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RAMIFICATION THEORY FOR VALUATIONS OF 
ARBITRARY RANK 

MURRAY A. MARSHALL 

Throughout, we consider a finite Galois extension L\K of non-archimedian 
valued fields which are maximally complete [2, Chapter 2], Let v denote the 
valuation on L and let L* denote the group of non-zero elements of L. We may-
identify the value group v(L*) of L with a subgroup of D, where D denotes the 
minimal divisible ordered group containing v(K*). We denote the residue field 
of L by L, and will always assume that the field extension L\K is separable. The 
characteristic of K will invariably be denoted by p ; much of what follows is 
trivial in case p = 0. Let G denote the Galois group of L\K and let G denote the 
Galois group of L\K. The kernel of the natural homomorphism of G onto G is 
the ramification group. 

Go = 1er e G\v \~ - l ) > 0 for all u G <%\% 

where °tt denotes the unit group of L. The fixed field R of Go is the maximal 
unramified extension of K in L [2, p. 68] ; the extension L\R is totally ramified. 
The higher ramification groups GX1 x G D, x ^ 0 are defined by 

Gx= L e Go\v y™-l)>x for all a € L* J . 

By the uniqueness of the extension of v from K to L we have that v(orx) = v(x) 
for all x G L*, a G G. Using this, one may verify readily that the ramification 
groups GX1 x ^ 0 are invariant subgroups of G. The ramification groups form a 
decreasing chain with Gx = 1 for x sufficiently large. 

From Lemma 1 below it follows that for each ramification group Gz ^ 1 
there is a largest x G D such that Gx = Gz. Such an x will be called a jump of 
the extension L\K. If x G D, x ^ 0, let 0 = x0 ^ xi ^ ^ xk = x be a 
sequence of elements of D containing all jumps of L\K which lie in the interval 
[0, x]. The quantity 

k 

s=l 

is independent of the choice of sequence and thus defines a function 0 :D+ —> Z}+ 

called the Herbrand Function of L\K. The Herbrand Function is strictly 
increasing and piecewise linear (in the obvious sense), and is thus bijective. It 
will be convenient to extend this function to D+\J{co } by defining 0(oo ) = oo . 
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We may define a new indexing of the ramification groups (called the upper 
numbering) by defining 

Gx = Gp-nx) for x G D+. 

We call an element y G D+ an upper jump if Gv 2 Gy+€ for all e > 0, e G Z>. 
(Thus the upper jumps are just the values <£(x) where x is a lower jump). 

The principal results in the classical rank 1 discrete case are: 
(a) (Herbrand) If £ is a Galois subextension of L\K then the natural homo-

morphism of GL\K onto GE\K carries GL\K
X onto GE\K for all x G D+. 

(b) (Hasse-Arf) If L\K is abelian then the upper jumps of L\K all lie in v(K*). 
In this paper we show that (a) is true in general if and only if the value 

group quotient T = v(L*)/v(K*) has cyclic ^-component. We also show that 
(b) holds in this case. The proof techniques are simple modifications of those in 
[1, Chapter 11], and [3] respectively. 

1. Preliminaries. We begin with some elementary results on jumps. 
LEMMA 1. For a G Go, the set of values {v(aa/a — l)\a G L*} has a minimum; 

further, this minimum is not achieved for a G '% (except in the trivial case 
<r = 1). 

Proof. Choose elements 1 = &i, a2, . . . , an in L* such that v(ai), . . . , v(an) 
represent the distinct cosets of T, each exactly once. Thus ai, a2, . . . , an form a 
basis of L\R; each a G L* can be written uniquely in the form a = X^=i c%au 
where ct G R and v(a) = v(cîoaîo) < v{cta^) îovi ^ i0. Also 

aa 
a i^L a \ at /' 

Thus v(aa/a — 1) ^ min {fl(o-a*/af — l) | i = 2, 3, . . . , n}. This inequality is 
strict when a G ^ , since then i0 = 1. 

In view of this result we see that for each x ^ 0, Gx = jo- G Go|i(oO ^ #} 
where i{a) is defined by 

(1) i(<r) = min {*;(<m/a — l)\a G £*}. 

Also the jumps of the extension L\K are just the values i(o-), o* G Go, <r ^ 1 (so 
they are actually in v(L*)). 

We will have cause to use the following refined form of Lemma 1. 

LEMMA 2. Ifbi, . . . , bs are elements of L* such that v(bi), . . . , v(b8) generate T, 
then for each a G G0, 

i(<0 = min jHy - * — 11 | i = 1,. . . , sf. 

Proof. lib £ L* then 

6 = I l »«* 
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where c G R, u G %. Thus 

ab _ ynr I ah t J * (TW 

so the result is clear from Lemma 1. 

If i is a jump of L\K, let j = min {i(a)\i(a) > i). We examine the quotients 
Gi = Gi/Gj as in [2, Chapter 3]. Let ^ t - denote the quotient group fy Jtfl %+, 
where 

^ = ( 1 + X É <%\v(x) è *}, t i + = { l + x Ç ^|z/(x) > i} . 

If a 6 L* and a G G*, then aa/a G <$% and the class of act,/a in &t depends only 
on the class of ix = v(a) in T and the class of a in Gt. In this way we obtain a 
bilinear mapping (a, /z) —» (aa/a). °/l\+ of G* X T into ^%. Since v(aa/a — 1) > i 
for all a £ L* implies i(o-) ^ j , we see that the derived homomorphism 

G* -> Horn (r, #*) 

is injective. Moreover, since 

^ fz*f if* = o, 
* - \ L , if i > 0 

the group Gt is 
(a) abelian of order prime to p if i = 0, 
(b) an elementary ^-group if i > 0. Consequently, 
(c) Go is solvable. 
(d) If T denotes the fixed field of Gj where j = min {i(a)\i(a) > 0}, then T 

is the maximal tamely ramified extension of K in L [2, Chapter 3, § 2]. 
Using customary terminology, the extension L\T will be called wildly 

ramified. 

2. The Herbrand relationship. Suppose E is a subextension of L\K. 
Denote by H the Galois group of L\E and by Hx, x G D+, the ramification 
groups of L\E. Then it is clear that 

Hx= HC\GX for all x G D+. 

We now assume that the extension E\K is also Galois, and study the more 
complicated relationship between the ramification groups Gx and (G/H)x. To 
avoid a lot of essentially trivial reductions we shall assume throughout this 
section that L\K is totally ramified. The reader may verify that Theorems 1 
and 2 are true as stated in the general case. For a G G, let â denote its coset in 
G/H, and let 1(a) denote the function as defined by (1), but with respect to 
the extension E\K. That is, 1(d) = min {v(aa/a — \)\a G E*} 

LEMMA 3. For all a G G, l(â) ^ Y,yeit s'OnO-
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Proof. Using the solvability of G = Go we may assume # H = I is prime. We 
also assume 1(a) > i(<ry) for all y £ H, since otherwise the result is trivially 
true. Thus the quantity v(ayb/b — 1) never achieves the minimum value 
i(<ry) for b £ E*. Choose any a £ L* such that v(a) generates v(L*) modulo 
v(E*). In view of Lemma 2 plus what has just been said, we have 

(2) i(<ry) = v(aya/a — 1) for all y £ H. 

Let 

/(x) = 17 (x "" 7 a) = &o + 6ix + . . . + 6z-iX*-1 + xl 

be the minimum polynomial of a over E. Since »(a) generates y(L*) modulo 
v(E*) and since/(a) = 0 we have 

(3) to (a) = »(a') = «KM < *>(M0, i = 1, 2, . . . , / - 1. 

Since fa(x) = Ily€if (x — cry a) = ab0 + abiX + . . . + abi-iXl~l + x', we have 

I I (a - °ya) = / » = / » ~ f (a) = E (abt - bt)a\ 

or 

<« «-a ( ' - ? ) - g (£-')'-•• 
Also by (3) 

(5) v(o-&o — &o) è S (ê) + /fl(a) 
v(((r64 - &,)<*') > * (<r) + /w(a), i = 1,2, . . . , / - 1. 

Combining (2), (4), and (5) yields 

so the lemma is proved. 

LEMMA 4. If the p-component of T is cyclic, then 

22 i(*y) = l(°)i a- Ç G 

holds for all Galois subextensions E of L\K, and conversely. 

Proof. First assume Y has cyclic ^-component. As in Lemma 3, we may 
assume # H = lis prime. Let T denote the maximal tame extension of K in L. 
Then E C\ T is the maximal tame extension of K in E. v(L*)/v(T*) is cyclic by 
assumption. If I = p, then E C\ T = T so v(L*)/v(E P\ T*) is cyclic. This is 
true in any case, since / T^ £ implies 

v(L*)/v(E C\ T*) ^ v(L*)/v(E*) X v(L*)/v(T*). 
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Let a G L* be such t h a t v(a) generates v(L*) modulo v(E C\ T*). If a fixes 
E r\ T1 then by Lemma 2, i(<ry) = v(aya/a — 1) for all y £ H. Reexamining 
the proof of Lemma 3 we see t h a t v(bo) = lv(a) so v(bo) generates v(E*) 
modulo v(E C\ T*). Again applying Lemma 2, we have equal i ty in (5) in the 
case i = 0. On the other hand, if <r does not fix E C\ T, then ï(â) = 0 = i(ay) 
for all y £ H. T h u s the result is t rue in any case. 

T o prove the converse let T be the maximal t ame extension of K in L, and 
let pn = [L : T]. We prove a stronger result : namely we prove t h a t if the 
formula holds for all extensions L\Et\K, i = 1, 2, . . . , n — 1, where K C T = 
Eo C Ei C • • • C En = L is some special sequence of Galois subfields such 
t h a t [Ei : T] = p\ then v(L*)/v(T*) is cyclic. When w = 1, the assumption 
is vacuous, bu t the result is obvious. In general, we choose E = Ex. By assump­
tion, the formula holds for L\Et\K, i = 1, . . . , n — 1, and hence certainly for 
L\Et\E, i = 2, . . . , n — 1. Thus , by induction, v(L*)/v(E*) is cyclic. Choose 
a G L* such t h a t y (a) generates v(L*) modulo v(E*), and choose any a Ç G 
fixing r bu t not E (i.e. 0 < l((î) < co ). For y £ H, v(ayx/x — 1) is never the 
minimal value ^(cry) when x £ -E*, for this would imply ï(â) = i(ay), con­
tradict ing ï(â) = Z ) 7 ^ ^ ( c r y ) . Thus , by L e m m a 2, i(ay) = v(aya/a — 1) for 
all y £ if. Using the terminology of L e m m a 3, we see t h a t the condition 1(a) = 
YlytH ifay) forces l(â) = v(abQ/bo — 1). Clearly this implies t h a t v(b0) = 
v(NL\E(a)) = pn~1v(a) generates v(E*) modulo v(T*). In par t icular pn~l 

v(a) £ v(T*), so the order of v(a) in v(L*)/v(T*) mus t be pn. 

For a (z G, let 

iff = max {i(ay) \ y £ H} = max {x \ a H P\ Gx 5* <t>)> 

Let 4> denote the Herbrand Funct ion as previously defined, bu t with respect 
to the extension L\E. 

L E M M A 5. X T ^ ^ T ) = 0 ( ^ ) . 

Proof. Let 0 = x0 ^ x± ^ x2 ^ . . . ^ xk = ia be any set of elements of D 
containing all the jumps of L\K (and hence of L\E) in the interval [0, iff]. 
Let ô be the Kronecker Symbol : 

. ( ^ (0, if x £ S. 

T h e n 
k 

X *GnO = X XI 5(°"T, G^)(^ - xv-i) 
y£H y£H v=l 

k k 

= X X ô ( ° " 7 , G s J f o , - X p _ i ) = X # ( o f f O < ? * , ) ( * , - Xv-l). 
v=l y£H v=l 

However, if a H C\ Gx ^ <£, say o-y0 G <rH Pi G^, then <ry —> y ^ y defines a 
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1 — 1 correspondence between the elements of a H Pi Gx and the elements of 
GXC\ H = Hx; thus the result. 

If E is any Galois subextension of L\K, let H denote the Galois group of 
L\E and let 0, 0, 0 denote the Herbrand Functions for L\K, L\E, and E\K. 
With these notations we have the following result. 

THEOREM 1. For all x G D+, 

(i) GXH/HD (G/H)$ixh 

(ii) 0(x) ^ £(<?(*)), 
(iii) GXH/H D {G/H)x. 

Proof, (i) By Lemmas 3 and 5, if a G G, then ï(â) g 4>{iff). Hence â G 
(G/H)~Hx) <̂> ï(ff) ^ 0(x) =» 0(^) ^ <?(x) « Î ' ^ X ^ ^ GXH/H. 

(ii) Since the functions 0, 0 o 0 are piecewise linear on D+, and 0(0) = 0 = 
0(0(0)), it is enough to show that the left-hand derivatives satisfy 0/ (x) ^ 
(0 o 0 ) / ( x ) for all x 6 £>+: 

(0 o 0) /(x) = 0 / ( 0 » ) . 0/(x) = KG/H)Ux) • # # , ^ #(GXH/H) • 

#ff, = #(G*/G* H ff) • #(G, H ff) = #G* = 0 / (x) . 

(iii) Let x = 4>(y). Then x ^ 0(0(30) by (ii); hence 

G'H/H = GJH/H D [G/H)Uv) D (G/H)-^Hx) = (G/H)*. 

THEOREM 2. / w a given Galois subextension E of L\K, the following conditions 
are equivalent: 

(i) GXH/H = (G/H)fax) holds for all x G D+, 
(ii) 0 = 0 o 0, 

(iii) G ^ / i f = (G/ff)* holds for all x G £>+. 
Further, these conditions hold for all Galois subextensions E of L\K if and only if 
V has cyclic p-component. 

Proof. (i)<=>(ii). We have GXH/H D (G/H)Ux) by Theorem 1. Thus 
GXH/H = (G/H)kx) <=• HGJI/H) = KG/H)Ux) <=> 0/(x) = ( 0 o 0 ) / ( x ) as 
we see from the proof of Theorem 1. 

(i), (ii) <=> (iii). The result is immediate on examination of the proof of 
Theorem 1, (iii). 

Finally, if we examine the proof of Theorem l( i) , we see that GXH/H = 
(G/H)$(x) for all x G D+<=^ï(à) = 4>(i<j) for all a G G <=> ï(â) = J2yeHi(vy) 
for a G G. Hence the last assertion follows from Lemma 4. 

3. The abelian case. The proof of the Hasse-Arf Theorem given below is a 
simple generalization of the proof given in [3] for the rank 1 discrete case. 

THEOREM 3. Assume L\K is abelian and that the p-component of T is cyclic. 
Then the upper jumps of L\K all lie in v(K*). 
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Reduction of proof. Let x be an upper jump of L\K. By replacing L by a 
subfield if necessary, we may assume that x is the largest upper jump of L\K. 
Choose cyclic extensions Lly . . . , Ls of K in L such that [Lt : K] is a prime 
power for each i and such that L is the compositum of these subfields. Let G(i) 
denote the Galois group of Lt over K. By Theorem 2, the natural surjective 
homomorphism G —> G(i) carries Gv on to G (i)v for all y G D+. Hence the natural 
injection G -> G(l) X . . . X G(s) carries Gy into G(l)v X . . . X GOO*. In 
particular, Gx ^ 1 so there exists i0 such that G(i0)

x ^ 1. On the other hand, 
Qx+t _ J for a u e > o, so G^o)^ 6 = 1 for e > 0. Thus x is an upper jump of 
Lt0\K. Now suppose [LiQ : i£] = ln. If I ?* p, then x = 0 G «(if*). Thus we 
have reduced the proof to the case where L\K is wildly ramified and cyclic. 

Now assume L\K is wildly ramified cyclic and let pn = [L : K], G = (a). 
If r G G, m Ç Z, then i(r) ^ ^(rw) with equality if and only if p \ m. Thus the 
jumps of L\K are precisely the values i0 < i% < . . . < in-\ where ik = i(crpk). 
The upper jumps are the values 

*(**) = PnH + Pn~l{ii - H) + • • • + Pn~\k ~ it-i), 

k = 0, 1,2, . . . , n - 1. 

Thus, the conclusion of the Hasse-Arf Theorem in this case is equivalent to 
the statement 

(6) p*~*(ik - i t_0 G v(K*), k = 1, 2, . . . , n - 1. 

We can rephrase this in yet another way: If /x G *>(£*), ^et M denote the coset 
of M in f, and define o(/x) = s where £ s is the index of the cyclic subgroup 
(/l) in T. Since Y is cyclic, this also measures the ^-divisibility of /x. 
Then (6) is equivalent to the statement 

(7) o(ik - 4-i) è *, * = 1, 2, . . . , n - 1. 

If ju G v(L*), we define cM = o-p0(/i). An element x G L* will be called Special 
(for o-) if 

Ko-*/* - 1) = i(<7^x)). 

LEMMA 6. For each /x G v(L*)y there is a special element x ^ L * satisfying 
v(x) = /x-

Proof. If 0(ju) = w, then ju G ̂ (i^*). In this case any x G K* for which 
z/(x) = /x will serve. Now suppose O(/JL) = s < n. Then /x = psa + 0 where 
a G v(L*), ]8 G v(X*). Moreover 0(a) = 0, so â generates T. Choose any a £ L* 
such that i/(a) = a, and any ô G K* such that v(6) = 13. If we define 

P«—l 

x = fr ]~J cr*a, 

then clearly »(#) = /x. Moreover ax/x = avSa/a, so the result is clear by 
Lemma 2. 
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LEMMA 7. Every element x G L * can be written as a finite sum of special 
elements whose values are distinct modulo v(K*). 

Proof. Using Lemma 6, we can form a basis of L\K by choosing special 
elements of L* whose value classes in Y are distinct. Since the product of a 
special element with an element of K* is again special, the result is obvious. 

LEMMA 8. IfO<j<n — 1 implies o(ij — 4- i) ^ j , then the values n + ^(o^), 
o(fji) < n — 1 are all distinct. They are also distinct from 4-2-

Proof. Suppose \i + i(V) = X + i(ax). If o{ix) = o(\), then c" = <rx and 
therefore /x = X. Otherwise we see that <?(/* — X) = min {o(/x), 0(X)}. But from 
the assumption, one also has o(i(ax) — ifa*)) > min {o(n), 0(X)}, so that 
JJL — \ T^ i(ax) — iÇa"). As long as O(/JL) < n — 1 we have 0(4-2 — i^)) > O(/JL) 

and therefore 4-2 ^ M + ^(o-"). 

Proof of Theorem 3. If Z,|i^ is the extension of least degree for which the 
assertion fails, then by the proof reduction we may assume that L\K is wildly 
ramified cyclic, and that the failure occurs at the largest jump only. Thus we 
have o(ik — 4-i) è k, k = 1, 2, . . . , n — 2, but 0(4-i — 4-2) < n — 1. 
Further, if E denotes the subfield of L fixed by ap, then by the minimality of n, 
the assertion is true forL|£, so 0(4-i ~ in-2) ^ n — 2. Thus 0(4-i — V-2) = 
n — 2. Put 5 = 4-2 — 4 - i and apply Lemma 6 to choose z £ L* special for ap 

such that v{z) = 5. Thus 1/(0* — l)z) = s + i(c2,s) = s + 4 - i = 4-2- Let 
x = <y-i + ^ -2 + . . . + \)Zm The operator A = av~x + av~2 + . . . + 1 is 
congruent to (cr — l)v~l modulo p. Thus: 

(8) v{x) = v(A(z)) > v{z) = s, 

(9) v((a - l)x) = v«a* - l)z) = 4-2. 

Expand x as in Lemma 7, x = £ M xM, z>(xM) = /x. Then set 3> = YLnJn where 
y = (cr — 1)#, ;yM = (<r — l)xM. Break this expansion into two parts: 

(io) y= E y,+ E 3v 
0( / i )<n- l 0 ( / i » » - l 

By Lemma 8, the vÇy^) occurring in the first sum are all distinct and v(y) = 4-2 
is also distinct from these. As for the second sum, notice that if JJ, occurs in it, 
one has v(yli) ^ fl(xM) + 4 - i since O(IJL) ^ n — 1. Since the values v(xfl) = /x lie 
in distinct cosets by choice, z>(xM) ^ u(x). Finally, by (8), v(x) > s. Hence 
v(yfl) > s + 4 - i = 4-2 for terms in the second sum. Hence, if we write (10) in 
the form 

y - Z y*. = Z 3V 
0 0 x ) > n - l O0t)<f»—1 

and compare values, we obtain a contradiction. 
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