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Magnetic-resonant wireless power transfer (MRWPT) has been typically realized by using systems of coupled resonators. In
this paper, we introduce a rigorous network modeling of the wireless channel and we introduce several viable alternatives for
achieving efficient MRWPT. Ideally, the wireless channel should realize a 1:n transformer; we implement such transformer by
using immittance inverters. Examples illustrate the proposed network modeling of the magnetic-resonant wireless power
channel.
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I . I N T R O D U C T I O N

Magnetic-resonant wireless power transfer (MRWPT) has
been realized by Karalis et al. in 2007 in [1] and he has gener-
ated a significant interest among researchers. In [1], the
experimental realization has been made by using two self-
resonant coils. One coil (the source coil) has been inductively
coupled to an oscillating circuit operating at a frequency of
9.9 MHz the other (the device coil) has been inductively
coupled to a resistive load. Self-resonant coils relied on the
interplay between distributed inductance and distributed cap-
acitance to achieve resonance. The coils were made of an elec-
trically conducting wire of total length l and cross-sectional
radius a wound into a helix of n turns, radius r, and height h;
the values chosen for the experiment have been: h ¼ 20 cm,
a ¼ 3 mm, r ¼ 30 cm, and n ¼ 5.25. The driving circuit has
been excited by means of a Colpitts oscillator in which the
inductance has been made with a copper loop of radius 25 cm.
As an example, when transferring 60 W to the load over a dis-
tance of 2 m the power flowing into the driving circuit was
400 W. This has provided an overall DC/DC efficiency of
15%, which has been considered reasonable given the expected
efficiency of 40–50% for the wireless power transfer at that
distance and the low efficiency of the Colpitts oscillator.

In [1, 2], coupled mode theory was used for the analysis;
successively a network approach, more suitable for engineer-
ing purposes, has been introduced in [3]. In [4], a method
has been presented to regulate the power transferred over a
wireless link by adjusting the resonant operating frequency

of the primary converter. With this approach, effective
power regulation is maintained under variations in load,
coupling, and circuit parameters. This is particularly import-
ant when the wireless supply is used to power implanted
medical devices where substantial coupling variations between
internal and external systems is expected. The operating fre-
quency is changed dynamically by altering the effective tuning
capacitance through soft switched phase control. However,
this method requires a bidirectional communication link.

The feasibility of MRWPT for electrical vehicles (EVs) has
been considered in [5], and efficiencies of approximately
95–97% have been reported for the wireless channel. In this
study, the resonators have been called antennas; however
the resonators are expected to couple to each other (via mag-
netic fields) but should not radiate energy into the environ-
ment. Also in this case series resonators have been used.

In [6], a design approach has been proposed in order to
realize an efficient wireless power transfer system achieving
low-power loss using the class-E mode of operation. In this
excellent work, an inductive coupling has been considered
and impedance transformation networks have been added.
Four topologies (combination of series and parallel) for a
single element impedance have been considered, but no sys-
tematic design procedure has been introduced. However, the
proposed system has been able to achieve a desirable power-
delivery response across a wide range of load resistances
without any control mechanism or feedback loop. An efficient
compact wireless power system achieving 295 W of power
delivery with better than 75% end-to-end dc-to-dc conversion
efficiency across the main power-delivery impedance range
has been achieved. The selected operating frequency has
been 134 kHz and purely circuital models have been used.
Subsequently, a load detection scheme without using any
communication link between the transmitting platform and
the receiving unit has been proposed and implemented in a
wireless power transfer system in [7]. By using the transmitter
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coil voltage and supply current space, it has been shown that
the system is capable of differentiating among a safe zone for
nominal operation, no-load zone for energy saving, and fault
zone when invalid loads that might damage the system are
present. In this work a class-E transmitter operating at
240 kHz has been considered.

A MRWPT system and a suitable tuning method have been
presented in [8] using loosely coupled coils. The MRWPT
system has been implemented with two coupled resonators
consisting of lumped coils and high-Q variable capacitors.
Compared to the distributed resonators of the original experi-
ment in [1], the system proposed in [8] might be dynamically
tuned for different operating distances. According to the
authors, the natural frequencies need to be slightly displaced
from each other in order to avoid the power transfer bifurca-
tion phenomenon. Also in this case no systematic design pro-
cedure has been given in order to realize the entire wireless
channel.

MRWPT has been experimentally demonstrated in a
system with a large source coil and either one or two small
receivers in [9]; in this work resonance between source and
load coils has been achieved with lumped capacitors terminat-
ing the coils. Resonant frequency splitting has been observed
experimentally and described theoretically for the multiple
receiver system. The authors also stated that, in a multiple
receiver system, a means for tracking frequency shifts and
continuously retuning the lumped capacitances that terminate
each receiver coil so as to maximize efficiency should be a key
issue for the future work.

In MRWPT, we can distinguish four different cases,
depending whether the frequency is fixed or allowed to
change and whether the coupling is fixed or variable. In
[10–12], the authors have considered a case in which the
coupling and the frequency are both allowed to change. This
has been realized by using a Royer oscillator, which changes
its frequency depending on the load. A case in which the
coupling has been considered fixed has been described, e.g.
in [13] where the authors have achieved a 95% efficiency
220-W wireless power transfer over a 30-cm air gap. The fre-
quency selected by the authors has been 3.6 MHz. The high
efficiency has been reached by tuning of the network elements;
the load has been selected with an optimized value. However,
the lack of a rigorous, systematic, approach makes each design
a special case.

An excellent investigation of the underlying principles of
coupled magnetic resonance, as well as a simple circuit
model of the system has been provided in [14]. It has been
shown that frequency splitting, operating range, and imped-
ance matching play a critical role. In addition, in order to
accurately characterize the wireless power system, measure-
ment techniques that use a network analyzer for circuit par-
ameter extraction have been implemented.

In the works of [15, 16] also radiation aspects have been
considered; in [17] it has been shown that, when multiple
resonances are present, it is possible that radiation occurs at
one of the resonances. It is therefore of importance to take
into account also possible radiative effects.

A rather comprehensive review work on the theory and
techniques for MRWPT has been presented in the chapters
[18, 19] and the relative books also provide a good overview
of the approaches employed so far.

In [20], the computer aided design of wireless power trans-
fer systems has been investigated. Efficiency investigations

have been presented in [21, 22], together with appropriate
network representations [23] also making use of immittance
inverters. We will see in this work that, by using
immittance inverters, it is possible to design a network,
which models the entire wireless channel, in a rigorous way.

So far, MRWPT systems have been realized by using
coupled resonators. This approach may lead to good results
but does not explicitly show how to design an efficient
MRWPT system. We will start, instead, by considering just
the coupled inductances and then adding elements (either
capacitive or inductive) in order to realize a particular
network. In the next sections, we separate the MRPWT
problem into different parts and we introduce a novel way
to look at the wireless channel. It will be shown that it is pos-
sible to design in a systematic way, at a single frequency, a
network that allows to efficiently transmit power to a
remote load.

The proposed technique significantly extends the range of
applications. As an example, it can be applied in conjunction
with self-oscillating switched power converter, as the one pro-
posed in [24]; this converter employs two unique switched
impedance networks to couple the main circuit and the
power source and load. Another possible application is the
one suggested in [25], where EVs are charged with a moving
field wireless power transfer system.

I I . G E N E R A L D E S C R I P T I O N
O F A M R W P T S Y S T E M

A convenient general description of an MRWPT system con-
sists (see Fig. 1) of the following three parts:

i) a transmitting circuit which performs a power conversion
from PDC,in to PRF,1;

ii) the wireless channel, which can be seen as a passive
two-port network, that transfers the power PRF,1 impinging
in port 1 to the power PRF,2 outgoing from port 2;

iii) a receiving circuit which performs a power conversion
from PRF,2 to PDC,out.

The challenging part is the realization of the wireless channel:
this is a two-port network but with the circuitry associated to
port 1 physically separated from the circuitry associated
to port 2. Ideally, this two port network should represent at
port 1 the load attached at port 2, therefore it should behave
as an ideal transformer. Since port 1 and port 2 are not phys-
ically connected, we may call this component as a wireless
transformer. A possible network implementation of this com-
ponent is described in the next section.

I I I . T H E 1 : n W I R E L E S S
T R A N S F O R M E R

The MRWPT system performs essentially a DC–DC conver-
sion between a primary side and a secondary side which are

Fig. 1. Block representation of an MRWPT system; the wireless channel is
typically obtained by considering inductors coupled via their resonant
magnetic fields.
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physically at a distance in space. The energy coupling between
the primary (transmitting) side and secondary (receiving) side
is realized by the magnetic field. In this arrangement, we can
have currents on an inductor L1 on the primary side; a part of
the magnetic field generated by these currents can couple to
another inductor L2 present on the secondary side. The
network elements that represent the aforementioned coupling
mechanism are the mutually coupled inductances, which have
the following impedance representation:

Z = jvL1 jvM
jvM jvL2

[ ]
(1)

with the mutual inductance M being defined as M = k
������
L1 L2

√

and k being the coupling coefficient.
By using a suitable network representation of the coupled

inductances, we can realize, at a selected frequency, a wireless,
i.e. with the primary side separated from the secondary side,
1:n transformer.

Let us consider the representation of the mutually coupled
inductances illustrated in Fig. 2; we note the following equiv-
alences:

La = (1 − k2)L1,

Lb = k2 L1,

n = 1
k

���
L2

L1

√
.

(2)

From Fig. 2, we can see that it is possible to obtain a 1:n trans-
former at v ¼ v0 by compensating the inductances La and Lb.
As a first step, we can compensate Lb by adding a shunt cap-
acitance Cb on the secondary side, as shown in Fig. 3. If this
capacitance is reported on the primary side its value
becomes n2Cb. Hence, by looking at the parallel circuit com-
posed by Lb and Cbn2, we can impose that its admittance
vanishes at the frequency v0, thus providing an open circuit.
The latter condition is realized when:

Cb = 1
v2

0

1
n2 Lb

= 1
v2

0

1
L2

. (3)

In order to compensate the inductance La we may start by
adding a series inductance Lc on the secondary side (see
Fig. 3). When reported on the primary side this inductance
becomes Lc/n

2. It is thus possible to compensate the 2k2L1

part of La; by letting:

Lc = n2 k2 L1 = L2. (4)

Finally, we add the series capacitance Ca on the primary side

and we chose its value in order that the series of Ca and L1 pre-
sents zero impedance at v0. By so doing we recover:

Ca = 1
v2

0

1
L1

. (5)

By choosing the values of Ca, Cb, and Lc as indicated in equa-
tions (5), (3), and (4), respectively, we have realized at v ¼ v0

a 1:n wireless transformer.
In conclusion, the design procedure goes as follows: we

set appropriate values for L1, L2, and k (the problem
under examination with its specific constraints provides
these values). The designer selects an operating frequency
v0. A series capacitance Ca, with value indicated by equa-
tion (5), is added on the primary side. A parallel capaci-
tance Cb, with value indicated by equation (3), is added
on the secondary side. A further series inductance Lc,
with value given in (4), is placed on the secondary side.
The above procedure solves the problem of transferring
energy in wireless manner to a load physically separated
from the source.

Note that the values of Ca, Cb, and Lc do not depend on the
coupling k, which only affects the transformer ratio, according
to (2). Hence, in order to obtain the same transformer ratio n
for different values of the coupling k, it is sufficient to add,
either at port 1 or at port 2, a standard transformer of appro-
priate ratio. When changing the coupling k, we need only to
adjust the standard transformer ratio.

It is also interesting to observe that the series resonant
circuit composed by Ca and L1 and the parallel resonant
circuit composed by Cb and L2 are synchronous; however,
it is the presence of Lc, which allows to realize at v0 a 1:n wire-
less transformer.

The proposed approach provides a network that solves
the problem of transferring power to a physically remote
load. However, the above considered 1:n wireless

Fig. 2. Representation of coupled inductances in terms of a series inductance
La, a shunt inductance Lb and a 1:n ideal transformer.

Fig. 3. In this figure L1 and L2 are the inductances of the primary and
secondary side, respectively; M is their mutual inductance. A series
capacitance Ca has been added on the primary side; a parallel capacitance Cb

has been added on the secondary side and, finally, a series inductance Lc has
been added on the secondary side. The above network realizes at v ¼ v0 a
wireless 1:n transformer.

Fig. 4. Coupled inductances equivalent network: T representation. The central
part, with the series inductors 2M and the parallel inductor M, realizes an
immittance inverter.
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transformer is just a special case of a more general network
in which the coupled inductances are realized by means of
immittance inverters, as will be discussed in the next
section.

I V . R E P R E S E N T A T I O N S U S I N G
I M M I T T A N C E I N V E R T E R S

Another network representation for coupled inductances is
shown in Fig. 4; the central part, with the series inductors
2M and the parallel inductor M, realizes, at given frequency,
an immittance inverter with the following ABCD matrix:

A B
C D

[ ]
=

0 −jvM
−j
vM

0

⎡
⎣

⎤
⎦. (6)

We can denote the latter immittance inverter of value 2vM
with Tee(2M, M, 2M ). It is also possible that a Pi network
with values Pi(2M, M, 2M ) realizes an immittance inverter
of value vM as shown in Fig. 5. Immittance inverters can
also be realized with capacitive networks as shown in Fig. 6.

Let us select an operating frequency denoted by v0; we con-
sider, in the following, circuits composed by L and C that
satisfy the relation:

C = 1
v2

0

1
L
. (7)

The series LC at resonance realizes a short circuit, whereas the
parallel LC at resonance is an open circuit. It is therefore pos-
sible to derive the equivalences shown in Figs 7 and 8. By
adding capacitances to the coupled inductance network we
can recover several interesting cases.

A) Adding series–series capacitances
With reference to Fig. 4, we can add a series capacitance C1 on
the primary side and a capacitance C2 on the secondary side.
By selecting the value of C1 such that:

C1 = 1
v2

0

1
L1

, (8)

and the value of C2 such that:

C2 = 1
v2

0

1
L2

, (9)

we have that, at v ¼ v0, the series of L1, C1 and L2, C2 realizes
a short circuit. As a consequence, the entire network of Fig. 9
behaves as a single impedance inverter. We can now realize,
e.g. a 1:1 wireless transformer by adding another equal imped-
ance inverter either on the primary or on the secondary side.
While the values of C1 and C2 do not depend on the coupling
k, the value of the impedance inverter depends on k.

Fig. 5. Inductive immittance inverters: the Tee representation is shown on the
left side and provides an inverter value of 2v0L. On the right side is shown a Pi
network with values Pi(2L, L, 2L) which realizes an immittance inverter of
value v0L.

Fig. 6. Capacitive immittance inverters: the Tee representation is shown on
the left side and provides an inverter value of 1/v0C. On the right side is
shown a Pi network with values Pi(2C, C, 2C) which realizes an
immittance inverter of value 21/v0C.

Fig. 7. LC immittance inverters: the Tee(L, C, L) representation is shown on
the left side and provides an inverter value of v0L, when equation (7) is
satisfied. On the right side is shown a Pi network with values Pi(C, L, C),
which realizes an immittance inverter of value v0L.

Fig. 8. LC immittance inverters: the Tee(C, L, C) representation is shown on
the left side and provides an inverter value of 2v0L, when equation (7) is
satisfied. On the right side is shown a Pi network with values Pi(L, C, L)
which realizes an immittance inverter of value 2v0L.

Fig. 9. Coupled inductances equivalent network with added capacitances C1

and C2. At a selected frequency v ¼ v0, the series of L1, C1 and L2, C2

realize a short circuit and the entire network behaves as an impedance inverter.
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B) Adding series–parallel capacitances
Another possibility is to add a series capacitance C1 on port 1
and a parallel capacitance C2 on port 2 as shown in Fig. 10.
Further addition at port 2 of a series inductor creates the
Tee(L2, C2, L2) which represents another immittance inverter.
Thus, at a selected frequency v ¼ v0, the entire network
behaves as two cascaded immittance inverters. Since two cas-
caded immittance inverters realize a transformer, this network
is the same realized in Section III and therefore implements a
1:n transformer.

C) Adding parallel–parallel capacitances
By adding parallel capacitors C1, C2 and series inductors L1,
L2, we obtain the structure of Fig. 11. It is noted that this
network is the cascade of three immittance inverters.

V . S O M E E X A M P L E S O F A
C O M P L E T E W I R E L E S S C H A N N E L

Before proceeding, it is worthwhile to note that total power
transfer can occur also without realizing a 1:n transformer.
As an example, as shown in [21], we can consider three
impedance inverters and still realize total power transfer
atone selected frequency. Naturally, this type of solution
requires additional resonators. In addition, it is also appropri-
ate to stress that the present approach starts from ideal (loss-
less) components and a reference impedance of 50 V has been
used in the numerical simulations. In the following, for sake of
clarity, we will refer to the special case of a 1:1 transformer.

Fig. 10. A series capacitances C1 and a parallel capacitance C2 have been added
respectively on port 1 and port 2. Further addition at port 2 of a series inductor
results in the structure shown in the figure. Note that at port 2 the Tee(L2, C2,
L2) represents another impedance inverter. Thus, at a selected frequency v ¼

v0, the entire network behaves as two cascaded immittance inverters.

Fig. 11. A parallel capacitances C1 and a parallel capacitance C2 have been
added respectively on ports 1 and 2. Further addition at ports 1 and 2 of the
series inductors L1, L2, results in the structure shown in the figure. Note that
at port 1 the Tee(L1, C1, L1) represents another impedance inverter. Thus, at
a selected frequency v ¼ v0, the entire network behaves as three cascaded
immittance inverters.

Fig. 13. A 1:1 transformer, operating at the frequency of 13.56, has been designed by using an immittance inverter with the Tee(L, C, L) configuration. In the graph
are reported the responses in the lossless case and in the case of resonators with Q ¼ 300. The coupling coefficient is also shown in the legend. With reference to
Fig. 12, the component values are: L1 ¼ L2 ¼ 1 mH, C1 ¼ C2 ¼ 137.8 pF. For the figure on the left, we have M ¼ 0.3 mH, C3 ¼ 459 pF, whereas for the figure on the
right we have selected M ¼ 0.1 mH and C3 ¼ 1.378 nF.

Fig. 12. A 1:1 transformer realized with one wireless immittance inverter and
one lumped inverter. At a selected frequency v ¼ v0, the series of L1, C1 and
L2, C2 realize a short circuit and the entire network behaves as two immittance
inverters.

Fig. 14. A 1:1 transformer realized with two wireless immittance inverters. At
a selected frequency v ¼ v0, the series of L1, C1, L2, C2, and L3, C3 realize short
circuits and the entire network behaves as two immittance inverters. When M′

is adjusted to be equal to M, a 1:1 wireless transformer is realized.

rigorous network modeling of magnetic-resonant wireless power transfer 31

https://doi.org/10.1017/wpt.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/wpt.2014.4


A) Realization with just one wireless
immittance inverter
A network that realizes a 1:1 transformer is obtained by con-
sidering the series–series network discussed in Section
IV-A) and adding at one side one of the immittance inver-
ters shown in Figs 7 and 8. By doing so, we employ one
wireless immittance inverter and one lumped immittance
inverter as shown in Fig. 12. Note that, in order to recover
a 1:1 transformer, the lumped immittance inverter must
realize the same value of the wireless one. To this end, by
selecting, e.g. the Tee(L, C, L) topology we must use L ¼
M and

C3 = 1
v2

0M
. (10)

A wideband response for such a network when considering
coupling values of k ¼ 0.3, 0.1 is shown in Fig. 13. Note that
the capacitances C1, C2 are fixed; however, for different
values of coupling, i.e. for different M values, the three ele-
ments of the lumped immittance inverter should be
changed. In this figure, we have also compared the response
for the ideal case (no losses) with a realization with a quality
factor Q ¼ v0L/R ¼ 300. A slight degradation of the
response for k ¼ 0.1 is apparent.

B) Realization with two wireless immittance
inverters
Another useful configuration is the one that uses two wireless
immittance inverters as shown in Fig. 14. In this case, an add-
itional resonator with inductance L3 and capacitance C3 is
added. The elements L3 and C3 are physically on the secondary
side (e.g. the receiver); while the elements L1, C1, L2, and C2 are
on the primary side. Also on the primary side the two resona-
tors L1, L1 and L2, C2 are coupled via the mutual inductance
M′, which is considered variable. The coupling between L2

and L3 (i.e. between primary and secondary side), is denoted
by M. By setting M′ equal to M it is apparent that, at the
angular frequency of v0 we have just two equal immittance
inverters in cascade; therefore a 1:1 transformer is realized.

The value of this arrangement is that when the coupling M
is changed, it is possible to adjust M′ so as to achieve, at
least ideally, total power transmission. The results obtainable
with this configuration are illustrated in Fig. 15. In the latter
figure, we have also compared the response for the ideal case
(no losses) with a realization with a quality factor Q ¼ v0L/
R ¼ 300. Note that we use a pair of coupled inductances (L2

and L3) in order to realize the wireless power transfer, while
the other coupled inductances (L1 and L2) are spatially close
together and are used to compensate for different couplings.

V I . C O N C L U S I O N

The problem of MRWPT has been reconsidered from a novel
viewpoint. It has been shown that, ideally, the wireless channel
should realize a 1:n wireless transformer. By considering the
equivalent network of coupled inductances, it is noted that
we have a series inductor, an immittance inverter and
another series inductor. The series inductors can be compen-
sated by capacitances, so that at the desired frequency, they
behave like short circuits. Another immittance inverter, also
made by lumped elements, or by coupled inductances, is intro-
duced in order to achieve the behavior of a 1:n transformer.

The proposed approach allows us to design in a systematic
manner the wireless channel and avoids problems related to
frequency shift and bifurcation of solutions.
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