fs) 6 2δ. Since there are at most d|λn|e
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iterations (Proposition 1.8), the accumulated cost of the computation of n is bounded from
above by

d|λn|e(f0 . . . fi−1fi,n)2+ε(Vi+1,n)1+ε =O(|λn|nδ1+ε).

Finally, let n ∈ B ∩ L. In the last iteration there is no call to Representative. Let (t, φ, ω)
be the input data of the penultimate iteration, and let (λ, ψ) be the branch concerning n. Let
u be the ordinate of the left end point of the side of slope λ of Ni,ω(F ). Since u 6= 0 and we
work with precision δ + 1, we necessarily have u6 δe0 . . . ei−1. Now, Vi + |λ| is the ordinate
of the left end point of Ni(Fn); by the theorem of the product, Vi + |λ|6 u6 δe0 . . . ei−1.
As we saw in the proof of the case R=Newton, the total number of all-but-last iterations is
bounded from above by v(Res(Fn, Ft))/(f0 . . . fi−1); thus, the accumulated cost of all calls to
Representative along the computation of n is

O((f0 . . . fi−1)1+ε(Vi + |λ|)1+εv(Res(Fn, Ft))) =O((mi)1+εδ1+εv(Res(Fn, Ft))).

This ends the proof of the lemma. 2

Theorem 5.14. The cost of the Montes algorithm over Op, applied to a monic separable
polynomial F ∈A[x] of degree n is O(n2+ε + n1+ε(1 + δ) log(q) + n1+εδ2+ε) p-small operations,
where δ := vp(Disc(F )).

Proof. Let N := T \ (R∪ L) be the set of nodes that are neither a root nor a leaf of T . Let
us denote the Okutsu invariants of ts at level i6 rs by λi,s, ei,s, fi,s, mi,s, etc. Also, we denote
ρs,t := v(Res(Fs, Ft)), for all 1 6 s 6= t6 g.

We shall use the estimation (5.4), and two obvious identities:∑
n∈N

|λn|
deg Fn

mn
=
∑

16s6g

rs∑
i=1

|λi,s|
ns
mi,s

,
∑

16s6g

(δs + ρs,t) =O(δ). (5.10)

By (5.7), we need only to estimate
∑

m∈T \L BR,m, for each subroutine R∈ Rout.

R=Newton or Representative. By Lemma 5.13, (5.4) and (5.10),∑
m∈T \L

BR,m 6 n1+εδ1+ε
(∑

n∈N
|λn|

deg Fn

mn
+
∑
n∈L

ρs,t

)

= n1+εδ1+ε
( ∑

16s6g

( ∑
16i6rs

|λi,s|
ns
mi,s

)
+ ρs,t

)
= n1+εδ1+εO

( ∑
16s6g

δs + ρs,t

)
=O(n1+εδ2+ε).

R = ResidualPolynomial or Factorization. The argument is analogous:∑
m∈T \L

BR,m 6 n1+ε log(q)
(∑

n∈N
|λn|f0 . . . fi−1

deg Fn

mn
+
∑
n∈L

ρs,t

)

= n1+ε log(q)
( ∑

16s6g

( ∑
16i6rs

|λi,s|
f0,s . . . fi−1,sns

mi,s

)
+ ρs,t

)
= n1+ε log(q)O

( ∑
16s6g

δs + ρs,t

)
=O(n1+εδ log(q)). 2

Corollary 5.15. The complexity of the Montes algorithm is O(n2+ε + n1+εδ2+ε) word
operations, if p is small.
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5.4. Approximate factorization of polynomials over local fields

Theorem 5.14 leads to an improvement of the complexity estimates of all routines mentioned in
the introduction. In this section, we discuss the new estimation obtained for the factorization
of polynomials over local fields, up to a prescribed precision.

Let F ∈A[x] be a monic separable polynomial of degree n, and denote δ := vp(Disc(F )). Let
p be a non-zero prime ideal of A, and F1, . . . , Fg ∈ Op[x] the irreducible factors of F over Op.
Suppose an OM factorization of F over Op[x] has been computed, in the form of a family
tF1 , . . . , tFg of OM representations of the irreducible factors, that faithfully represents F , and
satisfies (3.2). Then, the single-factor lifting algorithm (SFL) derives from each tFs a monic
polynomial Ps ∈A[x], irreducible over Op, such that Ps ≈ Fs and Ps ≡ Fs (mod mν), for an
arbitrary prescribed precision ν.

Theorem 5.16. The SFL algorithm requires O(nnsν1+ε + nδ1+εs ) p-small operations, where
ns := deg Fs, δs := δ(Fs).

Proof. Let rs be the Okutsu depth of Fs. In the proof of [9, Lemma 6.5], an estimation of
O(nns(ν1+ε + (Vrs+1/e(Fs))1+ε)) p-small operations is obtained. In Lemma 2.2 we have seen
that the Okutsu discriminant δ0(Fs) := Vrs+1/e(Fs) is bounded from above by 2δs/ns. This
proves the theorem. 2

By applying the SFL routine to each OM representation tF1 , . . . , tFg , we get an OM
factorization, F ≈ P1 . . . Pg, such that Ps ≡ Fs (mod mν), for all 1 6 s6 g.

Theorem 5.17. A combined application of the Montes and SFL algorithms computes an
OM factorization of F with prescribed precision ν, at the cost of

O(n2+ε + n1+ε(1 + δ) log q + n1+εδ2+ε + n2ν1+ε) p-small operations.

If p is small, we obtain a cost of O(n2+ε + n1+εδ2+ε + n2ν1+ε) word operations.

Proof. The estimation is obtained by adding to the cost of the Montes algorithm, given in
Theorem 5.14, the sum of the costs of SFL given in Theorem 5.16, for 1 6 s6 g, having in
mind that n1 + . . .+ ng = n, δ1 + . . .+ δg 6 δ. 2

In comparison with previous estimations, the total degree in n, δ and ν is reduced from 4 + ε
to 3 + ε.

Acknowledgement. We are indebted to the anonymous referees for their suggestions, leading
to an improved version of Corollary 2.4.
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