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EXTENSION OF A SEMIGROUP EMBEDDING 
THEOREM TO SEMIRINGS 

BY 

PAUL H. KARYELLAS 

It is well known [1,3] that a commutative semigroup (S, + ) can be embedded 
in a semigroup which is a union of groups if and only if S is separative (2a=a+ 
b=2b implies a=b). We extend this result to additively commutative semirings. 

A semiring (S, + , •) is a set S with associative addition (+ ) and multiplication 
(•), the latter distributing over addition from left and right. In what follows 
(S, + , •) will denote a semiring in which the additive semigroup (S, + ) is com­
mutative. An element 0 can be adjoined, where ^=^+0 , 0 = 0 • s=s • 0 for all 
s in S, to form S°. Then a divides b, written ajb, if a+x=b for some x in S°. The 
semiring congruence N is defined by aNb if ajmb and b\na for positive integers m 
and n. A semiring S is archimedean if aNb for each a and b in S. The following 
two results are now direct extensions of material from [1]. 

LEMMA 1. Let S be a semiring, Sa(a e Y) the congruence classes ofN. 
(1) Nis the smallest semiring congruence such that SjN is an additive semilattice: 

each (Sa9 +)(a e Y) is an archimedean semigroup. 
(2) The decomposition of(S, +) into a semilattice of archimedean semigroups is 

unique and S is additively separative if and only if the archimedean components are 
additively cancellative. 

(3) If S is an additively commutative semiring such that x2=x for all x e S, 
then for each ae Y, (Sa, + , -)is an archimedean semiring. 

In S X S let r = { ( a , b) : aNb in S) and define the relation M on T by (a, b)M(c9 d) 
if and only if both aNc and a+d=b+c. 

THEOREM 2. Let S be an additively separative semiring, T and M as above. On T 
define (a, b)+(c, d)=(a+c9 b+d) and (a, b)(c9 d)=(ac+bd, ad+bc). Then: 

(1) (T\ + , -) is an additively commutative semiring. 
(2) M is a congruence and T=T'jM a union of additive groups. 
(3) Denoting elements of T by [a, b], the map F: x->[2x, x] is an embedding of S 

into T. 

Proof. Clearly T is a semiring with commutative addition. It is easily shown that 
M is reflexive and symmetric, while transitivity of M follows from additive can­
cellation in the classes of the congruence N on S. Similarly M is shown to be 
compatible with addition and multiplication in T'. 
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For (a, b) e T we have also that (b, a) and (a, a) are in 7" and obtain the result 

[a, b]+ [a, a] = [a+a, b+a] = [a, b] 

since (a)N(b)N(2a)N(a+b) and 2a+b=b+2a. The inverse of [a, b] in Tis the ele­
ment [b,a]. 

If F(x)=F(y)then [2x, x]=[2y,y],hence (2x)N(x)N(y)N(2y)and2x+y=x+2y. 
The N-congruence class containing x and y is cancellative, implying x = j : F is 
thus injective. Trivially F is an additive homomorphism. For x and j> in S we 
obtain (xy)Ar(2xy)Ar(4x);)A^(5xy) and 2(xy)+4(xy)=xy+5xy, thereby proving 
that F(xy)= [2(xy), xy]=[5(xy), 4(xj)]= [2x,y]=F(x) • F(y). 

THEOREM 3. Let (S, + , •) be an additively commutative semiring. 
(1) S is embeddable in a semiring which is a union of additive groups if and only if 

S is additively separative. 
(2) Ifx=x2for all x in S, and S is additively separative, then S is embeddable in 

a semiring which is a union of rings. 

Proof. We need only consider the case where S is embeddable in a semiring T, 
T being a union of additive groups and therefore the union of maximal additive 
groups, written H(x) for x in S. Let a,b e S, such that 2a=a+b=2b. Then 
H(a) contains the image of 2a, H(b) the image of 2b under the embedding, implying 
that H{a) meets H(b) and thus that H(a)=H(b) [I]. Cancellation in H(a) then 
implies a=b. 

Recall that F(x)= [2x, x] from Lemma 2. The element [x, x] is both an additive 
idempotent and an additive identity for [2x, x] and is contained in a maximal 
additive subgroup, denoted here by H{x). From [2] H{x) is a subring if and only 
if [x, x] is also multiplicatively idempotent. Clearly x=x2 implies [x, x] = ([x, x])2 

and consequently that H(x) is a subring. The archimedean components of the 
decomposition of S in Lemma 1 will be subsemirings under this condition. 

This material formed part of the author's dissertation, under the supervision of 
Professor M. Friedberg. 
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