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Reduction to Dimension Two of the Local
Spectrum for an AH Algebra with the Ideal
Property

Chunlan Jiang

Abstract. A C*-algebra A has the ideal property if any ideal I of A is generated as a closed two-sided
ideal by the projections inside the ideal. Suppose that the limit C*-algebra A of inductive limit of di-
rect sums of matrix algebras over spaces with uniformly bounded dimension has the ideal property.
In this paper we will prove that A can be written as an inductive limit of certain very special subho-
mogeneous algebras, namely, direct sum of dimension-drop interval algebras and matrix algebras
over 2-dimensional spaces with torsion H? groups.

1 Introduction

An AH algebra is a nuclear C*-algebra of the form A = lim_, (A, ¢, ) with

y
An = @ Pn,iM[n,i] (C(Xn,i))Pn,i>

i=1
where X, ; are compact metric spaces, t,,, [#, i] are positive integers, M[,,;](C(Xy,i))
are algebras of [n, i] x [, i] matrices with entries in C(X,,,;), the algebra of complex-
valued functions on X, ;, and finally, P, ; € M, ;(C(X,,)) are projections (see
[Bla]). If we further assume that sup,, ; dim(X,,;) < +co and A has the ideal property,
i.e., each ideal I of A is generated by the projections inside the ideal, then it is proved
in [GJLP1, GJLP2] that A can be written as an inductive limit of

B, = @P,n,iM[n,i]’(C(Yn,i))P,n,i-

i=1

In this paper, we will further reduce the dimension of local spectra (that is, the
spectra of A, or B, above) to 2 (instead of 3). Namely, the above A can be written as
an inductive limit of a direct sum of matrix algebras over the {pt}, [0,1], !, Ty;.x (no
Tirx and %) and M (I.), where I is the dimension-drop interval algebra

I = { f € C([0,1], Mi(C)), (0) = ALy, f(1) = i, A, € C}.

In this paper, we will also call @j_; M;, (Ix,) a dimension-drop algebra.
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This result unifies the theorems of [DG,EGS] (for the rank zero case) and [Li4] (for
the simple case). Note that Li’s reduction theorem was not used in the classification of
simple AH algebra, and Li’s proof depends on the classification of simple AH algebra
(see [Li4, EGL1]). For our case, the reduction theorem is an important step toward
the classification (see [GJL]). The proof is more difficult than Li’s case. For example,
in the case of an AH algebra with the ideal property, one cannot remove the space S2
without introducing M; (I ) (for the simple case, the space S* is removed from the list
of spaces in [EGL1] without introducing dimension-drop algebras). Another point is
that, in the simple AH algebras, one can assume each partial map ¢,,7, is injective, but
in AH algebras with the ideal property, we cannot make such an assumption. For the
classification of real rank zero AH algebras, we refer the readers to [Elll, EGL,EG2,G3-
4,DG, D1, D2, Gl, G2]. For the classification simple AH algebra, we refer the readers
to [El12, ElI3, Lil, Li2, Li3, EGL1, EGL2, G5].

The paper is organized as follows. In Section 2, we will do some necessary prepa-
ration. In Section 3, we will prove our main theorem.

2 Preparation

We will adopt all the notation from [GJLP2, section 2]. For example, we refer the
reader to [GJLP2] for the concepts of G-6 multiplicative maps (see Definition 2.2
there), spectral variation SPV (¢) of a homomorphism ¢ (see 2.12 there) weak varia-
tion w(F) of a finite set F ¢ QMy(C(X))Q (see 2.16 there).

As in [GJLP2, 2.17], we will use e to denote any possible integer.

2.1 In this article, without lose of generality we will assume the AH algebras A are induc-
tive limit of

ty
A=lim(A, = ealM[n,i](C(Xn,i)), Gnum) >

where X, ; are the spaces of {pt}, [0,1], S*, Ti1 x, Trrrx> and S%. (Note that by the main
theorem of [GJLP2], all AH algebras with the ideal property and with no dimension
growth are corner subalgebras of the above form (see also [GJLP2, 2.7]).)

2.2 Recall that a projection P € My (C(X)) is called a trivial projection if it is unitarily

t 0) for k; = rank(P). If P is a trivial projection and rank(P) = ky,

equivalent to ( oo

then
PM(C(X))P = M, (C(X)).

2.3 Let X be a connected finite simplicial complex, A = My(C(X)). A unital * homo-
morphism ¢: A — M;(A) is called a (unital) simple embedding if it is homotopic to
the homomorphism id ®A, where A: A — M;_;(A) is defined by

A(f) = diag(f(x0), f(x0)s - -.» f(x0))

-1

for a fixed base point x, € X.
The following two lemmas are special cases of [EGS, Lemma 2.15] (see also [EGS,
2.12]).
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Lemma 2.1 (cf. [EGS,2.12 or case20f2.15])  Forany finiteset F ¢ A= M, (C(Ti1x))
and ¢ > 0, there is a unital simple embedding ¢: A — M;(A) (for I large enough) and
a C*-algebra B c A, which is a direct sum of dimension-drop algebras and a finite di-
mensional C*-algebra such that

dist(¢(f),B) <e, VfeF.

Lemma 2.2 (see [EGS, case 10f2.15]) For any finite set F ¢ M,,(C(S?)) and e > 0,
there is a unital simple embedding ¢: A — M;(A) (for I large enough) and a C*-algebra
B c A, which is a finite dimensional C* -algebra such that

dist(¢(f),B) <e, VfeF.
The following lemma is well known.

Lemma 2.3 (see [G5,4.40]) For any C*-algebra A and finite set F c A, € > 0, there
is a finite set G ¢ A and 1 > 0 such that if ¢: A — B is a homomorphism and y: A — B
is a completely positive linear map, satisfying

I¢(e) —v(Q] <n, VvgeG,
then y is the F-¢ multiplicative.

Lemma 2.4 Let A= M,(C(Typx)) or M,(C(S?)), and let a finite set F c A and
€ > 0, there is a commutative diagram

A— M)

with the following conditions:

(i) ¢ is a simple embedding;

(i) if A = M,(C(S%)), then B is a finite dimensional C*-algebra, and if A =
M, (C(Ti,x)), then B is a direct sum of dimension-drop C* -algebras and a finite
dimensional C*-algebra, and 1 is an inclusion;

(iii) [eoB(f)-d(f)ll <& VS €F, and B is F-¢ multiplicative.

Proof LetG and # be as Lemma 2.3 for F and €. Apply Lemma 2.1 or Lemma 2.2 to
A, FUG c Aand 1 min(e, 7). One can find a unital simple embedding ¢: A —~ M;(A),
and an sub-C*-algebra B ¢ M;(A) as required in condition (ii) such that

dist(¢(f),B) < 3 min(e, 77), forall f €F.
Choose a finite F ¢ B such that

dist(¢(f), F) < imin(e,7), forall feF.
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Since B is a nuclear C*-algebra, there are two completely positive linear maps
/\133—>MN((C) and AZIMN((C) — B

such that
A2 0A1(g) — gl < 3 min(e,n), forallge F.

Using Arveson’s extension theorem, one can extend A;:B — My(C) to a map
Bi: M;(A) - Mn(C). Then it is straightforward to prove that

B=Aofio¢p:A— B
is as desired. |

The following is a modification of [GJLP2, Theorem 3.8].

Proposition 2.5  Let lim,co(Ay = @ M1 (C(Xn,1))> n,m) be AH inductive
limit with the ideal property, with X, ; being {pt},[0,1],S", Trr.x, Tirrx, or S%. Let
B =@®;_, B!, where B' = M;,(C(Y;)), with Y; being {pt}, [0,1],S", or Ty1 1, (no Ty x
or $%) or B' = My, (I,) (a dimension-drop C*-algebra). Suppose that
G=®G)cG(=®G)cB(=B"),

is a finite set, €, is a positive number with w(G') < &1, if Y; = Tip, and L is any positive
integer. Let a: B — A, be any homomorphism. Denote

a(lz) =R(=®R') c A, (=D A").

Let F ¢ RA,R be any finite set and let € < & be any positive number. It follows that
there are A,,, and mutually orthogonal projections Qq, Q1, Q2 € Ay, with

Gum(R)=Qo+ Q1+ Qa
a unital map 6y € Map(RA,R, QoA Qo)1, two unital homomorphisms
0; e Hom(RA,R, Q1A,,Q;); and &eHom(RA,R, QA Qo)
such that:

@) |l dnm(f) = (8o (f) @ 0:(f) ® E(f)) lI< & forall f € F;

(ii) there is a unital homomorphism
a1:B—> (Qo + Q1)Am(Qo + Qu),
such that
|| a1(g) - (6o +0;)0 (x(g)H <3¢ Vge Gi, szi is of form Mo (Ti1 1),
laa(g) = (6o + 1) oa(g)| <&, VgeG', ifBisnotofthe form ,(Trpk);
(i) Oy is F-& multiplicative and 6, satisfies
67 ([e]) > L+ [65(R")].

(iv) & factors through a C*-algebra C, which is a direct sum of matrix algebras over
C[0,1], as

ERAR S C 5 QanQ.
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Proposition 2.6 Letlim, o (A, = D}, M, (C(Xn,i))s n,m) be an AH induc-
tive limit with the ideal property, with X,, ; being {pt}, [0,1], S%, Tir x> Trir.x> or S*. Let
B =@;_, B!, where B' = M;,(C(Y;)), with Y; being {pt}, [0,1], S, or Ty; x, (no Tyyrx
or S?) or B = My, (Iy,) (a dimension-drop C*-algebra). Suppose that
G(=®G')cG(=®G') cB(=®B),

is a finite set, €, is a positive number with w(G') < e, if Y; = Tipx, and L > 0 is any
positive integer. Let a: B — A, be any homomorphism. Let F c A, be any finite set and
€ < & be any positive number. It follows that there are A,, and mutually orthogonal
projections P, Q € Ay, with ¢y m(14,) = P+ Q, a unital map 6 € Map(A,,, PA,,P),,
and a unital homomorphism & e Hom(A,, QA,,Q); such that:

D) | dnm(f) = (0(f) @ &(f)) lI< & forall f e F;

(ii) there is a homomorphism ay: B — PA,, P such that
H ocf’j(g)—((?ooc)i’j(g)H <3¢ VgeG, if B' is of the form My (C(Ti1x)),
[ ocf’j(g)—(é)ooc)"’j(g)” <e VgeG', ifB'isnotofthe form M(C(Tix));

(ii)) w(O(F)) < € and 0 is F-e multiplicative;
(iv) & factors through a C*-algebra C, which is a direct sum of matrix algebras over
C[0,1] or C, as

§4, 5 QanQ.
The proof is similar to Proposition 2.5 and is omitted.

2.4 Let a:Z — Z[kZ be the group homomorphism defined by a(1) = [1], where the
right-hand side is the equivalent class [1] of 1 in Z/k;Z. Then it is well known from
homological algebra that for the group Z/kZ, « induces a surjective map

o Ext(Z/kZ, ) (= ZJkZ) — Ext(Z/kZ, ZJ k0 Z) (= Z)(k, k1) Z.),

where (k, k) is the greatest common factor of k and k;.

Recall, as in [DN], for two connected finite simplicial complexes X and Y, we
use kk(Y,X) to denote the group of equivalent classes of homomorphisms from
Co(X\{pt}) to Co(Y\{pt}) ® K(H). Please see [DN] for details.

Lemma 2.7 (i) Any unital homomorphism
¢: C(T1rk) — Me(C(Turk,))
is homotopy equivalent to unital homomorphism v factor as
121 V2
C(Tirk) — C(S") — Mo(C(Trriy))-

(ii) Any unital homomorphism ¢: C( Ty k) - PM.(C(S?))P is homotopy equiva-
lent to unital homomorphism y factor as

C(Tix) 2 C 2 PML(C(S?))P.
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Proof Part (ii) is well known (see [EG2, chapter 3]). To prove part (i), we note that
KK( Co(S"\{1}), Co(Trir,i,\{x1}) = kk(T111,4,>S") = Z/k1Z = Hom(Z, Z| ki Z.) ) ,

where x; € Tyyp g, is a base point. The map a:Z — Z/k;Z in 2.4 can be induced by a
homomorphism: y,: C(S') = Me(C(Tirrk))-
Let
[¢] € kk(Tyrk, Trpk) = Ext(Ko(Co(Trrik\{x0}))> Ki(Co(Trir,x)))

be the element induced by homomorphism ¢, where {x,} is the base point. By 2.4,
[¢]= B x [y2], for p e kk(S", Trr,k) = Ext( Ko(C(Tirk\{x0})), Ki(C(8"))),
on the other hand f3 can be realized by unital homomorphism
y1: C(Trrk) — C(S)
(see [EG2, section 3]). [ |

The following result is a modification of [GJLP2, Theorem 3.12].

Theorem 2.8 Let B, = ®_, Bl, each B' is either matrix algebras over {pt},[0,1], S!
or {Tirk }y2, or dimension-drop algebras. Let & > 0 and let

Gi(=®G) cGi(=®G)) c Bi(=D B))
be a finite set with w(G}) < & for Bi = My(C(Ty1.)).
Let A = My(C(X)), where X is one of {pt}, [0,1], S', { Tir.k } 220> { Turr i } 22y and

S?. Let ay: By > A be a homomorphism. Let F, c A be a finite set and let (< &) and 8
be any positive number. Then there exists a commutative diagram

A— > A

y

By ——— By,

where A" = Mg (A), and B, is as follows.

o If X = Tip1k, then B, is a direct sum of a finite dimensional C* -algebra and a dimen-
sion-drop algebra.
e If X = S?, then B, is a finite dimensional algebra
e If Xiis one of {pt},[0,1], S', and Ty x, then By = Mo (A).
Furthermore, the diagram satisfies the following conditions:

(i)  wis a homomorphism, a, is a unital injective homomorphism, and ¢ is a unital
simple embedding;

(i) p e Map(A, By); is F1-8 multiplicative;

(iii) if Bi is of the form Mo(C(Tyyx)), then

I v(g) - Boai(g) <10, VgeG;
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and if B is not of the form My(C(Ty1.)), then

ly(g) -Boau(g) <e, VgeGi;
(IV) IfX = TII,k) then (U(/))(Fl) U I//(G])) < E.

(Note that we only require that the weak variation of finite sets in Mo (C( Ty %) to be
small. In particular, we do not need to introduce the concept of weak variation for a
finite subset of a dimension-drop algebra.)

Proof For X = Ty, {pt},[0,1] or S*, one can choose B, = Mg (A) = A’ and let the
homomorphism ¢ = f: A — B, be a simple embedding such that

w(B(F)ua(Gr)))<e.

This can be done by choosing K large enough. Choose = foa;,and a, = id: B, — A’.

For the case X = Tyjy x, or S?, requirement (iv) is an empty requirement.

We will deal with each block of B; separately. For the block B! other than
M(C(Tirx), the construction can be done easily by using Lemma 2.4, since B! is
stably generated, which implies that any sufficiently multiplicative map from B! is
close to a homomorphism. So we assume that Bi = M(C(Tyx). Recall that we
already assumed A is of the form M,(C(Tyzx)) or Mo(C(S?). By Lemma 2.7, the
homomorphism a;: Bl — A is a homotopy to a’: Bl — A with a'(1p;) = a1(1p:) and
o factor as

Bl &g,
where C is a finite dimensional C*-algebra for the case X = S? or C = M,(C(S") for
the case X = Tyjr x (note that B = M (C(Ty;))- Since C is stably generated, there is
a finite set E; ¢ A and &; > 0 such that if a complete positive map 5: A — D (for any
C*-algebra D) is E;-6; multiplicative, then the map f o &,: C — D can be perturbed
to a homomorphism & C - D such that

1§(e) ~Bo&(9) <er, forallge &(GY).
Apply [G5, Theorem 1.6.9] to two homotopic homomorphism
apa’:Bi — A, and GjcBj,

which is approximately constant to within &, to obtain a finite set E; c A, §, > 0 and
positive integer L’ > 0 (in places of G, 6 and L in [G5, Theorem 1.6.9]). Apply Lemma
24totheset E=E, UE,UF, and d = %min(s, 3, 81, 82) to obtain the commutative
diagram

A—4444!ﬂ4f>ﬂ4h(A)

ﬁ,
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with 8 being E-8 multiplicative and

leop'(f) = ¢'(f) <8, forall feE.

Let L = L’ - rank(14) and let 8;: A — M (B’) be any unital homomorphism defined
by point evaluation. Then by [G5, Theorem 1.6.9], there is a unitary u € My .1(B) such
that

|u((B @ B1)oa'(f))u* = (B ®B)oar(f)]| <8e1r, VfeG.
By the choice of Ej, there is a homomorphism E C - My 41(B'), such that
[E0) - u((B ®PB) o &(f))u"| <1, forall f e &(GY).
Define By = My,1(B'), K = Ly(L +1), A" = Mg (A) = M1 (My,(A)),

y:B] — B, bY‘//:gofliB{iCiBz,
B:A— M (B') by p=p"® pi,
¢: A — My (M, (4)) by¢=¢"® ((t®id)opr)
(note that f3; is a homomorphism) to finish the proof. [ |

2.5 Recall that for A = @!_, My, (C(X;)), where X; are path connected simplicial com-
plexes, we use the notation r(A) to denote @;_, My, (C), which could be considered
to be the subalgebra consisting of all t-tuples of constant function from X; to My, (C)
(i=1,2,...,t). Fixed a base point x? € X; for each X;, one definesa map r: A — r(A)
by

r(fos fore s f0) = (fila), a(52)s s fila])) € 7(A).

We have the following corollary.

Corollary 2.9 LetB; =& B{, where B{ is either of the form My ;) (C(X;)), with X;
being one of {pt}, [0,1], S', { Tr1,k } 52, or B{ = My(j)(I1(j))- Let ay; By — A be a homo-
morphism, where A is a direct sum of matrix algebras over {pt}, [0,1], S',{Tirk } 32,
{Trrk}2, and S*. Let & > 0 and let

E(=@®E)cE(=@F) cBi(=®B)
be two finite subsets with the condition
w(E") < &, if B = My(C(Y;)) with Y; € {Tirx )32,
Let F c A be any finite set, €5 > 0, § > 0. Then there exists a commutative diagram

A 11

Aor(A)

o a®id

B — 2 B e r(A),
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where A’ = M (A), and B, is a direct sum of matrix algebras over spaces {pt}, [0,1],
SY Tk }2,> and dimension-drop algebras, with the following properties:

(i)  wis a homomorphism, «, is a injective homomorphism, and ¢ is a unital simple
embedding;

(ii) f € Map(A, By); is F;-6 multiplicative;

(iii) for g € E' with Bl = Mo(C(X;)), X; € {Turx }52,, we have

[(Bor)(g) - (y@(rom))(g) <10,

for g € E'(o E') where B! is not of the form My(C(Tyr)), we have

[(Bor)(g)-(y@(rem))(g)] <&

and for f € F, we have

[(ex@id) e (Bar)(f)-(¢@r)(f)] <es

(iv) for B of the form Mo(C( Ty x)),
w(mi(B(F) Vy(E))) <ea
where 7t; is the canonical projection from B, to B.
Remark  In the application of this corollary, we will denote the map $ @ r by 8 and
y @ (rom)byy.

3 Proof of the Main Theorem

In this section, we prove the following main theorem.

Theorem 3.1  Suppose lim(A, = @;%, M(,,1(C(Xn,i))> $u,m) is an AH inductive
limit with X,,,; being among the spaces {pt}, [0,1], S, { Tirk } 225> and { Trir i } oo, stich
that the limit algebra A has the ideal property. Then there is another inductive system,
B, = @B, Yu,m» with same limit algebra, where each B}, is either M, ;1 (C(Yy,:))
with Y, ; being one of {pt},[0,1], S, {Tir.x } 3>, (but without Tirp x and S*), or B}, is
the dimension-drop algebra M, i1 (I(n,i)-

Proof Lete > ¢, > e3> beasequence of positive numbers with )" ¢, < +00. We
need to construct the intertwining commutative diagram
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Fl FZ Fn Fn+1
N N N N
Ds(1),5(2) Ds(2).5(3) Ds(n),s(n+1)
A A2 Agn) Agnary —>
B B2 B
ay %3 ®y An+1
T %\ ? Var ? W"\H_\ T \
By B - B, Bun -
U U U U
E; E, E, E,
U U U U
E E; E, Eyn

satisfying the following conditions.

(@) (Ag(n)s Ps(n),s(m)) is a sub-inductive system of (A, $n,m)> (Bns Vn,m) is an
inductive system of direct sum of matrix algebras over the spaces {pt},[0,1], S*, Trr x
and dimension drop algebra M (Ij(n,s))-

(b) Choose {a,-,j}]?zl c Ay and {bi,j}}.; c B; to be countable dense subsets
of unit balls of A(;y and B;, respectively. F, are subsets of unit balls of A(,), and
E, c E, are both subsets of unit balls of B,, satistying

n+1
¢s(n),s(n+1)(Fn) Uapi1(Ens1) U ‘L_Jl ¢s(i),s(n+l)({ai13 Ai2seees ain+1}) C Fpi1,

I//n,nJrl(En) U ﬁn(Fn) c En+1 c En+1s

n+1
L:Jl Vinn({bi, bizs -, bins1}) € Enir-

(Here ¢, n: Ay - Ay, and vy, 2 B, = B, are understood as identity maps.)
(c) Pn are F,-2¢, multiplicative and «,, are homomorphism.
(d) Forall geE,,

lWn,ne1(g) — Bn o an(g)] < 14e,,

and for all f € F,,,

‘|¢s(n),s(n+1) (f) — ®p+1 0 ﬂn(f) H < lde,.

(e) Foranyblock B with spectrum Tj; s, we have w(E") < ¢,, where E! = ;(E,)
for 7;: B, — B!, the canonical projections.

The diagram will be constructed inductively. First, let B; = {0}, A1) = Ay, a1 = 0.
Let by; = 0 € By for j = 1,2,..., and let {alj};’zl be a countable dense subset of
the unit ball of A;(;). And let E,=E = {bn} = Biand F, = 69;‘:1 Fl, where F} =
mi({au}) c Ay
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As inductive assumption, assume that we already have the commutative diagram

F F, F,
N N N
Ay bs1).5(2) 5(2) bs(2).5(3) A

121 \ i \ \

U U U
E, E, E,
U U U
E, E, E,

and for each i = 1,2,..., n, we have dense subsets {a;;} 72, of the unit ball of A,

and {b; j};:l of the unit ball of B;, satisfying conditions (a)-(e) above. We have to
construct the next piece of the diagram

Ds(n),s(n+1)

F, c As(n) As(n+1) 5> Fp
®n & ®Xn+1
En c En c Bn Vinsl Bn+1 2 En+1 2 En+1

to satisfy conditions (a)-(e).
Among the conditions for induction assumption, we will only use the conditions
that «,, is a homomorphism and (e) above.

Step 1. We enlarge E,, to @; ;(E!) and enlarge E, to @®; m;(E,). Then we have
E.(= ®E!) c E,(= ® E,), and for each B!, with spectrum Tj; s, we have w(E!) < &,
from induction assumption (e). By Proposition 2.6 applied to a,: B, — Ag(»), E,c
E, c By, Fy ¢ Ay and €, > 0, there are Ay, (m; > s(n)), two orthogonal pro-
jections Py, P, € A, with gbs(,,))ml(lAs(n)) = Py + P, and P, trivial, a C*-algebra
C, that is, a direct sum of matrix algebras over C[0,1] or C, and a unital map
0 € Map(A;(n)> PoAm, Po)1, a unital homomorphism &; € Hom(A(,), C)1, a unital
homomorphism &, €e Hom(C, PiA,,, P1); such that
A1) [@enym ()~ 0(F) @ (&0 &) ()] < e forall f € Fy.
(1.2) 6 is F,-e multiplicative and F := 6(F,,) satisfies w(F) < &,.
1.3) |la(g) -0 oa,(g)| <3e, forall g € E,,.
Let all the blocks of C be parts of the C*-algebra B,,.;. That is,

B,;1 = C & (some other blocks).
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The map f,:As(n) = Bu+1, and the homomorphism v, 41 By — By are defined
by Bn = &: Ag(n) = C(c Buyr) and ¥y i1 = & 0 &y B, — C(c Byyy) for the blocks
of C(c By41). For this part, 8, is also a homomorphism.
Step 2. Let A = PyA,, Py, F = (F,). Since P, is a trivial projection,

Az @M, (C(Xm,i))-

Let r(A) := @ M;,(C) and : A — r(A) be as in 2.13. Applying Corollary 2.9 and its
remark to a: B, - A,E, c E, c B, and F c A, we obtain the commutative diagram

A" M(A)er(A)

o

B,

such that

(2.1) B is a direct sum of matrix algebras over {pt},[0,1],S", Ty x and dimension-
drop algebras;

(2.2) o is an injective homomorphism and f is F-¢, multiplicative;

(2.3) ¢:A— M (A) is a unital simple embedding and r: A — r(A) is as in 2.13;

(2.4) |Boa(g)—w(g)| <10, forall g € E, and [(¢ @ r)(f) — &’ o B(f)] < &, for
all fe F(:= 6(F,));

(2.5) w(mi(y(E,)) UB(F)) < ey41 (note that B(F) = B o O(F,)), for B, being of the
form M,(C(X)) with X € { Tk} 52,-

Let all the blocks B be also part of B,,,;, that is,
B,s1 = C ® B® (some other blocks).
The maps B,: Ag(n) = Bui1, Yn,n1: By = By are defined by
6 B
ﬁn = ﬁ o Q:As(n) - A - B(C Bn+1)a
Ynne1 = Y: By — B(C Bn+1)>

for the blocks of B(c B,.1). This part of 8, is F,-2¢, multiplicative, since 6 is F,-¢,
multiplicative, § is F-¢, multiplicative, and F = 6(F,).

Step 3. By [GJLP2, Lemma 3.15] applied to p @ r: A - M (A) @ r(A), thereisan A,
and there is a unital homomorphism

A: M (A) ® r(A) —> RAm,R,
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where R = ¢, m, (Po) (write R as Rie ®; AJ;,,) such that the diagram

bmy,my

A(= PyA,Pp) —" > RA,R

Mi(A)or(A)
satisfies the following condition:

(31) Ao (¢ @ r)is homotopy equivalent to ¢ := ¢y m,|a-

Step 4. Applying [G5, Theorem 1.6.9] to finite set F c A (with w(F) < ¢,,) and to two
homotopic homomorphisms ¢’ and A o (¢ ® r): A > RA,,, R (with RA,,, R in place
of C in [G5, Theorem 1.6.9]), we obtain a finite set F/ ¢ RA,,,R, § >0and L > 0 as
in Theorem 3.1.

Let G = ® m;(w(E,) U B(F)) = @ G'. Then by (2.5), we have w(G") < &4, if B’
is of the form M, (C(Tyz,x))- By Proposition 2.5 applied to RA,,;, R and

Aoa’:B—> RA,,R,

finite set G ¢ B, F' U (¢mym, |a (F)) € RA,,,R, min(e,, §) > 0 (in place of €) and
L > 0, there are Ag(,.1), mutually orthogonal projections Qo, Q1, Q2 € Ag(y4+1) With
Gmys(nse1)(R) = Qo ® Qi ® Qz, a C*-algebra D,a direct sum of matrix algebras over
C[0,1] or C, a unital map 6y € Map(RA,,,R, QoA(n+1)Qo), and four unital homo-

morphisms
91 € HOm(RAmzR, QlAs(rHl) Ql)l: 53 € Hom(RAng) D)l)
&4 € Hom(D, Q2 A;(n41)Q2)15 a” e Hom(B, (Qo + Q1) As(n+1)(Qo + Q)1

such that the following are true:

(41) [ @myys(na1) (f)=((B0+61)©E4083) (f) || < &ns forall f € $pmy m,[a(F) © RAm,R.
(4.2) |a"(g) - (6o +61)oroa’(g)| <3en+1 <34, VgeG.
(4.3) 6 is F'-min(e,, §) multiplicative and 6; satisfies that

6,7 (L)) > L-[65"(R")],
for any non zero projection g € R'A,, R'.

By [G5, Theorem 1.6.9], there is a unitary u € (Qo ® Q1)A;(n41)(Qo + Q1) such
that

”(90 + 91) o (/)’(f) —Aduo (90 + 91) olo ((p ® r)(f)H < 8€n,
forall f € F.
Combining with the second inequality of (2.4), we have

(4.4) |(Bp+61)o¢d'(f)—Aduoc(8g+61)oroa’of(f)| <9e,forall feF.

Step 5. Finally let all blocks of D be the rest of B,,;;. Namely, let
B,,1=Ce®BaD,
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where C is from Step 1, B is from Step 2, and D is from Step 4.

We already have the definition of 8,;: As(,) = Bui1and ¢y, n41: By — Byyy for those
blocks of C @ B c B,,4; (from Step 1 and Step 2). The definition of 8, and v, 4.1 for
blocks of D and the homomorphism a,,11: C ® B® D — A,(,,41) will be given below.

The part of B, A,y = D(C By41) is defined by

Bu=E0¢ 06: Ay BN RA,,R =, p.

(Recall that A = PyA,,, Py and ¢’ = ¢y, m,|a.) Since 6 is F,-¢, multiplicative, and ¢’
and &; are homomorphism, we know this part of 8, is F,,-¢, multiplicative.
The part of ¥, y41: By = D(C Byy1) is defined by

’

VYnn+l = £3 o (/5, o “:Bn —a_> A —(P—> RAmR —53—> D,

which is a homomorphism.
The homomorphism a;,41: C® B® D — A(,.1) is defined as follows.

Let ¢” = ¢m1,s(n+1) |P1Am1P1: PlAm1P1 - ¢m1,s(n+1) (Pl)As(n+1)¢m1,s(n+l) (Pl)’ where
P, is from Step 1. Define

& ¢
“H+I|C = (PH 0&:C— PA, P — ¢m1,s(n+1)(Pl)As(n+1)¢m1,s(n+1)(P1)>

where &, is from Step 1, and define

o Adu
A1l = Aduoa”: B — (Qo@®Q1)A;(ns1)(Qo+Q1) — (Qu@®Q1) A (ns1)(Qo+Q1)
where a’ is from Step 4, and define
ani1lp = €41 D = QA (n41) Q2.

Finally choose {a,,ﬂ,j}jzl c Ag(ns1) and {bnﬂ,j}]f’jl c B, to be countable dense
subsets of the unit balls of A1) and B, respectively, and choose

n+l
F,n+1 = ¢s(n),s(n+1)(Fn) U (Xn+1(En+1) U L_Jl ¢5(i),s(ﬂ+1)({ai13 Ai2s.ees ain+l})>

n+l
E,n+1 = ll/n,rH—l(En) u ﬁn(Fn) ) EJI I//i,n+1({bila bi2a e bin+1})>

En+1, = V/n,n-%—l(En) U ﬁn(Fn) c En+1"

Define F, ; = 7i(Fu1) and Fu1 = @, Fpop, Epyy = mi(E'pi1) and Enyy = @, Ep .
For those blocks B, , inside the algebra B define E,,; = m;(E,1). For those blocks
inside C and D, define E? |, = E ,,. And finally let E,,,;, = @; E', . Note all the blocks
with spectrum Tjp x are in B, and (2.5) tells us that for those blocks w(ELH) < Eptl-
Thus we obtain the commutative diagram

¢s(n),s(n+1)

F, c As(n) As(n+1) S Fpi
QKpn ﬁn Ant1
E-’n c En c Bn Vet Bn 2 En+1 2 E-’n+1-
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Step 6. Now we need to verify conditions (a)-(e) for the above diagram.

From the end of Step 5, we know that (e) holds; (a)-(b) hold from the construction
(see the construction of B, C, D in Steps 1, 2 and 4, and Ens1 € Eps1, Fpuy is the end of
Step 5); (c) follows from the end of Step 1, the end of Step 2 and the part of definition
of B, for D from Step 5.

So we only need to verify (d).

Combining (1.1) with (4.1), we have

[sn).snny () = [(¢" 0 &20 &) @ (B0 + 01) 0 ¢ 0 0 @ (E40 &5 09" 2 0)(N)I(S)]

<&y +eE, =28,

for allf € F,, (recall that ¢" = ¢m1,s(n+l)|P1Aml P> (,b, = ¢m1,mz|PoAm1Pu)‘
Combined with (4.2), (4.4), and the definitions of 8, and « .1, the above inequality
yields

I bscny,snsny (F) = (@nsr © Bust) ()| < 9en +3ey + 26, = 14e,,  Vf € F,.

Combining (1.3), the first inequality of (2.4), and the definition of 8, and v, ,.+1, we
have

[Wnni1(g) = (Brn o an)(g)] <10e, + 3¢, <14e,, V ge E,.
So we obtain (d). The theorem follows from [GJLP2, Proposition 4.1]. [ |

Note that if g € M; (I ), then gMy (Ix)q isomorphic to M;, (I ). Combining with
the main theorem of [GJLP2] (see [GJLP2, Theorem 4.2, and 2.7]) we have the follow-
ing theorem.

Theorem 3.2 Suppose that A = lim(A,, = @ Py,; M, ;1(C(Xp,i))Py,i) is an AH in-
ductive limit with dim(X,,;) < M for a fixed positive integer M such that limit algebra A
has the ideal property. Then A can be rewrite as inductive limit lim(B,, = @ B:, ¥, ),
where either B}, = Qu,iM[y,i7/(C(Yn,i))Qu,i with Y, ; being one of the spaces {pt},
[0,1], 8% {Tik} 725, 0r By, = My i (I, ) @ dimension-drop algebra.

References

[Bla]  B. Blackadar, Matricial and ultra-matricial topology. In: Operator algebras, mathematical
physics, and low-dimensional topology (Istanbul, 1991), Res. Notes Math., 54, A K Peter,
Wellesley, MA, 1993, pp. 11-38

[D1] M. Dadarlat, Approximately unitarily equivalent, morphisms and inductive limit C* -algebras.
K-theory 9(1995), 117-137.  http://dx.doi.org/10.1007/BF00961456

[D2] __, Reduction to dimension three of local spectra of Real rank zero C*-algebras. ]. Reine
Angew. Math. 460(1995), 189-212.  http:/dx.doi.org/10.1515/crll.1995.460.189

[DG] M. Dadarlat and G. Gong, A classification result for approximately homogeneous C*-algebras
of real rank zero. Geom. Funct. Anal. 7(1997), no. 4, 646-711.
http://dx.doi.org/10.1007/s000390050023

[DN] M. Dadarlat and A. Némethi, Sharp theory and (connective) K-theory. ]J. Operator Theory
23(1990), no. 2, 207-291.

[Elll]  G. A. Elliott, On the classification of C*-algebras of real rank zero. J. Reine Angew. Math.
443(1993),179-219.  http://dx.doi.org/10.1515/crll.1993.443.179

[ElI2] , A classification of certain simple C* -algebras. In: Quantum and non-commutative
analysis (Kyoto, 1992), Math. Phys. Stud., 16, Kluwer, Dordrecht, 1993, pp. 373-385.
[ElI3] , A classification of certain simple C* -algebras. II. ]. Ramanujan Math. Soc. 12(1997),

no. 1, 97-134.

https://doi.org/10.4153/CMB-2016-100-3 Published online by Cambridge University Press


http://dx.doi.org/10.1007/BF00961456
http://dx.doi.org/10.1515/crll.1995.460.189
http://dx.doi.org/10.1007/s000390050023
http://dx.doi.org/10.1515/crll.1993.443.179
https://doi.org/10.4153/CMB-2016-100-3

806 C. Jiang

[EGI] G. A. Elliott and G. Gong, On the inductive limits of matrix algebras over two-tori. Amer. J.
Math 118(1996), no. 2, 263-290.

, On the classification of C*-algebras of real rank zero. II. Ann. of Math 144(1996),
no. 3, 497-610.  http://dx.doi.org/10.2307/2118565

[EGL1] G. A. Elliott, G. Gong, and L. Li, On the classification of simple inductive limit C* -algebras. II.
The isomorphism theorem. Invent. Math. 168(2007), no. 2, 249-320.
http://dx.doi.org/10.1007/500222-006-0033-y

, Injectivity of the connecting maps in AH inductive limit systems. C. R. Math. Acad.
Sci. Soc. R. Can. 26(2004), no. 1, 4-10.

[EGS] G. A. Elliott, G. Gong, and H. Su, On the classification of C* -algebras of real rank zero. IV.
Reduction to local spectrum of dimension two. In: Operator algebras and their applications, II
(Waterloo, ON, 1994/1995), Fields Inst. Commun., 20, American Mathematical Society,
Providence, RI, 1998, pp. 73-95.

[G1] G. Gong, Approximation by dimension drop C*-algebras and classification. C. R. Math. Rep.
Acad. Sci Can. 16(1994), no. 1, 40-44.

, Classification of C*-algebras of real rank zero and unsuspended E-equivalence types. J.
Funct. Anal. 152(1998), 281-329.  http://dx.doi.org/10.1006/jfan.1997.3165,

[G3-4] G. Gong, On inductive limit of matrix algebras over higher dimension spaces, Part I, II, Math
Scand. 80(1997) 45-60, 61-100

, On the classification of simple inductive limit C* -algebras. I. The reduction theorem.
Doc. Math. 7(2002), 255-46L.

[GJIL]  G. Gong, C. Jiang, and L. Li, A classification of inductive limit C*-algebras with ideal property.
arxiv:1607.07581

[GJLP1] G. Gong, C. Jiang, L. Li, and C. Pasnicu, AT structure of AH algebras with the ideal property
and torsion free K-theory. J. Funct. Anal. 58(2010), no. 6, 2119-2143.
http://dx.doi.org/10.1016/}.jfa.2009.11.016

[GJLP2] , A Reduction theorem for AH algebras with ideal property. arxiv:1607.07575

[Ji-Jiang] K.Jiand C. Jiang, A complete classification of Al algebra with the ideal property. Canad. J.
Math. 63(2011), no. 2, 381-412.  http://dx.doi.org/10.4153/CJM-2011-005-9

[Jiang] C.Jiang, A classification of non simple C*-algebras of tracial rank one: inductive limit of finite
direct sums of simple TAI C* -algebras. J. Topol. Anal. 3(2011), no. 3, 385-404.
http://dx.doi.org/10.1142/51793525311000593

[Li1] L. Li, On the classification of simple C* -algebras: inductive limit of matrix algebras trees. Mem.
Amer. Math. Soc. 127(1997), no. 605.  http://dx.doi.org/10.1090/memo/0605

, Simple inductive limit C* -algebras: spectra and approximation by interval algebras. J.
Reine Angew Math 507(1999), 57-79.  http://dx.doi.org/10.1515/crll.1999.019

[Li3] _—, Classification of simple C* -algebras: inductive limit of matrix algebras over
one-dimensional spaces. ]. Funct. Anal. 192(2002), no. 1, 1-51.
http://dx.doi.org/10.1006/jfan.2002.3895

, Reduction to dimension two of local spectrum for simple AH algebras. ]. Ramanujan
Math. Soc. 21(2006), no. 4, 365-390.

[Pasnicul] C. Pasnicu, On inductive limit of certain C*-algebras of the form C(x) ® F. Trans. Amer.
Math. Soc. 310(1988), no. 2, 703-714.  http:/dx.doi.org/10.2307/2000987

[Pasnicu2] , hape equivalence, nonstable K-theory and AH algebras. Pacific J. Math 192(2000),
no. 1,159-182.  http://dx.doi.org/10.2140/pjm.2000.192.159

[EG2]

[EGL2]

[G2]

[G5]

[Li2]

[Li4]

Department of Mathematics, Hebei Normal University, Shijiazhuang, China
e-mail: cljiang@hebtu.edu.cn

https://doi.org/10.4153/CMB-2016-100-3 Published online by Cambridge University Press


http://dx.doi.org/10.2307/2118565
http://dx.doi.org/10.1007/s00222-006-0033-y
http://dx.doi.org/10.1006/jfan.1997.3165
http://arxiv.org/abs/1607.07581
http://dx.doi.org/10.1016/j.jfa.2009.11.016
http://arxiv.org/abs/1607.07575
http://dx.doi.org/10.4153/CJM-2011-005-9
http://dx.doi.org/10.1142/S1793525311000593
http://dx.doi.org/10.1090/memo/0605
http://dx.doi.org/10.1515/crll.1999.019
http://dx.doi.org/10.1006/jfan.2002.3895
http://dx.doi.org/10.2307/2000987
http://dx.doi.org/10.2140/pjm.2000.192.159
mailto:cljiang@hebtu.edu.cn
https://doi.org/10.4153/CMB-2016-100-3

