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RAMIFICATION THEORY FOR VALUATIONS OF
ARBITRARY RANK

MURRAY A. MARSHALL

Throughout, we consider a finite Galois extension L|K of non-archimedian
valued fields which are maximally complete [2, Chapter 2]. Let v denote the
valuation on L and let L* denote the group of non-zero elements of L. We may
identify the value group v(L*) of L with a subgroup of D, where D denotes the
minimal divisible ordered group containing v(K*). We denote the residue field
of L by L, and will always assume that the field extension L|K is separable. The
characteristic of K will invariably be denoted by #; much of what follows is
trivial in case p = 0. Let G denote the Galois group of L|K and let G denote the
Galois group of L|K. The kernel of the natural homomorphism of G onto G is
the ramification group.

Go = {cr € Gl (gf— 1) > Oforallu € @/},

where % denotes the unit group of L. The fixed field R of G, is the maximal
unramified extension of K in L [2, p. 68]; the extension L|R is totally ramified.
The higher ramification groups G,, x € D, x = 0 are defined by

G, = {a’ € Golv (L‘aﬂ - 1) > «x foralla EL*}.

By the uniqueness of the extension of v from K to L we have that v(ox) = v(x)
for all x € L*, ¢ € G. Using this, one may verify readily that the ramification
groups G, ¥ = 0 are invariant subgroups of G. The ramification groups form a
decreasing chain with G, = 1 for x sufficiently large.

From Lemma 1 below it follows that for each ramification group G, # 1
there is a largest x € D such that G, = G,. Such an «x will be called a jump of
the extension LIK. f x € D, x 20,let0 =xy=x1 < .....<x, =x be a
sequence of elements of D containing all jumps of L|K which lie in the interval
[0, x]. The quantity

(x) = sgl #Goy (% — %5-1)

is independent of the choice of sequence and thus defines a function ¢: D+ — D+

called the Herbrand Function of L|K. The Herbrand Function is strictly

increasing and piecewise linear (in the obvious sense), and is thus bijective. It

will be convenient to extend this function to D+\U{c0 } by defining ¢(c0) = o0.
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We may define a new indexing of the ramification groups (called the upper
numbering) by defining

G* = Gy-yy) for x € D+,

We call an element y € D+ an upper jump if G 2 G*+< for all € > 0, ¢ € D.
(Thus the upper jumps are just the values ¢(x) where x is a lower jump).

The principal results in the classical rank 1 discrete case are:

(a) (Herbrand) If E is a Galois subextension of L|K then the natural homo-
morphism of G x onto Gg g carries G x* onto G £® for all x € D+,

(b) (Hasse-Arf) If L|K is abelian then the upper jumps of L|K all lie in 2(K*).

In this paper we show that (a) is true in general if and only if the value
group quotient I' = o(L*)/v(K*) has cyclic p-component. We also show that
(b) holds in this case. The proof techniques are simple modifications of those in
[1, Chapter 11], and [3] respectively.

1. Preliminaries. We begin with some elementary results on jumps.
LeMMmA 1. For ¢ € Gy, the set of values {v(ca/a — 1)|a € L*} has a minimum
Sfurther, this minimum is not achieved for a € % (except in the trivial case

g =1).
Proof. Choose elements 1 = ay, as, . . ., @, in L* such that v(ay), .. ., v(a,)
represent the distinct cosets of T', each exactly once. Thus ay, as, . . . , @, form a

basis of L|R; each a € L* can be written uniquely in the form a¢ = Y }; cia4,
where ¢; € R and v(a) = v(c4a4) < v(cia,) fore # 2,. Also

9@y _ g Gl (98 _

a 1 ; a ( a; 1)'
Thus v(ea/a — 1) = min {v(ca,/a; — 1)|z = 2,3, ...,n}. This inequality is
strict when a € %, since then i, = 1.

In view of this result we see that for each x = 0, G, = {¢ € Go|i(s) = x}
where 1(g) is defined by
(1) i(¢) = min {v(ca/a — 1)|a € L*}.
Also the jumps of the extension L|K are just the values i(s), ¢ € Go, ¢ # 1 (so
they are actually in v(L*)).

We will have cause to use the following refined form of Lemma 1.

LEMMA 2. If by, . . . , b, are elements of L* such that v(by), . . . , v(b,) generate T,
then for each o € G,

i(a)=min{v(%——1) |i=1,...,s}.

Proof. If b € L* then

8

b= ] 6% c-u

1=1

https://doi.org/10.4153/CJM-1974-085-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-085-9

910 MURRAY A. MARSHALL

where ¢ € R, u € %. Thus

Q__ s (_qé_i)ﬁ.ﬂ
b_i=1 b»[ u’

so the result is clear from Lemma 1.

If i is a jump of L|K, let j = min {i(0)[i(s) > ¢}. We examine the quotients
Gi = G;/G; as in [2, Chapter 3]. Let %, denote the quotient group % /%,
where

U, ={1+x€ Uplx) =1}, Uir = {1+ x€ Ulp(x) > 1}.

Ifa € L*and ¢ € Gy, then ga/a € % ;and the class of sa/a in % , depends only
on the class of 4 = »(a) in T and the class of ¢ in G,. In this way we obtain a
bilinear mapping (¢, i) — (¢a/a). %+ of G; X T into % ;. Since v(ca/a — 1) > 1
for all @ € L* implies ¢(s) = j, we see that the derived homomorphism

G, — Hom (T, %))

is injective. Moreover, since

— _(I* ifi=0
gy~ I ,
7/1—{L, ifi>0

the group G; is

(a) abelian of order prime to p if 2 = 0,

(b) an elementary p-group if 2 > 0. Consequently,

(c) Gy is solvable.

(d) If T denotes the fixed field of G; where j = min {i(¢)|i(¢) > 0}, then T
is the maximal tamely ramified extension of K in L [2, Chapter 3, § 2].

Using customary terminology, the extension L|7" will be called wildly
ramified.

2. The Herbrand relationship. Suppose E is a subextension of L|K.
Denote by H the Galois group of L|E and by H,, x € D+, the ramification
groups of L|E. Then it is clear that

H,=HNG, for all x € D+,

We now assume that the extension E|K is also Galois, and study the more
complicated relationship between the ramification groups G, and (G/H),. To
avoid a lot of essentially trivial reductions we shall assume throughout this
section that L|K is totally ramified. The reader may verify that Theorems 1
and 2 are true as stated in the general case. For ¢ € G, let ¢ denote its coset in
G/H, and let 7(¢) denote the function as defined by (1), but with respect to
the extension E|K. That is, 7(¢) = min {v(sa/a — 1)|a € E*}

LEMMA 3. For all ¢ € G, 1(d) £ 3 yen 1(av).
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Proof. Using the solvability of G = G, we may assume # H = [ is prime. We
also assume 7(d) > (o) for all ¥ € H, since otherwise the result is trivially
true. Thus the quantity v(oyb/b — 1) never achieves the minimum value
i(oy) for b € E*. Choose any a € L* such that v(a) generates v(L*) modulo
v(E*). In view of Lemma 2 plus what has just been said, we have

(2)  i(oy) = v(oyva/a — 1) forall y € H.
Let

f) =H (x —va) =bo+ b+ ... +bz—1xl_1+xl

YEH

be the minimum polynomial of @ over E. Since v(a) generates (L*) modulo
v(E*) and since f(a) = 0 we have

B) lw(e) =v(e") = v <v(ba?), 1=1,2,...,1 — 1.
Since fo(x) = Il,ex (x — oya) = obo + obix + ... + obj1x'~! + x, we have

—1

I1 (@—ova) =F7(@) =f°(@) — f@) = 3 (oby — by,

YEH i=0
or
: _ova) _ 5~ (obi _ ’
@ J'I]1 = 1)b.at.
veH a =0 by
Also by (3)

(5)  v(obo — be) 27 (6) + lv(a)
v((eby — b)a®) > 7 (5) +1v(a),i=1,2,...,1—1.

Combining (2), (4), and (5) yields
2 i(oy) + W(a) > 1(3) + Lv(a),

YE€H

so the lemma is proved.
LEMMA 4. If the p-component of T is cyclic, then
2, o) =1(d), 0 €G

YeH
holds for all Galois subextensions E of LK, and conversely.

Proof. First assume I has cyclic p-component. As in Lemma 3, we may
assume # H = [l is prime. Let 7" denote the maximal tame extension of K in L.
Then E N T is the maximal tame extension of K in E. v(L*)/v(T™*) is cyclic by
assumption. If I = p, then EN T = T so v(L*)/v(E M T%*) is cyclic. This is
true in any case, since / % p implies

v(L*)/o(E N T*) = o(L*)/v(E*) X v(L*)/o(T*).
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Let @ € L* be such that v(a) generates v(L*) modulo v(E N T*). If ¢ fixes
E N T, then by Lemma 2, ¢(cy) = v(oya/a — 1) for all v € H. Reexamining
the proof of Lemma 3 we see that v(by) = lv(a) so v(by) generates v(E*)
modulo v (E M T%*). Again applying Lemma 2, we have equality in (5) in the
case 7 = 0. On the other hand, if & does not fix £ M T, then7(¢) = 0 = i(oy)
for all ¥ € H. Thus the result is true in any case.

To prove the converse let 7" be the maximal tame extension of K in L, and
let p" = [L: T]. We prove a stronger result : namely we prove that if the
formula holds for all extensions L|E K, =1,2,...,n — 1, where K C T =
E,CE, C...CE,= L is some special sequence of Galois subfields such
that [E;: T] = p¢, then v(L*)/v(T*) is cyclic. When # = 1, the assumption
is vacuous, but the result is obvious. In general, we choose E = E,. By assump-
tion, the formula holds for L|E,|K,7 = 1,...,n — 1, and hence certainly for
L|EJE, i =2,...,n — 1. Thus, by induction, v(L*) /v (E*) is cyclic. Choose
a € L* such that v(a) generates v(L*) modulo v(E*), and choose any ¢ € G
fixing 7" but not E (i.e. 0 < 72(¢) < ). Fory € H,v(oyx/x — 1) is never the
minimal value 7(sy) when x € E*, for this would imply 7(¢) = i(ey), con-
tradicting 72(¢) = D yem (o). Thus, by Lemma 2, 7(¢y) = v(ocya/a — 1) for
all y € H. Using the terminology of Lemma 3, we see that the condition 7(¢) =
> e 1(oy) forces 2(¢) = v(obo/by — 1). Clearly this implies that v(b,) =
v(Nye(a)) = p"(e) generates v(E*) modulo v(7*). In particular p*!
v(a) ¢ v(T*), so the order of v(e) in v(L*)/o(T*) must be p.

For ¢ € G, let
i, = max {i(oy) | v € H} = max {x|oc HN G, # ¢}.

Let ¢ denote the Herbrand Function as previously defined, but with respect
to the extension L|E.

LEMMA 5. 2 yen t(oy) = ¢(15).

Proof. Let 0 = xg S %1 S %2 = ... = x; = 1, be any set of elements of D
containing all the jumps of L|K (and hence of L|E) in the interval [0, ,].
Let 8 be the Kronecker Symbol:

_fo,ifx ¢ S.
o, 5) = {l,ifxES.

Then

Z 7;(07) = Z 0Z=:1 6(0'71 va)(xv - xv—l)

YEH YEH
k

= Z Z 6(”7: GIv) (xv - xv—l) = v;l # (UH ﬂ va) (xv - xv—l)'

v=1 ~v€H

However, if ¢ HN G, # ¢, say oyo € ¢H M G,, then oy — v5ly defines a
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1 — 1 correspondence between the elements of ¢ H (M G, and the elements of
G, N\ H = H,; thus the result.

If E is any Galois subextension of L|K, let H denote the Galois group of
L|E and let ¢, , & denote the Herbrand Functions for L|K, L|E, and E|K.

With these notations we have the following result.

THEOREM 1. For all x € D,
(i) ¢(x) = ¢(d(x)),
(iii) G*H/H O (G/H)*.

Proof. (i) By Lemmas 3 and 5, if ¢ € G, then 7(¢) £ ¢(4,). Hence & €
(G/H)swy < 1(6) 2 ¢(x) = 6(,) 2 ¢(x) &4, 2x=6 € G, H/H.

(ii) Since the functions ¢, ¢ o ¢ are piecewise linear on D+, and ¢(0) = 0 =
¢(4(0)), it is enough to show that the left-hand derivatives satisfy ¢,/ (x) =
(pod)/(x) for all x € D+:

(06)/(x) =&/ (6®)) - &/ (x) = #(G/H)s - #H. = #(G.H/H) -
tHy = #(Go/G: N H) - #(Go N H) = #G, = ¢/ (x).

(iii) Letx = ¢(y). Then x = #(é(y)) by (ii); hence
G*H/H = G,H/H O (G/H)3w) O (G/H)z-1y = (G/H)".

THEOREM 2. For a given Galois subextension E of L|K, the following conditions
are equivalent:
(1) G.H/H = (G/H)z holds for all x € D+,
(ii) ¢ = g0,
(iii) G*H/H = (G/H)* holds for all x € D+.
Further, these conditions hold for all Galois subextensions E of L|K if and only if
T has cyclic p-component.

Proof. (i) & (ii). We have G,H/H O (G/H)3w by Theorem 1. Thus
GH/H = (G/H)jw & #(GH/H) = #(G/H)s) & ¢/ (x) = (do¢)/(x) as
we see from the proof of Theorem 1.

(i), (ii) & (ii). The result is immediate on examination of the proof of
Theorem 1, (iii).

Finally, if we examine the proof of Theorem 1(i), we see that G,H/H =
(G/H)3 for all x € DY < 3(6) = ¢(i,) for all ¢ € G=7(5) = > yen 1(ay)
for ¢ € G. Hence the last assertion follows from Lemma 4.

3. The abelian case. The proof of the Hasse-Arf Theorem given below is a
simple generalization of the proof given in [3] for the rank 1 discrete case.

THEOREM 3. Assume L|K is abelian and that the p-component of T is cyclic.
Then the upper jumps of L|K all lie in v(K*).
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Reduction of proof. Let x be an upper jump of L|K. By replacing L by a
subfield if necessary, we may assume that x is the largest upper jump of L|K.
Choose cyclic extensions Li, ..., L of K in L such that [L,: K] is a prime
power for each ¢ and such that L is the compositum of these subfields. Let G (z)
denote the Galois group of L; over K. By Theorem 2, the natural surjective
homomorphism G — G(z) carries G¥ onto G (7)? for all y € D*. Hence the natural
injection G — G(1) X ... X G(s) carries G¥ into G(1)¥ X ... X G(s)?. In
particular, G* # 1 so there exists 79 such that G (45)® # 1. On the other hand,
G*te = 1 for all ¢ > 0, so G(79)*¢ = 1 for ¢ > 0. Thus «x is an upper jump of
L,|K. Now suppose [L; : K] =" If I # p, then x = 0 € v(K*). Thus we
have reduced the proof to the case where L|K is wildly ramified and cyclic.

Now assume L|K is wildly ramified cyclic and let p* = [L : K], G = (o).
Ifr € G,m € Z, then i(r) < i(+™) with equality if and only if p + m. Thus the
jumps of L|K are precisely the values 1y < 7; < ... < 1,_; where 7, = i(c?*).
The upper jumps are the values

6 (1) = po + "1 (0 — %0) + ... F P — 1),
=0,1,2,...,n— 1.

Thus, the conclusion of the Hasse-Arf Theorem in this case is equivalent to
the statement

6) Py — d—1) € v(K*), E=1,2...,n—1.

We can rephrase this in yet another way: If u € 9(L*), let & denote the coset
of p in T, and define o(p) = s where p° is the index of the cyclic subgroup
(g) in T. Since T is cyclic, this also measures the p-divisibility of z.

Then (6) is equivalent to the statement

(7)) o(iy — 4—1) = k&, E=1,2,...,n— 1.
If u € v(L*), we define o* = ¢*"*. An element x € L* will be called Special
(for o) if
v(ox/x — 1) = i(a?®).
LEMMA 6. For each u € v(L*), there is a special element x € L* satisfying
v(x) = u.

Proof. If o(u) = n, then p € v(K*). In this case any x € K* for which
9(x) = p will serve. Now suppose o(u) = s < n. Then u = pa + 8 where
a € v(L*), B € v(K*). Moreover o(a) = 0, so @ generates I'. Choose any a € L*
such that 9(¢) = «, and any b € K* such that 2(b) = B. If we define

ps—1

x=0b]] o,
0

then clearly v(x) = u. Moreover ox/x = ¢”a/a, so the result is clear by
Lemma 2.
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LEMMA 7. Every element x € L* can be wrilten as a finite sum of special
elements whose values are distinct modulo v(K¥).

Proof. Using Lemma 6, we can form a basis of L|K by choosing special
elements of L* whose value classes in T are distinct. Since the product of a
special element with an element of K* is again special, the result is obvious.

LemMmA 8. If 0 < j < n — limplies 0(i; — 1,-1) = j, then the values u + 1(a*),
o(p) < n — 1 are all distinct. They are also distinct from 1,_s.

Proof. Suppose p + i(s*) = X + 2(¢*). If o(u) = o(\), then o* = ¢* and
therefore 4 = \. Otherwise we see that o(u — \) = min {o(u), o(\)}. But from
the assumption, one also has o(i(¢*) — 2(¢*)) > min {o(u), o(\)}, so that
u— N # i(e*) — i(o*). Aslong aso(u) < #n — 1 we have 0(4,—2 — 2(c*)) > o(u)
and therefore 7,2 % u 4 i(o*).

Proof of Theorem 3. If L|K is the extension of least degree for which the
assertion fails, then by the proof reduction we may assume that L|K is wildly
ramified cyclic, and that the failure occurs at the largest jump only. Thus we
have o(4 —4—1) =k, B =1,2,..., 2 — 2, but 01 — 1,_2) <n — 1.
Further, if E denotes the subfield of L fixed by ¢?, then by the minimality of #,
the assertion is true for L|E, s0 0(4,—1 — y—2) = % — 2. Thus 0(t,_1 — 1,_2) =
n — 2. Puts = 4,y — 4,1 and apply Lemma 6 to choose z € L* special for ¢?
such that 2(z) =s. Thus v(¢®? — 1)2) = s + 2(¢*) = s + 4,1 = 7,_5. Let
x = (6?14 ¢"2+ ...+ 1)z. The operator 4 =o? 1+ o? 2+ ...+ 1 is
congruent to (¢ — 1)?~! modulo p. Thus:

(8)  v(x) =v(A4(2) > v(z) =5,
9 vl — Dx) = v((e” — 1)2) = tns

Expand x as in Lemma 7, x = >, x,, v(x,) = p. Then set y = 3, v, where
y = (¢ — 1)x, ¥y, = (¢ — 1)x,. Break this expansion into two parts:

10) y= 2 n+ 2 Y
0(w)<n—1 0(p)>n—1
By Lemma 8, the v(y,) occurring in the first sum are all distinct and v(y) = 7,_,
is also distinct from these. As for the second sum, notice that if x occurs in it,
one has v(y,) = v(x,) + %,—1 since o(u) = # — 1. Since the values v(x,) = u lie
in distinct cosets by choice, v(x,) = v(x). Finally, by (8), v(x) > s. Hence
v(¥,) > s + 4,—1 = 4,—2 for terms in the second sum. Hence, if we write (10) in
the form
y - Z Yu =

0(u)>n—1 0(u)<n—1

and compare values, we obtain a contradiction.
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