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C O E F F I C I E N T I N E Q U A L I T I E S F O R L"-VALUED 
A N A L Y T I C F U N C T I O N S 

BY 

L A W R E N C E A. H A R R I S 1 

ABSTRACT. A Hausdorff-Young theorem is given for Lp-valued 
analytic functions on the open unit disc and estimates on such 
functions and their derivatives are deduced. 

Given a non-zero complex Banach space X and a holomorphic function 
/:A—>X, where A denotes the open unit disc of the complex plane, define 

M A ( / ) = l i m ( - ^ - ||/(re*)||A dd 
1M 

for À > 1. By [7, p. 77], the power series Xo anzU converges uniformly to / on 
compact subsets of A when {an}o is the sequence in X given by an = f(n)(0)/n\. 
Note that 

(D I lkl l 2 =M2(/) 
X n = 0 ' 

when X is a Hilbert space since the classical proof for the case of complex-
valued functions [10, p. 84] carries over without change (as is observed in [9]). 

The following result is an extension of a variant of the Hausdorff-Young 
theorem [3, p. 94] and of (1) to functions with values in X = LP(S), where S is 
any positive measure space and K p < o c . Throughout, for any given K p < o c , 
p' is the conjugate index and p = max{p, p'}. 

THEOREM 1. If /:A-^»LP(S) is a holomorphic function with power series 

/U) = Io a
nz

n, then 

/ « \ i / x 

(2) ( I l k I N sAfv(f) 
Vt=0 / 

and 

(3) MA (
oo \ 1 

I IkIN 
n = 0 / 
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for all À > p. In particular, 

(4) ( i ikipy / p^M2(/) 

and equality holds in (4) when both p > 2 an^ the coefficients {an} have disjoint 
supports. 

COROLLARY 2. If f : A —> Lp(s) is a holomorphic function satisfying M2(f) ^ 1, 
then 

(5) | | / ( Z ) _ / ( O ) | | £ _ J £ L ( I - | | / ( O ) | | P ) ' / P 

(6) H/^)Nn_iIv+1/P'(1-|l/(°)llP)1/P r(P'+i)1/p' 
"a-izipy 

/or a// z e A when 2<p<oc , and if l < p < 2 , the above inequalities hold with p 
and p' interchanged. 

Proofs. Theorem 1 is a consequence of generalized Clarkson inequalities of 
L. R. Williams and J. H. Wells [11, Th. 2]. (These inequalities can be deduced 
easily from [6, Th. 3.1]. Note that a factor of 1/n is missing inside the first 
summation sign in the right hand side of [11, (9)]. The assumption of a-
finiteness is unnecessary by [2, p. 168].) Without loss of generality we may 
suppose that / is holomorphic in a neighborhood of Â. Let a > 1 and define 
<p(0) = ll/(ei9)||« and <?„(») = ||/„(e ,-)|h where /„.(*) = I S " 1 akz

k. By [ l l , T h . 2 ] , 
to prove (2) and (3), we need only show that In —»0 as n —>oc, where 

27T n I==1 \ n 

but since / is uniformly continuous on A and fn —» / uniformly on A, we have 

| I n |<sup | |<p(0 ' ) -<P„(») | : |0 ' -e |<2^}->0, 

as required. Clearly (4) follows from (2) with À = p since M a ( / ) is an increasing 
function of a by [4, p. 143]. The remaining assertion of the theorem is easily 
verified. 

There is an elementary proof of (4) for p > 2 . Indeed, suppose that / is 
holomorphic in a neighborhood of Â and given seS, note that 

I k(s)|2=^-f2*|/(ew)(s)|2de 
n = 0 ^77 Jo 

since the map z->f(z)(s) is holomorphic in a neighborhood of Â in the 
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classical sense. Then by [4, p. 4] and Minkowski's inequality [2, p. 530, 13], we 
have 

p/2 r / °° \ p/2 

I IklM I k(*)l2 d**(s) 
n = 0 JS N n = 0 ' 

1 f 2TT . p/2 

|/(e ie)(s)|2 de) d^is) 
0 ' 2TT 

( 1 f 2TT v p/2 

•£TT Jo I 

and clearly (4) follows. 
Inequality (5) follows easily from Holder's inequality and (4). Finally, (6) 

follows similarly from 

(7) 2, nx :=: 0 < x < l , K r , 

and this is a consequence of the binomial theorem and 

( n + l ) r x " < r ( r + l ) ( - l ) n ( f l\xn, 

which holds since 

(n + l)!(n + l) r~1 

( r - l ) r - • - ( r + n ) ' ;r(r-l) 

by [8, p. 160]. (The number T(r+ 1) is the best constant for which (7) holds for 
all 0 < x < l by [1, p. 466].) 

Other function-theoretic inequalities derived from interpolation theory are 
given in [5]. 
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