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Abstract

We study the endomorphism ring of a quasi-injective right R-module @ such that R satisfies
certain finiteness conditions relative to Q. And we are concerned with a module sHomg (M, Q),
where S is the endomorphism ring of Qg
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1. Introduction

Endomorphism rings of £ (respectively A)-(quasi-)injective modules over an as-
sociative ring with identity have been studied mainly by Faith and Nistisescu
(refer to [4], [10], [2], and so on). An injective right R-module Q is said to be &
(respectively A)-injective if the lattice of all Q-closed right ideals of R, that is,
Co(R) = {Ir C Rg|R/I is Q-torsionless} is noetherian (respectively artinian).
Faith has shown in [4] that the endomorphism ring of a finitely generated ¥
(respectively A)-injective right R-module is a right perfect (respectively a left
artinian) ring. Moreover, Nistisescu has shown in [10] that (1) the endomor-
phism ring End(Qr) of a X (respectively A)-injective right R-module @ which
has a finitely generated R-submodule @’ such that Homg(Q/Q', @) = (0) (in
particular, of a finitely generated £ (respectively A)-injective right R-module

© 1988 Australian Mathematical Society 0263-6115/88 $A2.00 + 0.00

350

https://doi.org/10.1017/51446788700032146 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700032146

2] Quasi-injective modules 351

@), is a semi-primary (respectively a left artinian) ring, and (2) if Q is a noethe-
rian or artinian, A-injective right R-module, then End(Qg), the endomorphism
ring of Qp, is a left artinian ring and Biend(Qr), the biendomorphism ring of
Q@r, is a right artinian ring.

In the present paper we shall generalize those results to the case where Qg is
quasi-injective. For this purpose we shall introduce the concepts of @-noetherian,
Q-artinian and @-finitely generated modules with respect to any right R-module
Q. And we shall show that when @ is a quasi-injective right R-module with
S = End(Qr) and M is a Q-finitely generated (in particular, finitely generated)
right R-module such that @ is M-injective, then (1) if Rg is @-noetherian,
sHompg(M, Q) is coperfect (Theorem 4.1), (2) if Rg is Q-artinian, sHompg (M, Q)
is noetherian (Theorem 4.4), and (3) if Rg is both @-noetherian and @Q-artinian,
sHompg (M, Q) has finite length (Theorem 4.6). As these applications, we shall
show that when Q is a quasi-injective, Q-finitely generated (in particular, finitely
generated) right R-module with § = End(Qg), then (1) if Rg is @Q-noetherian,
then S is a semi-primary ring (Theorem 4.2), (2) if Rg is Q-artinian, then S is
a left noetherian ring (Corollary 4.5), and (3) if Rg is both @-noetherian and
Q-artinian, then S is a left artinian ring (Corollary 4.8). In addition, we shall
show that if @ is a noetherian or artinian, quasi-injective right R-module such
that Rp is Q-artinian, then End(Qg) is a left artinian ring and Biend(Qg) is
a right artinian ring (Theorems 4.12 and 4.13). In the sequel, in Section 5 we
shall be concerned with endomorphism rings of (quasi-)projective, quasi-injective
modules satisfying some finiteness conditions.

2. Preliminaries

Let R be an associative ring with identity and Mod-R the category of all
unital right R-modules. For M,Q € Mod-R,M is said to be Q-torsion if
Hompg(M, Q) = (0), and said to be Q-torsionless if M is embeddable in a direct
product of copies of Q. An R-submodule L of M is said to be a Q-closed sub-
module of M if M/L is Q-torsionless. The set of all Q-closed submodules of M
is denoted by Cq(M) throughout this paper. It is well known that L € Cq(M)
if and only if L = Annp{Annps-(L)), where M* = Hompg(M,Q). We set
7Q(M) = Annpy (M*) = {z € M|f(z) =0 for all f € M* = Homg(M,Q)} for
M,Q € Mod-R. Clearly, 7q(M) is the smallest Q-closed submodule of M. By
setting LAN = LNN and (LVN)/(L+N) = 1q(M/(L+N)) for L, N € Co(M),
we can give a lattice structure to Cqo(M). We set ¥(Q) = {M € Mod-R|Q is
M-injective} for any @ € Mod-R. If Q € ¥(Q), Q is said to be quasi-injective,
and if ¥(Q) = Mod-R, Q is injective. The following result is well known.
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LEMMA 2.1. ¥(Q) 13 closed under taking submodules, homomorphic tmages
and direct sums.

If CQ(R) = {Ir € Rgr|I = Anng(X) for some subset X of Q} satisfies the
ACC (respectively DCC), then Qg is said to be a T (respectively A)-module for
any Q € Mod-R. If an (a quasi-)injective right R-module Q is a ¥ (respectively
A)-module, Q is said to be X (respectively A)-(quasi-)injective. For M € Mod-R,
let End(MEg) denote the endomorphism ring of Mg and Biend(Mg) the biendo-
morphism ring of Mg, that is, Biend(Mgr) = End(sM), where S = End(Mp).
Any homomorphism will be written on the side opposite to the scalars. For
M € Mod-R, M™ denotes the direct sum of n-copies of Mr. The ACC (respec-
tively DCC) denotes the ascending (respectively descending) chain condition.

3. Q-noetherian modules and Q-artinian modules

Let E be an injective right R-module and ¥ = {Ig C Rg|Homg(R/I,E) =
(0)}. Then ¥ is a Gabriel topology on R associated with a hereditary torsion
theory defined by E. In [11], [8] and [1], Nistisescu-Nita-Albu have defined
and studied F-noetherian and F-artinian modules and rings. In this section we
shall define and study @Q-noetherian and @-artinian modules in case Qg is not
necessarily an injective module.

DEFINITIONS. Let M,Q € Mod-R.
(1) M is said to be Q-noetherian (respectively Q-artinian) if, for each ascend-
ing (respectively descending) chain

My C My CMsC - (respectively My 2 My D M 2 --+)

of R-submodules of M, there exists an integer k > 1 such that M;,, /M, (respec-
tively M; /M) is Q-torsion for all ¢ > k. A ring R is said to be Q-noetherian
(respectively Q-artinian) if Rg is Q-noetherian (respectively Q-artinian).

(2) If A is a non-empty set of R-submodules of M, N € A is said to be a
Q-mazimal (respectively Q-minimal) element in A if, for each N’ € 4 such that
N C N’ (respectively N’ C N), N'/N (respectively N/N') is Q-torsion.

(3) M is said to be Q-finitely generated if there exists a finitely generated
R-submodule M’ of M such that M/M’ is Q-torsion.

If @ is a cogenerator in Mod-R, each Q-noetherian (respectively Q-artinian)
module is exactly a noetherian (respectively artinian) module. When @ is an
injective right R-module cogenerating a hereditary torsion theory associated with
a Gabriel topology ¥, these definitions are identified with those of #-noetherian,
F-artinian, ¥-maximal, 7-minimal and #-finitely generated modules in the sense
of Nistisescu-Nita-Albu.
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LEMMA 3.1. Let M € ¥(Q). If M is Q-torison, then M is both Q-noether-
tan and Q-artinian.

PROOF. Let M; C M3 C M3 C --- be any ascending chain of R-submodules
of M. Since M is Q-torsion, M/M; is Q-torsion, too, for all k > 1. Since
M/M; € ¥(Q) by Lemma 2.1, every R-submodule of M/M;, in particular
M +1/My is Q-torsion by [6, Lemma 2.1]. Hence- M is Q-noetherian. Simi-
larly, M is Q-artinian.

LEMMA 3.2. Let us consider the following conditions.

(1) M i3 Q-noetherian.

(2) Each non-empty set of R-submodules of M has a Q-mazimal element.

(3) Cq(M) is a noetherian lattice.

(4) Each R-submodule of M is Q-finitely generated. Then we have the impli-
cations, (1) = (2) and (2) = (3). In addition, if M € ¥(Q), all four conditions
are equivalent.

PROOF. The implications, (1) = (2) and (2) = (3) can be proved in the
same manner as in the proof of [2, Proposition 6.1]. Next, assume that Q is
M-injective.

(3) = (4). Suppose that M has a submodule N which is not Q-finitely
generated. Choose z; € N with z; # 0. Then N/z; R is not Q-torsion, and
so in particular N/z;R # (0). Hence there exists z; € N such that ;R G
z1R + z2R and (zyR + z2R)/xz1 R is not Q-torsion. For, since N/z1 R € ¥(Q)
by Lemma 2.1, 7q(N/z1R) is Q-torsion by [6, (2) of Lemma 2.1], and hence
7Q(N/z1R) G N/z,R. Hence for each zo + z;R & 7g(N/z,R), there exists
f € Homg(N/z, R, Q) such that f(z2 + z1R) # 0. So the restriction of f onto
(z1R+ z2R)/z1 R is not a zero map. Hence (z1 R + z2R)/z; R is not Q-torsion.
And then, N/(z,R + z2 R) is not Q-torsion. Continuing the same argument, we
are able to find a strictly ascending chain of R-submodules of M,

T RGz1R+ 2R Gz R+22R+23RG -+

such that Niy;/Ny is not Q-torsion for all £ > 1, where Ny = ;R + z2R +
-+ zxR. Let us put N//N; = 17qg(M/N;) for each integer . Then we get
an ascending chain of elements of Co(M),Nj € N3 C N3 C ---. Suppose
N} = N/, for some i. Then Ny4;/N; C N{,,/N; = N]/N;. By using Lemma
2.1 and (6, Lemma 2.1}, since N//N; is Q-torsion, so is also N;4;/N;. This is
a contradiction. Consequently, we have N/ g Ni,, for all + > 1, and which
contradicts the assumption (3).

(4) = (1). Let M € M; C M3 C --- be an ascending chain of R-
submodules of M. Since N = [J{2, M; is Q-finitely generated, then there exist
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Z1,%2,...,Zn € N such that N/(z1R + --- + 2, R) is Q-torsion. On the other
hand, there exists an integer k such that z;R+--- + z,R C My, so N/Mj; is
Q-torsion for all 5 > 0. Since N/My; € ¥(Q) by Lemma 2.1, My ;1 /My
is Q-torsion according to [6, (1) of Lemma 2.1]. Hence M is @Q-noetherian.

LEMMA 3.3. Let us constder the following conditions.

(1) M is Q-artinian.

(2) Each non-empty set of R-submodules of M has a Q-minimal element.

(3) Co(M) is an artinian lattice.

Then the tmplications (1) = (2) and (2) = (3) hold. In addition, if M €
¥(Q), all three conditions are equivalent.

PROOF. The implications, (1) = (2) and (2) => (3) can be proved in the
same manner as in the proof of [2, Proposition 6.2]. Next, assume that Q is
M-injective.

(3) = (1). Let Ly 2 Ly 2 L3 D --- be a descending chain of R-submodules
of M. Put L}/L; = 1qg(M/L;) for each integer . Then we have the descending
chain of elements of Cqo(M),Ly 2 Ly D Ly D ---. By the assumption (3),
there exists an integer k such that Ly = Ly, = L}, = ---. For each ¢ >
k, L,'/L,'+1 g L;/LH-I = L2+1/L,'+1 = TQ(M/LH,l). Since M/L,'+1 S \I/(Q) by
Lemma 2.1, 7g(M/L;+1) is Q-torsion, and hence so is also L;/L;; for all ¢ > k,
by using [6, Lemma 2.1].

PROPOSITION 3.4. Let M,Q € Mod-R, and let
0)—» M L M2E M - (0)

be an ezact sequence of right R-modules. Then, if M 1s Q-noetherian (resp. Q-
artinian), so are also M' and M". If M € ¥(Q), and if both M’ and M" are
Q-noetherian (resp. Q-artinian), so is also M.

PROOF. (I) @-noetherian case. The first part of the statement can be proved
by the standard discussion. Next, suppose that M € ¥(Q) and both M’ and
M" are Q-noetherian. Let L be an R-submodule of M. (L) has a finitely
generated R-submodule N = 7", z;R such that ¢(L)/N is Q-torsion. Choose
z; € L such that p(z;) = 2; fort = 1,2,...,n. Put K = }_[_, z;R. On the other
hand, LN (M’) has a finitely generated R-submodule H = E;’;l y; R such that
(LNy(M')/H is Q-torsion. Then, since LN p~}(N) = (LNy(M')) + K, we
have the exact sequence as follows:

0) = (LNH(M") + K)/(H + K) — L/(H + K) — o(L)/N — (0).
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Since L/(H + K) € ¥(Q) by Lemma 2.1, we have the exact sequence,

(0) — Hompg(p(L)/N,Q) — Homp(L/(H + K), Q)
— Hompg(((L N$(M")) + K)/(H + K),Q) — (0).

Since ((LNy(M")) + K)/(H + K) is a homomorphic image of (L Nny¥(M"))/H,
(LNny(M")+ K)/(H + K) is Q-torsion, too. Hence

Homg(p(L)/N,Q) = Homg(((L N$(M")) + K)/(H + K), Q) = (0);

so Homg(L/(H + K),Q) = (0). Therefore L is Q-finitely generated. Hence M
is @-noetherian.

(II) Q-artinian case. The first part can be proved by the standard discussion.
Next, suppose that M € ¥(Q) and both M’ and M” are Q-artinian. let L; 2
Ly O L3 D --- be a descending chain of R-submodules of M. Then for the
descending chain, L; Nyp(M') D LoNy(M') D LgNy(M') D - -, there exists an
integer k such that (L; Ny (M'))/(Li+1NY(M')) is Q-torsion for all ¢ > k. And,
for the descending chain ©(L1) D ¢(L2) D w(L3) D ---, there exists an integer
k' such that ©(L;)/w(Lit1) is Q-torsion for all ¢ > k'. Let n = max{k,k'}.

Then for all ¢ > n, let us consider the exact sequence as follows:
(0) = ((Li N (M) + Lit1)/Lis1 = LifLiv1 — o(Li)/0(Lit1) — (0).

Then we have the exact sequence,

(0) —» Homp(p(Li)/e(Li+1),Q) — Hompg(Li/Li11,Q)

— Homp(((L; NY(M')) + Lit+1)/Li+1,Q) — (0),
because L;/L;y; € ¥(Q). Since
(LN (M) + Liy1)/Liv1 = (Li N (M) /((L: N(M')) N Liys)
= (L Np(M"))/(Li+1 N (M),

Hompg(p(Li)/¢(Li+1),Q) = Homg(((L; N ¥(M')) + Li+1)/Li+1,Q) = (0).
Hence Hompg(L;/Li+1,Q) = (0), that is, L;/L;4+; is @Q-torsion for all 7 > n.
Therefore M is Q-artinian.

COROLLARY 3.5. Let M € ¥(Q). If R i3 a Q-noetherian (resp. Q-artinian)
ring, and if M is a Q-finitely generated right R-module, then M 13 Q-noetherian
(resp. Q-artinian).

PROOF. Since R is Q-noetherian (resp. Q-artinian), every cyclic right R-
module is @-noetherian (resp. @-artinian) by Proposition 3.4. By the assump-
tion there exists a finitely generated R-submodule M’ of M such that M/M’ is
Q-torsion. Put M’ = Y7 z;R. Then z;R is Q-noetherian (resp. Q-artinian).
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Since @ is M-injective, @Ll z; R € ¥(Q) for all integer k such that 1 < k < n,
by Lemma 2.1. Let us consider the exact sequence,

O0—-z1R—>z21R®22R > 22R — (0)

Since z;R and z2R both are Q-noetherian (resp. Q@Q-artinian), z;R @® z:R is
Q-noetherian (resp. Q-artinian) by Proposition 3.4. By the similar discussion,
if 2R+ -+ + zx—1 R is Q-noetherian (resp. @Q-artinian), the exact sequence
0)—>ziR® - - ®zk-1R> 21RO - - D1 RD 2R — 2R — (0)
implies that z) R ® - - - @ zx R is Q-noetherian (resp. Q-artinian) by Proposition
3.4. Thus, we can conclude that @:;1 z; R for each k, in particular, @;_, z:R
is Q-noetherian (resp. Q-artinian). Next, since the map ¥:@;_, z:.R — M’
defined by ¥(z171,Z272,...,ZnTn) = Y i, Tifi, is an R-epimorphism, M’ is Q-
noetherian (resp. Q-artinian) by Proposition 3.4. On the other hand, M/M’ is
@-noetherian (resp. Q-artinian) by Lemma 3.1. Hence the exact sequence

0> M - M- M/M — (0)
implies that M is @Q-noetherian (resp. Q-artinian) by Proposition 3.4, as desired.

4. Quasi-injective module Q such that R is Q-noetherian (Q-artinian)

Let M € Mod-R. If Cp(R) = {Ir C Rg|I = Anng(X) for some subset X of
M} is noetherian (respectively artinian), then Mp, is said to be a T (respectively
A)-module. If an (a quasi-)injective right R-module @ is a X (respectively A)-
module, then Qg is said to be a ¥ (respectively A)-(quasi-)injective module.
According to Lemmas 3.2 and 3.3, an injective right R-module @ such that Rg
is @-noetherian (respectively Q-artinian) is exactly a ¥ (respectively A)-injective
module. And, a quasi-injective right R-module @) such that R is Q-noetherian
(respectively Q-artinian) is T (respectively A)-quasi-injective. However, a T
(respectively A)-quasi-injective right R-module @ does not necessarily satisfy
the condition for R to be @-noetherian (respectively @Q-artinian). In this section
we are concerned with a quasi-injective right R-module @ such that R is Q-
noetherian or Q)-artinian.

THEOREM 4.1. Let Q be a quasi-injective right R-module such that R 13
Q-noetherian and S = End(Qr). If Mg is Q-finitely generated (in particular,
finitely generated) and M € W(Q), then sHompg(M, Q) ts coperfect.

PROOF. Since M is a Q-finitely generated right module over a Q-noetherian
ring R, M is Q-noetherian by Corollary 3.5. Hence Cq(M) is a noetherian
lattice by Lemma 3.2. Therefore sHomg(M, Q) is coperfect by [6, Theorem 4.1]
or [2, Corollary 4.3].
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THEOREM 4.2. Let Q be a quasi-injective, Q-finitely generated (in par-
ticular, finitely generated) right R-module such that R i3 Q-noetherian. Then
S = End(Qgr) i3 a semi-primary ring.

PROOF. In this case Co(Q) is a noetherian lattice. Hence S is a semi-primary
ring by [2, Corollary 4.5].

COROLLARY 4.3. If Q is a quasi-injective, Q-finitely generated (in par-
ticular, finitely generated) right module over a right noetherian ring R, then
S = End(Qr) 3 a semi-primary ring.

THEOREM 4.4. Let Q be a quasi-injective right R-module such that R is Q-
artinian and S = End(QRr). If M i3 a Q-finitely generated (in particular, finitely
generated) right R-module and M € ¥(Q), then sHompg(M, Q) s noetherian.

PROOF. Since Mg is a Q-finitely generated module over a Q-artinian ring
R, Mp, is Q-artinian by Corollary 3.5. Hence Co(M) is an artinian lattice by
Lemma 3.3. According to [6, Theorem 4.3] or [2, Corollary 4.3}, sHomg(M, Q)
is noetherian if and only if Cg(M) is artinian, as desired.

COROLLARY 4.5. Let QQ be a quasi-injective, Q-finitely generated (in par-
ticular, finitely generated) right R-module such that R is Q-artinian. Then
S = End(Qgr) s a left noetherian ring.

THEOREM 4.6. Let QQ be a quasi-injective right R-module such that R i3
both Q-noetherian and Q-artintan and S = End(Qgr). If M is a Q-finitely
generated (in particular, finitely generated) right R-module and M € ¥(Q), then
sHompg(M, Q) has finite length.

PROOF. By Theorems 4.1 and 4.4, sHompg (M, Q) is coperfect and noetherian.
Therefore gHompg (M, Q) has finite length.

COROLLARY 4.7. Let Q be a A-injective right R-module with S = End(Qr).
If M is a Q-finitely generated (in particular, finitely generated) right R-module,
then sHomg (M, Q) has finite length.

COROLLARY 4.8. Let Q be a quasi-injective, Q-finitely generated (in par-
ticular, finitely generated) right R-module such that R 1s both Q-noetherian and
Q-artinian. Then S = End(QRr) 13 a left artintan ring. In particular, if Q 15 a Q-
finitely generated (in particular, finitely generated) A-injective right R-module,
then S = End(QR) 13 a left artinian ring.
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REMARK. The latter part of Corollary 4.8 is due to Faith [3, Corollary 6.4]
and Nistisescu [10, Proposition 1.5].

THEOREM 4.9. Let U be a right R-module such that R s both U-noetherian
and U-artinian. If Q i3 a quasi-injective, U-torsionless, U-finitely generated
right R-module such that U is Q-injective, then S = End(QRr) 3 a left artinian
ring.

PROOF. Since Q is a U-finitely generated right module over a U-noetherian
and U-artinian ring R and since U is Q-injective, then Qg is both U-noetherian
and U-artinian by Corollary 3.5. So Cy(Q) is a noetherian and artinian lattice
by Lemmas 3.2 and 3.3. On the other hand, since Qg is U-torsionless, every
Q-closed submodule of Q is also a U-closed submodule of Q. Hence Cq(Q) is a
noetherian and artinian lattice, too. Thus, since Qg is quasi-injective, Qg has a
Q-composition series by [6, Theorem 2.6]. Therefore, according to [6, Theorems
2.8 and 3.4], we have lengS = Q —len Qg = n for some integer n > 0, as desired.

COROLLARY 4.10 (NASTASESCU [10, PROPOSITION 1.5]). Let U be a
A-injective right R-module. If Q is a quasi-injective, U-torsionless, U-finitely
generated right R-module, then S = End(QRr) s a left artinian ring.

PROOF. Since Ugr is A-injective, R is a both U-noetherian and U-artinian
ring according to Miller-Teply’s theorem in [7]. Hence the result follows directly
from Theorem 4.9.

LEMMA 4.11. Let Q be a quasi-injective right R-module such that R is Q-
artinian, and let us put T = Biend(Qg). Then T 1s a semi-primary ring and
Qr 13 a A-injective module.

PROOF. In this case Qg is A-quasi-injective by Lemma 3.3. Hence g@Q has
finite length according to [4, Proposition 8.1], where S = End(Qg). Therefore
T = End(sQ) is a semi-primary ring. And, since Qg is finendo and quasi-
injective, Qr is injective (refer to [3, Proposition 19.18]). Since S = End(Qr),
it follows that Qr is A-injective by [4, Corollary 7.5].

THEOREM 4.12. If Q is a noetherian, quasi-injective right R-module such
that R is Q-artinian, then we have the following assertions.

(1) S = End(QR) is a left artinian ring.

(2) T = Biend(QRr) s a right artinian ring.

PROOF. (1) Since Qg is noetherian, so is also Qr. In particular, Qr is
finitely generated. On the other hand, Q7 is A-injective by Lemma 4.11, and
S = End(Qr). Hence S is a left artinian ring by Corollary 4.8.
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(2) In this case Qg is A-quasi-injective, and so s@ has finite length by (4,
Proposition 8.1]. In particular, sQ is finitely gnerated. Thus, Qr is a finendo,
faithful, injective module. So Q7 is compactly faithful by [3, Proposition 19.15],
that is Tr — Q7% for some integer n > 1. Since Q7 is noetherian, Q%, and hence
Tr is noetherian. On the other hand, since T is a semi-primary ring by Lemma
4.11, T is a right artinian ring.

THEOREM 4.13. If Q) i3 an artinian, quasi-injective right R-module such
that R 1s Q-artinian, then we have the following assertions.

(1) S = End(QR) s a left artinian ring.

(2) T = Biend(QRr) is a right artinian ring.

PROOF. In this case Co(R) is an artinian lattice by Lemma 3.3. Since

Anng(Q) = nzeQ Annpg(z), there exist a finite number of elements 1, 2, ..., %y
€ Q such that Anng(Q) = N, Anng(z;). Hence, if we put R = R/Anng(Q),
Rr = 1;R®23R® --- ® z,R. Since 2R ® - ® z,R is an artinian right
R-module, R is artinian, too. Hence R is a right artinian ring. Since Qp is
artinian, Q is an artinian module over a right artinian ring R. Hence Qp is
also noetherian by [9, Corollary 1.3]. Thus, Qg is noetherian. Therefore the

results follow directly from Theorem 4.12.

COROLLARY 4.14 (FAITH-NASTASESCU). Let Q be a A-injective right R-
module with S = End(Qg) and T = Biend(Qr). If Qr 1is either noetherian or
artinian, then S s a left artinian ring and T 13 a right artinian ring.

COROLLARY 4.15. Let R be a right artinian ring. If Q i3 a noetherian (or
an artinian), quasi-injective right R-module, then S = End(Qgr) 13 a left artinian
ring and T = Biend(Qg) i3 a right artinian ring.

5. Endomorphism rings of quasi-projective, quasi-injective modules

THEOREM 5.1. If Q 13 a finitely generated projective, quasi-injective right
R-module such that R is Q-artinian, then S = End(QRr) 3 a left artinian ring.

PROOF. According to Corollary 4.5, S is a left noetherian ring. On the
other hand, since Qg is A-quasi-injective in this case, s@Q has finite length by
[4, Theorem 8.1]. Hence T = End(sQ) is a semi-primary ring. And, since Q7 is
finitely generated projective and S = End(Qr), S is a semi-primary ring, too,
by [5, Proposition 4.5]. Hence S is a left artinian ring.
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THEOREM 5.2. Let R be a left noetherian ring. If Q is a finitely generated
projective, quasi-injective, finendo right R-module, then S = End(Qgr) 3 a left
artinian ring.

PROOF. In this case S is a left noetherian ring and g@Q is finitely generated.
Hence @ is noetherian. And, since Qg is finendo and quasi-injective, Qr is
injective by [3, Proposition 19.18], where T = Biend(Qgr). Hence Qr is A-
injective according to [4, Proposition 8.1). Thus, Qr is a finitely generated
A-injective module with S = End(Qzr). Therefore S is a left artinian ring by
Corollary 4.8.

THEOREM 5.3. Let Q be a quasi-projective, quasi-injective, artinian right
R-module. Then S = End(QR) i3 a left artinian ring.

PROOF. Since Qg is quasi-projective and artinian, S is a semi-primary ring by
[2, Corollary 4.14]. On the other hand, since Qg is quasi-injective and artinian,
S is a left noetherian ring by [2, Corollary 4.4.] or [6, Corollary 4.4]. Hence S is
a left artinian ring.

THEOREM 5.4. Let Q be a quasi-projective, quasi-injective, noetherian right
R-module. Then S = End(Qgr) s a right artinian ring.

PROOF. Since Qg is quasi-injective and noetherian, S is a semi-primary
ring by [2, Corollary 4.5]. On the other hand, since Qg is quasi-projective and
noetherian, S is a right noetherian ring by [2, Corollary 4.12]. Hence S is a right
artinian ring.

COROLLARY 5.5. Let @ be a quasi-projective, quasi-injective, noetherian or
artintian, right R-module such that R 1s Q-artinian. Then S = End(QRr) 1s a
left and right artinian ring.

PROOF. First, suppose that Qg is noetherian. Then S is a right artinian ring
by Theorem 5.4, while S is a left artinian ring by Theorem 4.12. Next, consider
the case where Qg is artinian. As has been shown in the proof of Theorem 4.13,
Qr is necessarily noetherian. Hence the result is due to the first case.

Note. In connection with Theorems 4.12 and 4.13, it should be noticed that
in general, if @ is a quasi-injective right R-module having the right artinian
biendomorphism ring T, @ is necessarily injective as a right T-module. Indeed,
since Q is a faithful right module over a right artinian ring T, @t is compactly
faithful according to a result of Beachy [12, Proposition 1] (see also Vamos [13]).
On the other hand, since any quasi-injective module Qg remains quasi-injective
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as a module over T = Biend(Qg), Qr is compactly faithful and quasi-injective.
Therefore Qr is injective by [3, Proposition 19.15), as desired.

The author would like to express his thanks to the referee who has suggested
the above comment.

Addendum

We are able to strengthen Corollary 4.5. Under the same assumption as in
Corollary 4.5 we can conclude that § = End(Qpg) is a left artinian ring. For,
since R is also @-noetherian by (4, Theorem 7.1}, it follows by Theorems 4.2 and
4.4 that S is both semi-primary and left noetherian. Hence S is left artinian.
Thus, our Corollary 4.8 is needless.
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