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Abstract

This note contains a proof of the fact that a Jordan curve in R2 with a continuous tangent line at each
point admits a regular reparameterization. We extend the result both to more general curves in Rn and to
higher orders of differentiability.
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1. Introduction

An important result in the theory of the boundary regularity of the Riemann mapping,
due to Lindelöf [Lin], asserts that a Jordan domain has a continuous tangent line at
each point of the boundary if and only if the argument of the derivative of the Riemann
mapping extends continuously to the boundary of the unit disk.

The traditional concept of a continuous tangent line at a point of a curve is of
geometrical nature and essentially independent of the parameterization of the curve.

DEFINITION 1. A Jordan curve γ : [0, 1] →R2 is said to have a continuous tangent
line at each point if and only if there exists a continuous function β : [0, 1] →R
satisfying, for any t0,

lim
t→t+0

arg{γ (t)− γ (t0)} = β(t0)

and
lim

t→t−0

arg{γ (t)− γ (t0)} = β(t0)+ π.
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(As usual, the argument is measured with respect to the x axis in R2. Clearly
the condition referred to is exact for t0 ∈ (0, 1) and has a different but analogous
formulation for t0 = 0, 1.)

In the case of regular curves (having a C 1 parameterization with nonvanishing
tangent vector) the tangent line is given by the direction of the derivative.

The precise concept of regular curve comes from the following definitions.

DEFINITION 2. A curve γ : [0, 1] →Rn is said to have a regular local
parameterization if and only if:
(A) for any t0 ∈ (0, 1) there exist δ = δ(t0), J = Jt0 ⊂R a bounded open interval and

µ : J →Rn , C 1, such that µ(J )= γ (t0 − δ, t0 + δ) and µ′ is never 0 on J ;
(B) there exist δ′0 > 0, J0 ⊂R a bounded open interval and µ0 : J0→Rn , C 1 such

that µ0(J0)= γ ([0, δ′0)) ∪ γ ((1− δ
′

0, 1]) and µ′0 is never 0 on J0.

DEFINITION 3.
(1) A curve γ : [0, 1] →Rn is said to have a regular global parameterization if and

only if there exists µ : [0, 1] →Rn realizing the properties (A) and (B).
(2) A curve γ is said to be regular if and only if it has a global regular

parameterization.

The assumption that the derivative is always nonzero is more subtle and basic than
it appears on first sight. Every polygonal line permits an infinitely differentiable
parameterization γ . The point is that γ ′(t)= 0 for t corresponding to a corner.

It is often taken for granted that the definitions of having a continuous tangent line
and being regular are equivalent. For instance, in [Pom, Section 3.2] the geometric
tangent definition is used to prove Lindelöf’s theorem, whereas in [Pom, Section 3.3]
the other definition is used.

The proof of the fact that regular curves possess a continuous tangent line is quite
elementary. In the present paper we give an accessible proof of the converse. There
cannot be any doubt that the classical literature contains a proof, but the authors were
unable to find a reference.

However, our proof covers the case of general (not necessarily Jordan) curves in
Rn , as well as a generalization to higher orders of differentiability.

2. Curves with continuous geometric tangent lines

Suppose, now, that γ : (0, 1)→Rn is a continuous arc with the natural assumption
that no open interval in (0, 1) is applied by γ to a single point. In the rest of this
paper, the notation for the components of a curve γ will be γ (t)= (γ1(t), . . . , γn(t)),
as well as ( , ) for the standard scalar product in Rn .

DEFINITION 4 (Continuous geometric tangent line). We will say that γ has a
continuous tangent line at each point if and only if there is a continuous
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map B : (0, 1)→ Sn−1 (the Euclidean unit sphere in Rn) such that, for any t0 ∈ (0, 1),

lim
t→t+0

γ (t)− γ (t0)

‖γ (t)− γ (t0)‖
= B(t0)

and

lim
t→t−0

γ (t)− γ (t0)

‖γ (t)− γ (t0)‖
= −B(t0)

whenever γ (t) 6= γ (t0).

REMARK 5. Observe that under the hypotheses of the definition above, any point in
the curve has finite multiplicity. Otherwise there would be a point t0 ∈ (0, 1) and a
sequence of disjoint open intervals Il = (αl , βl) whose extreme points increase (or
decrease) to t0 and satisfy γ (αl)= γ (βl)= γ (t0), for any l. It is possible to find a
sequence of points sl ∈ Il such that

((γ (sl)− γ (αl))/(‖γ (sl)− γ (αl)‖))= B(αl)+ wl and ‖wl‖→l→+∞ 0.

This means that

(((γ (sl)− γ (αl))/(‖γ (sl)− γ (αl)‖)), B(t0))→t→+∞ 1,

but

((γ (sl)− γ (αl))/(‖γ (sl)− γ (αl)‖))

= ((γ (sl)− γ (t0))/(‖γ (sl)− γ (t0)‖))→−B(t0),

so the limit of the scalar product above should be −1. This is a contradiction.

The previous definition is the one adopted in [Gar-Mar, p. 60] for Jordan curves, in
the case of n = 2.

Even in Rn , the definition above imposes strong restrictions on the curve.

PROPOSITION 6. If γ has a continuous tangent line at each point, then for every
t0 ∈ (0, 1) there exist δ > 0 and j ∈ {1, . . . , n} such that γ j : (t0 − δ, t0 + δ)→R is
injective.

PROOF. For a fixed t0 ∈ (0, 1), after an affine change of coordinates, we may assume
that B(t0)= (1, 0, . . . , 0)= e1. Then there exists δ > 0 such that (B(t), e1) > 0 for
t ∈ (t0 − δ, t0 + δ). As a consequence γ1(t) is injective on this interval, otherwise
there would be a, b ∈ (t0 − δ, t0 + δ) such that γ1(a)= γ1(b), and this would imply
the existence of a point τ ∈ (a, b) with γ1(τ )= γ1(a)= γ1(b).

For t in a neighborhood of a and t > a, (γ (t)− γ (a), e1) > 0, which implies
that γ1(t) > γ1(a)= γ1(b). Analogously, for t in a neighborhood of b and t < b,
we have (γ (t)− γ (b), e1) <−

1
2 (B(b), e1) < 0, and therefore γ1(t) < γ1(b)= γ1(a).

Then Bolzano’s theorem applied to the function f (t)= γ1(t)− γ1(a) will show the
existence of τ .

Iteration of this procedure provides points τn→ τ0 with τn, τ0 ∈ (t0 − δ, t0 + δ)
such that γ1(τn)= γ1(τ0). Then (γ (τn)− γ (τ0), e1)= 0, but (B(τ0), e1) > 0. 2
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COROLLARY 7. If γ : [0, 1] →Rn is a curve having a continuous tangent line at
every point, then for any t0 ∈ [0, 1] there is an open neighborhood It0 (in the extended
sense for the cases t0 = 0, 1), such that γ|It0

is a Jordan arc.

3. The case of Jordan arcs

Suppose now that γ : [0, 1] →Rn is a Jordan arc (γ continuous and injective).

PROPOSITION 8. If γ has a continuous tangent line at each point, then the
set γ ((0, 1)) admits a regular local parameterization.

PROOF. We proceed by induction on the dimension.
Fix t0 ∈ (0, 1). After a rigid movement in Rn we may suppose that γ (t0)= 0 and

B(t0)= e1. By Proposition 6, there exists δ > 0 such that γ1 : (t0 − δ, t0 + δ)→R is
an injective map to the X1 axis, and so it is the projection of γ ((t0 − δ, t0 + δ)) onto
the hyperplane 〈en〉

⊥

R . Let p : Rn
→ 〈en〉

⊥

R be the orthogonal projection map.
Since p is continuous, p ◦ γ is a continuous curve, and since t→ (p ◦ γ (t), e1)=

γ1(t) is injective in I = (t0 − δ, t0 + δ), so is ρ = p ◦ γ in this interval.
Then ρ is a Jordan arc in Rn−1. Moreover, if t1 ∈ I , then

p(B(t1)) = p

(
lim

t→t+1

γ (t)− γ (t1)

‖γ (t)− γ (t1)‖

)
= lim

t→t+1

p ◦ γ (t)− p ◦ γ (t1)

‖γ (t)− γ (t1)‖

= lim
t→t+1

ρ(t)− ρ(t1)

‖γ (t)− γ (t1)‖
,

and therefore

‖p(B(t1))‖ = lim
t→t+1

‖ρ(t)− ρ(t1)‖

‖γ (t)− γ (t1)‖
.

Since (B(t1), e1) 6= 0, we see that ‖p(B(t1))‖> 0, and

lim
t→t+1

ρ(t)− ρ(t1)

‖ρ(t)− ρ(t1)‖
= lim

t→t+1

p ◦ γ (t)− p ◦ γ (t1)

‖γ (t)− γ (t1)‖
lim

t→t+1

‖γ (t)− γ (t1)‖

‖ρ(t)− ρ(t1)‖

= lim
t→t+1

‖γ (t)− γ (t1)‖

‖ρ(t)− ρ(t1)‖
lim

t→t+1

p

(
γ (t)− γ (t1)

‖γ (t)− γ (t1)‖

)
because p is linear, so

lim
t→t+1

ρ(t)− ρ(t1)

‖ρ(t)− ρ(t1)‖
= p(B(t1)) lim

t→t+1

‖γ (t)− γ (t1)‖

‖ρ(t)− ρ(t1)‖
= p(B(t1))

1
‖p(B(t1))‖

6= 0.

Now, if the result is true for Jordan arcs in Rn−1, then ρ admits a local C 1

parameterization. Let us call it

µ : (τ0 − δ
′′, τ0 + δ

′′)→Rn−1,

with µ(τ0)= ρ(t0), for some δ′′ > 0.

https://doi.org/10.1017/S1446788708000402 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000402


[5] Regularity of curves with a continuous tangent line 21

On the other hand, the injectivity of the projection p in ρ(I ) implies that for a
small interval I0 b I , γ (I0) is a graph over ρ(I0), that is, there exists a function
f : ρ(I0)→R such that

γ (I0)= {(µ(τ), f (µ(τ))) : τ ∈ (τ0 − δ
′′, τ0 + δ

′′)}.

The parameterization τ → (µ(τ), f (µ(τ))) is C 1 in (τ0 − δ
′′, τ0 + δ

′′) because, for
any t1 ∈ (τ0 − δ

′′, τ0 + δ
′′),

f (µ(τ1 + h))− f (µ(τ1))

h
=

f (µ(τ1 + h))− f (µ(τ1))

‖µ(τ1 + h)− µ(τ1)‖

‖µ(τ1 + h)− µ(τ1)‖

h
.

The first term is

γn(t1 + s)− γn(t1)

‖p(γ (t1 + s))− p(γ (t1))‖

=
((γn(t1 + s)− γn(t1))/(‖γ (t1 + s)− γ (t1)‖))

((‖p(γ (t1 + s))− p(γ (t1))‖)/(‖γ (t1 + s)− γ (t1)‖))
,

having limit
Bn(t1)

‖p(B(t1))‖

as h→ 0+ (or s→ 0+). The second term has limit ‖µ′(τ1)‖. Then

lim
h→0+

f (µ(τ1 + h))− f (µ(τ1))

h
=

Bn(γ
−1(τ1))

‖p(B(γ−1(τ1))‖
‖µ′(τ1)‖.

The limit when h→ 0− can be managed in a similar way.
Also, this parameterization has nonvanishing tangent vector, because µ′(τ ) is

never 0.
The case n = 1 is trivial, and this, as the first induction step, would conclude the

assertion. Nevertheless, we begin the induction with the case of n = 2 because it
contains the basic ingredients of the general proof, and is also in itself of interest
as a standard statement in the study of the boundary regularity of the Riemann
conformal map. In this case, the usual presentation of the hypotheses uses the function
β(t)= arctan((B2(t))/(B1(t))). We will make temporary use of this notation.

Since γ is continuous, it follows that J = γ1(t0 − δ, t0 + δ) is an open interval
of the X axis, and the set {γ (t) : t ∈ (t0 − δ, t0 + δ)} is the graph of the function
f (x)= γ2 ◦ γ

−1
1 (x), defined in J .

Now, f is a C 1 function on J : if x0 ∈ J , x0 = γ1(t1), then

lim
h→0

{
f (x0 + h)− f (x0)

h
− tan β(t0)

}
= lim

t→t0

{
γ2(t)− γ2(t1)

γ1(t)− γ1(t1)
− tan β(t1)

}
= 0,

so, since β is a continuous function, then f ∈ C 1, and x→ (x, f (x)) is a C 1

parameterization of the curve γ around the point γ (t0), with nonvanishing tangent
vector (1, f ′(x)). (In fact f ′(x)= tan β(γ−1

1 (x))).) 2

https://doi.org/10.1017/S1446788708000402 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000402


22 J. M. Burgués and J. Cufı́ [6]

4. Globalization of the parameterization

Curves possessing a local C 1 parameterization also have a global one in a natural
way.

PROPOSITION 9. If γ is a continuous closed curve in Rn having a regular local
parameterization, then γ admits a regular global parameterization.

PROOF. Let t0 ∈ (0, 1) and ς0 = γ (t0). By the Proposition 8, there are intervals It0 b
(0, 1), J b R and µ : J →Rn a local C 1 parameterization of γ (I ) with nonvanishing
derivative. We can choose τ0 ∈ J such that µ(τ0)= ς0, and since µ′(τ0) 6= 0, there is
an open interval J ′τ0

b J where µ is injective, and µ(J ′) coincides with the image by
γ of a corresponding interval I ′, as in cases (A) and (B) of the definition in Section 1.

(Without loss of generality, we may suppose that the first component of µ′(τ0) is
strictly positive, and so the first component of µ is an homeomorphism from an open
interval J ′τ0

to an open interval K ⊂R containing the image of τ0 in its interior. Then
γ−1(K ) contains t0 in its interior, and we choose the corresponding interval.)

A similar procedure works for t0 = 0 or 1.
To show that the curve γ is rectifiable, take a finite covering of [0, 1] by intervals

such that the image admits a parameterization µ in a neighborhood of the closure of J
(µ and J as above). Each arc µ(J ) has finite length, therefore so does γ ([0, 1]). Let
L > 0 be the length of γ ([0, 1]).

Moreover, there is a finite collection of points 0< t1 < · · ·< tp < 1 and positive
numbers δ1, . . . , δp, δ

′ for which there is an associated covering of [0, 1] by intervals

I0 = [0, δ′), . . . , I j = (t j − δ j , t j + δ j ), . . . , Ip+1 = (1− δ′, 1],

such that I j only intersects I j−1, I j+1.
Choose points t ′j ∈ I j ∩ I j+1, for j = 0, . . . , p, and consider the arcs 00 =

γ ([0, t ′0] ∪ [t
′
p, 1]) and 0 j = γ ([t ′j , t ′j+1]). Also let x j = γ (t ′j ).

For any j , for the corresponding J j and µ j , 0 j ⊂ µ j (J j ), and since µ j is
continuous and injective in J j , we can parameterize 0 j by its arc length:

s j (τ )=

∫ τ

µ−1
j (x j )

‖µ′j (ξ)‖ dξ

and λ j (s j )= µ j (τ (s j )), for s j ∈ [0, `(0 j )), where ` denotes length. Then we have a
global parameterization.

In [0, L]we consider the points σ j =
∑ j

k=1 `(0k). On each interval [L j , L j+1], we
consider the parameterization λ j , and define % : [0, L] →Rn as %(s)= λ j (s − L j ),
for s ∈ [L j , L j+1]. The fact that ‖%′‖ ≡ 1 and that the direction of %′ is the same as
the corresponding µ′j , which are continuous, imply that % is globally C 1. 2

We conclude this section with the following corollary.

THEOREM 10. If γ : [0, 1] →Rn is a (continuous closed) curve having a continuous
tangent line at each point, then γ admits a regular global parameterization.
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REMARK 11. The case n = 2 provides the classical statement that the Jordan curves
in R2 having a continuous tangent line at each point are regular.

5. Higher order of differentiability

The previous sections have demonstrated that the geometrical condition of having
a tangent line at each point implies that the curve admits a C 1 parameterization
with nonvanishing derivative, and that this geometrical property is independent of
the particular parameterization γ , that is, it can be checked from an a priori given
parameterization γ . We now study how the existence of reparameterizations of
higher order of differentiability can be also checked by looking at the original
parameterization.

We begin with the fact that a curve satisfying the condition

lim
t→t±0

((γ (t)− γ (t0))/(‖γ (t)− γ (t0)‖))=±B(t0),

with B(t) continuous, admits a parameterization ρ by the arc length, which is C 1. Then
it is an easy observation that the curve admits a C k parameterization if and only if ρ
is C k .

Let us consider the case k = 2. The curve admits a C 2 parameterization if and only
if the limit

lim
s→s0

%′(s)− %′(s0)

s − s0
= %′′(s0)

is continuous.
Fix t0 and t . Since there exists a C 1 diffeomorphism θ such that s = θ(t), then

%′(s)− %′(s0)

s − s0

=
%′(θ(t))− %′(θ(t0))

θ(t)− θ(t0)
=

B(t)− B(t0)

θ(t)− θ(t0)

=
1

θ(t)− θ(t0)

{
σ(τ ′, t)

γ (τ ′)− γ (t)

‖γ (τ ′)− γ (t)‖
+ σ(τ, t0)

γ (τ )− γ (t0)

‖γ (τ)− γ (t0)‖
+ w(τ ′, τ, t, t0)

}
,

where w = o(|θ(t)− θ(t0)|) and σ(t ′, t ′′)= 1 if t ′′ < t ′ and −1 if t ′ < t ′′.
Since the curve is rectifiable,

θ(t)− θ(t0)= s − s0 = sup
{∑

i

‖γ (τi )− γ (τi−1)‖; {τi } ⊂ P(Jt,t0)

}
,

where P(Jt,t0) is the set of partitions of the interval between t and t0. Then, for a given
0< ε < (s − s0)

2, there is a partition {τi } such that

‖γ (t)− γ (t0)‖ ≤ s − s0 = α +
∑

i

‖γ (τi )− γ (τi−1)‖,

where |α|< ε.
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The main condition on the curve implies that

γ (τi )− γ (τi−1)= (B(t0)+ vi )‖γ (τi )− γ (τi−1)‖,

where ‖vi‖ = o(1), for |t − t0| small. So

γ (t)− γ (t0) =
∑

i

γ (τi )− γ (τi−1)

= B(t0)
∑

i

‖γ (τi )− γ (τi−1)‖ +
∑

i

‖γ (τi )− γ (τi−1)‖vi

= (s − s0)B(t0)− αB(t0)+
∑

i

‖γ (τi )− γ (τi−1)‖vi

and

(γ (t)− γ (t0), B(t0))= (s − s0)(1+ o(1)).

This implies that(
γ (t)− γ (t0)

‖γ (t)− γ (t0)‖
, B(t0)

)
=

s − s0

‖γ (t)− γ (t0)‖
(1+ o(1)),

and so
lim
t→t0

s − s0

‖γ (t)− γ (t0)‖
= 1.

Then

lim
s→s0

%′(s)− %′(s0)

s − s0
= lim

t→t0

B(t)− B(t0)

‖γ (t)− γ (t0)‖
= lim

t→t0

σ(t, t0)

‖γ (t)− γ (t0)‖

×

{
σ(τ ′, t)

γ (τ ′)− γ (t)

‖γ (τ ′)− γ (t)‖
+ σ(τ, t0)

γ (τ )− γ (t0)

‖γ (τ)− γ (t0)‖

}
,

which gives the result.

THEOREM 12. If γ : [0, 1] →Rn is a continuous closed curve, then γ admits a
C 2 parameterization with nonvanishing first derivative if and only if there are two
vector-valued continuous functions

B( j)
: [0, 1] →Rn, j = 1, 2,

such that

B(1)(t0)= lim
t→t0

1
‖γ (t)− γ (t0)‖

{σ(t, t0)(γ (t)− γ (t0))} 6= 0

and

B(2)(t0) = lim
t→t0;|τ ′−t |,|τ−t0|=o(|t−t0|)

σ(t, t0)

‖γ (t)− γ (t0)‖

{
σ(τ ′, t)

γ (τ ′)− γ (t)

‖γ (τ ′)− γ (t)‖

+ σ(τ, t0)
γ (τ )− γ (t0)

‖γ (τ)− γ (t0)‖

}
,

where the precedence indicator σ(α, β) is 1 if β < α and −1 if α < β.
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REMARK 13. In this case, if γ is parameterized by the arc length, the term B(2)

corresponds to the curvature parameters, so is the curvature radius and the normal
vector.

Then, if these parameters are given a priori and are continuous in the tangent
direction, then γ admits a C 2 parameterization.

The corresponding statement for the C k case is as follows.

THEOREM 14. If γ : [0, 1] →Rn is a continuous closed curve, then γ admits a
C k parameterization with nonvanishing first derivative if and only if there are k vector-
valued continuous functions

B(N ) : [0, 1] →Rn, N = 1, . . . , k,

such that

B(N )(t0) = lim
t1,...,t2N−1→t0

|tp−tq |=o(|t2N−1−t0|), ∀p,q

σ(t2N−1, t0)

‖γ (t2N−1)− γ (t0)‖

×

2N−1
−1∑

i=0

σ(t2i+1, t2i )
γ (t2i+1)− γ (t2i )

‖γ (t2i+1)− γ (t2i )‖

×

N−1∏
s=2

σ(t2s(E[(2i+1)/(2s)]+1)−1, t2s E[(2i+1)/(2s)])

×
(−1)E[(2i+1)/(2s)]+1

‖γ (t2s(E[(2i+1)/(2s)]+1)−1)− γ (t2s E[(2i+1)/(2s)])‖
,

where the precedence indicator σ(α, β) is 1 if β < α and −1 if α < β.

PROOF. The proof makes recurrent use of arguments completely analogous to those
used in the C 2 case. The characterization is given by a similar but more complicated
formula involving 2k points and iterated quotients of differences of values of γ at these
points, with the corresponding precedence signs. The denominators are always of the
form ‖γ (t ′)− γ (t ′′)‖ for t ′, t ′′ some of these points. The formula in the statement
is a compressed version, in the C k case, of the natural formula satisfied by iterating
quotients and differences of values of γ . 2
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