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We present a simple analytical formalism based on the Lorentz-Scherrer equation and Bernoulli
statistics for estimating the fraction of crystallites (and the associated uncertainty parameters) contrib-
uting to all finite Bragg peaks of a typical powder pattern obtained from a static polycrystalline
sample. We test and validate this formalism using numerical simulations, and show that they can
be applied to experiments using monochromatic or polychromatic (pink-beam) radiation. Our results
show that enhancing the sampling efficiency of a given powder diffraction experiment for such
samples requires optimizing the sum of the multiplicities of reflections included in the pattern
along with the wavelength used in acquiring the pattern. Utilizing these equations in planning powder
diffraction experiments for sampling efficiency is also discussed.
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I. INTRODUCTION

Powder diffraction patterns from polycrystalline aggre-
gates are routinely analyzed to obtain quantitative, phase-
specific crystallographic and structural parameters such as
volume fractions, crystallographic orientation distributions,
lattice parameters, atomic occupancy factors, crystallite
sizes, strain and “micro-strain” values, atomic positions, and
space groups (Bijvoet et al., 1969; Azâroff, 1974; Klug and
Alexander, 1974; Cheary et al., 2004). The crystallographic
and structural parameters obtained from these analyses are
(diffraction) averages of their respective distributions within
the material volume subset contributing finite intensity to
the measured pattern. Consequently, it is of interest to estimate
the fraction of diffracting crystallites contributing to a powder
pattern. There is a limited number of articles discussing this
issue in past literature. The seminal analysis was published
by Alexander et al. (1948) where the Lorentz sampling equa-
tion (Buerger, 1940; Buerger and Klein, 1945) and Bernoulli
statistics (Uspensky, 1937; Johnson et al., 2005) were utilized
to determine the fraction of crystallites contributing to a given
reflection, and its uncertainty parameters, for a stationary pow-
der sample. These variables were then used to estimate the
expected diffraction intensities and their associated uncertain-
ties. For experimental verification, the authors measured

diffracted intensities for the 3.33 Å quartz powder reflection
[(10�11) and (01�11) planes] for four sets of samples with
grain sizes in the range of 15–50, 5–50, 5–15, and <5 μm,
and reported reasonable agreement with the analytically pre-
dicted results (Unfortunately, terms such as particle size, aver-
age particle size, and particle size distribution etc. depend on
the technique used for their determination and are not well
defined for arbitrary particle shapes or characterization tech-
niques. Different techniques usually yield quite different
results. Disagreements are also encountered when one com-
pares crystallite sizes obtained from different diffraction for-
mulations (Noyan and Öztürk, 2022). In the current
manuscript the terms “grain size”, “crystallite size”, and “par-
ticle size” are used interchangeably and follow the usage of
the original authors.). De Wolff (1959) published an extended
theoretical analysis, where expressions for the relative r.m.s.
error of diffractometer intensity measurements due to sam-
pling statistics were derived for stationary and spinning sam-
ples; the results obtained for stationary specimens were
essentially identical with the result derived by Alexander
et al. (1948). These equations were then tested and verified
by acquiring experimental data from silicon powder speci-
mens with crystallite sizes between 30 and 50 μm; here, the
dependence of the standard deviation of measured intensities
on X-ray wavelengths was also studied. It was reported that
higher energy X-ray beams sampled more grains due to deeper
penetration and had better intensity statistics (De Wolff et al.,
1959). In 1970, Jenkins and De Vries included a (solved)
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question on the effect of (diffractometer) particle statistics on
measured intensities in “Worked Examples in X-Ray
Analysis” (Jenkins and de Vries, 1978). Smith (1991, 2001)
singled out particle statistics as the most severe limitation on
the (potential) accuracy of Rietveld refinement of powder dif-
fraction patterns measured on laboratory-based diffractome-
ters with standard optics, using, mostly, Cu Kα radiation. He
identified an upper limit powder crystallite size of 1 μm;
only diffraction patterns of powder samples with grain sizes
equal to, or lower than, this value, could be refined with repro-
ducible results. Elton and Salt (1996) extended the formula-
tions by Alexander et al. (1948) and De Wolff (1959) by
considering the effects of Soller slits in the incident and/or dif-
fracted beam paths. They showed that, for powder samples
with crystallite sizes around 8 μm, the contribution of the frac-
tional particle-statistics error to the uncertainty of the (mea-
sured) diffracted (integrated) intensity of the (112) quartz
line could be an order of magnitude larger than the uncertainty
predicted by counting statistics alone. (In current practice,
Rietveld full-pattern refinement codes only consider counting
statistics; They do not explicitly report estimated diffracting
grain fractions. This practice can cause errors in the interpre-
tation of the results.) Ida and co-workers used the formulations
by Alexander et al. (1948) and De Wolff (1959) to link the
uncertainty in measured diffraction intensities caused by par-
ticle statistics in a spinner-scan method to evaluate particle
sizes in crystalline powder samples (Ida et al., 2009). They
reported that effective crystallite diameters larger than 5 μm
could be evaluated by statistical analysis of diffraction inten-
sity data collected by stepwise rotation of a flat powder speci-
men on a laboratory Bragg-Brentano powder diffractometer.
In a later paper, they showed that smaller crystallite sizes
could be measured on a synchrotron source due to the avail-
ability of higher incident intensities (Ida et al., 2011). There
were also earlier studies where the Lorentz sampling equation
and its extensions had been used to determine particle sizes
(Schdanow, 1935; Taylor, 1961).

In contrast to the majority of references discussed above,
where the number of diffracting particles was inferred from
measured intensities, Noyan and Kaldor (2004) utilized a syn-
chrotron micro-beam scanning technique to directly count the
number of diffracting grains for various reflections, when an
annealed Cu strip with a mean optical grain size of 29 ±
8 μm was irradiated with monochromatic X-rays. Their results
showed that, for all studied reflections, the fraction of strongly
diffracting grains in an area of approximately 4 mm2 was less
than 0.2% of all grains illuminated by the X-ray beam, indicat-
ing very marked under-sampling. They also reported that the
Lorenz sampling equation predicted much lower diffracting
grain fractions when the optically measured grain size was
used in this formulation, indicating that, even for annealed
ductile specimens, the optical and X-ray “grain sizes” were
not identical. In a series of recent articles, Noyan and
co-workers (Öztürk et al., 2014, 2015; Öztürk and Noyan,
2017) extended the analysis by Alexander et al. (1948) to
nanocrystalline powder samples using modeling, and showed
that this classic formalism yielded erroneous results for pow-
der samples with crystallite sizes below 100 nm. These errors
increased with decreasing particle size and became very sig-
nificant for particles smaller than 10 nm since one of the fun-
damental assumptions used by Alexander et al. (1948) is not
valid below this size (Öztürk et al., 2014).

Our literature review, summarized above, showed that
most past articles in this area focused on the errors caused
in measured diffracted intensities due to sampling statistics.
The effects of scanning geometry, incident and diffracted
optics of various types, incident beam divergence,
depth-of-penetration of the incident radiation, and other
instrumental parameters on the shape and volume of the illu-
minated volume have been extensively discussed, but there
has been little work on determining the fraction, or population,
of diffracting crystallites. However, quantifying the fraction of
diffracting grains for a particular reflection, or for all reflec-
tions of a powder pattern utilized in a refinement, can be
quite useful: this describes the specimen volume contributing
information to the measured signal during the experiment and
can be used to evaluate sampling efficiency. This can be of
particular importance if the data are measured from a station-
ary, solid polycrystalline sample examined for directional
properties, such as lattice strain along a given sample direc-
tion. In such cases, the sample cannot be ground into a powder
and rotated. Further, if the measured strains are then used with
bulk elastic moduli to compute the stress tensor in the illumi-
nated volume, it is implicitly assumed that the sampled volume
is greater than the (continuum mechanics) representative vol-
ume element of the particular material (Şeren et al., 2023).
This assumption must be validated to avoid errors in com-
puted stresses.

In what follows, we present a simple analytical formalism
based on the combined Lorentz-Scherrer equation (Öztürk
et al., 2014, 2015; Öztürk and Noyan, 2017) for estimating
the fractions of kinematically diffracting crystallites, and
their uncertainty, for all finite Bragg peaks of a powder pat-
tern. These equations are valid for sample sizes between
100 nm and the (lower) dynamical scattering size limit
(Authier, 2003) and utilize easily accessible parameters. We
test and validate this formalism using numerical simulations
and discuss its utilization in planning powder diffraction
experiments.

II. THEORY

We start with a basic review of the relevant definitions and
equations based on previous work (Alexander et al., 1948;
Öztürk et al., 2014, 2015; Öztürk and Noyan, 2017).

Consider an ideal powder ensemble of perfect (defect-
free) single crystallites, infinite in number, all of which are
identical in shape, size, composition, and crystal symmetry.
We assume that these crystals are small enough to diffract in
the kinematical regime, i.e., primary and secondary extinction
effects can be neglected, and are randomly oriented in direct
space. From this ensemble Y specimens, each with NG crys-
tallites, {NG }i, i∈ (1, Y ), are taken, and their diffraction pat-
terns are recorded one after another using monochromatic,
plane-wave incident X-rays with wavelength λ. Here, we
assume that all NG crystallites within a sample are illuminated
by the X-ray beam, and the X-rays from all diffracting crystal-
lites can reach the detector utilized in the experiment. (These
conditions are best approximated in high-energy synchrotron
experiments utilizing area detectors.) Due to the random ori-
entations of the constituent crystallites in direct space the pop-
ulations of crystallites diffracting into a given hkl reflection,
{{N∗

hkl}}, for the set of samples, {{NG }}, will be randomly
distributed around the same expected value, E[N∗

hkl]. Since,
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within each {NG}i, a crystallite is either diffracting (state one)
or not diffracting, (state zero), the expected population of crys-
tals oriented properly for diffraction into a given hkl reflection,
E[N∗

hkl], its variance, V[N
∗
hkl], standard deviation, S[N∗

hkl], and
relative standard deviation (RSD), u[N∗

hkl] (also termed “the
coefficient of variation”), are described by the (discrete)
Bernoulli probability distribution (Uspensky, 1937; Johnson
et al., 2005):

E[N∗
hkl] = NGp

∗
hkl (1)

V[N∗
hkl] = NGq

∗
hklphkl (2)

S[N∗
hkl] = (V[N∗

hkl])
1/2 (3)

u[N∗
hkl] =

q∗hkl
NGp∗hkl

( )1/2

(4)

where the starred terms denote diffraction variables; p∗hkl is the
probability that a given (randomly oriented) crystallite will
contribute finite intensity, statistically exceeding the local
background, to the hkl reflection centered at the Bragg angle
θB,hkl; q∗hkl is the corresponding complementary probability,
q∗hkl = (1− p∗hkl).

The diffraction probability, p∗hkl, in Eqs. (1)–(4) depends
on the crystallographic properties of the diffracting crystallites
and the diffraction geometry. For the experimental configura-
tion shown in Figure 1, all crystallites that exactly satisfy
Bragg’s law for an hkl reflection will have poles (intersections
of hkl vectors normal to the diffracting planes with the surface
of the unit sphere) on the hkl reflection circle. This circle is the
locus of the poles of all vectors making the (complementary)
angle GB = (p/2)− uB with the incident beam, �ko. The locus
of the intersections of the diffracted beam vectors, (�kd,uB )j,

with the unit sphere surface is the Debye circle for the hkl
reflection; all points on this circle are at 2̂uB from the transmit-
ted beam, �kt. In this geometry, 2̂u varies from 0° to 180°, while
Ĝ varies from 90° to 0°.

For the ideal experiment with a perfect powder sample,
the intensities of diffracted beams decrease symmetrically
and monotonically with their angular deviation, |δ2θ|, from
the exact Bragg condition, decaying to background at a limit-
ing deviation of ±Δ2θ/2; that is, for any diffracted beam of
finite intensity, −(Δ2θ/2) < δ2θ < (Δ2θ/2). Each of these dif-
fracted beams originates from a specific crystallite with an
(active) hkl pole within the “reflection band”, defined as the
spherical band of angular width Δθ centered on the reflection
circle at ΓB. Based on this construct, the probability p∗hkl is
identified as the probability that an [hkl] vector from a partic-
ular crystallite intersects the unit sphere surface within the
reflection band of the hkl reflection.

We note that the above discussion can be cast in strictly
geometric form (without involving diffraction): The prob-
ability, pθ,Δθ, that a given random vector �V , intersects the
unit sphere surface within a particular spherical band of
arbitrary width, ΔθA, centered around an arbitrary angle,
GA = (p/2)− uA, is equal to the fractional area of this band:

pu,Du = 1
2
cosuA sinDuA � 1

2
cosuADuA (5)

Using this geometric probability, the expected number of
poles, E[NuA, DuA

P ], of an arbitrary population of randomly ori-
ented vectors, NV, within a spherical band described by the
arbitrary angular parameters, θA, ΔθA, and its dispersion
parameters, can be obtained from Eqs. (1)–(4):

E[NuA , DuA
P ] = 1

2
NVcosuADuA (6)

S[NuA, DuA
P ] = (NV puA, DuA quA, DuA )

1/2

� NVcosuA DuA
2

( )1/2

(7)

u[NuA, DuA
P ] = quA,DuA

NV puA, DuA

( )1/2

� cosuADuA
2NV

( )1/2

(8)

Here the approximate equations are valid for small ΔθA.
In powder diffraction, the probability, p∗hkl, that a particu-

lar crystallite contributes finite intensity to the reflection at
Bragg angle, θB,hkl, is given by the product of the fractional
area of the hkl reflection band on the unit sphere surface,
and the multiplicity, mhkl, of this reflection:

p∗hkl�
1
2
mhklcosuB,hklDuhkl (9)

This is the classical Lorentz probability equation for a sta-
tionary sample (Buerger, 1940; Buerger and Klein, 1945;
Cullity, 1978) which shows that, for a constant reflection
band breadth, Δθhkl, p∗hkl decreases with Bragg angle, and
tends to zero for full back-reflection geometry, θB,hkl→ (π/2).

One can obtain the expected population of crystals oriented
properly for diffraction into a given hkl reflection, and its
uncertainty parameters, by combining Eqs. (1)–(4) and (9).

Figure 1. Diffraction geometry used in the simulations. The monochromatic
incident beam, k

�
0, impinges on the (hkl) planes of a crystallite satisfying the

diffraction condition, and produces the diffracted beam, k
�

d , and the
transmitted beam, �kt . There is 360° rotational symmetry around k

�
d , k

�
t .

The central circles of the two spherical zones are the loci of the
intersections of all diffracting plane normal vectors, [hkl], and diffracted
beam vectors, �kd , of crystals oriented for perfect diffraction. All poles
within the reflection band correspond to diffracted beams with finite
intensity within the Debye-Scherrer halo (the detection band).
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However, the probability, p∗hkl, described by Eq. (9) corre-
sponds strictly to the fraction of hkl poles expected in the
corresponding reflection circle. This would be equal to the
fraction of diffracting crystallites if, and only if, each diffract-
ing crystallite contributes only one pole to the hkl reflection
band. In this case, the expected number of crystallites diffract-
ing in a particular reflection can be expressed as (This equality
is exactly satisfied for infinitesimal reflection band breadths,
Δθhkl.):

E[NuB, Duhkl
G∗ ] � E[NuB, Duhkl

P∗ ] (10)

The standard deviation, S[NuB, Duhkl
G∗ ], and RSD, u[NuB, Duhkl

G∗ ],
of E[NuB, Duhkl

G∗ ] can be obtained substituting Eq. (9) in
Eqs. (6)–(8).

In the diffraction process the breadth of the reflection
band, Δθhkl, is not arbitrary, but strictly defined by contribu-
tions from both the specimen and the instrument used in the
experiment. In the ideal experiment we describe here there
is no instrumental broadening, and the specimen contribution,
DuSphkl, is defined by the band-pass of the crystallite for a per-
mitted reflection. For a perfect crystallite of size D, DuSphkl is
related to the full-width at half maximum (FWHM) of the dif-
fraction peak, β, via the Scherrer equation (For unstrained sin-
gle crystals scattering in the kinematic regime, the crystallite
size obtained from the Scherrer equation is the maximum real-
space length of the coherently scattering domains along the
scattering wavevector (Noyan and Öztürk, 2022). We term
this parameter the “Scherrer (crystallite) size”.):

b = KSrl

D cos u
(11)

Thus, the breadth of the reflection band becomes:

DuSphkl =
sb

2
= sKSrl

2D cos u
(12)

Here KSr is the Scherrer shape factor with a value around 0.9,
and s is a (numeric) range factor which specifies the angular
breadth (in terms of β) over which the diffraction peaks are
recorded. For radial scans with a Gaussian peak-shape, setting
s = 4, will capture over 99% of the integrated intensity of the
peak (Öztürk et al., 2015).

From Eqs. (5) and (12), we obtain the (combined)
Scherrer-Lorentz probability for activated poles:

p∗hkl = K ′ mhkll

D

( )
, K ′ = sKSr

2
(13)

Then, the expected value of activated poles contributing
to any hkl reflection, and its dispersion parameters are given
by:

E[NuB , Duhkl
P∗ ] = K ′NG

mhkll

D

( )
(14)

S[NuB,Duhkl
P∗ ] = (NG phkl qhkl)

1/2 � K ′NGmhkll

D

( )1/2

(15)

u[NuB,Duhkl
P∗ ] � D

K ′NGmhkll

( )1/2

(16)

Equations (13)–(16) have no dependency on the diffrac-
tion angle, θB, and show that, for a given powder pattern,
only the multiplicity term, mhkl, determines the ratio of the dif-
fraction volumes of various reflections (The diffraction vol-
ume of a given reflection is defined as the product of the
crystallite volume, assumed to be the same of all crystallites
in our analysis, and the number of diffracting crystallites.). For
example, for a powder sample consisting of equal-sized crystal-
lites with cubic symmetry, the ratio of crystallites contributing to
h00 and hk0 peaks would be 1:4, independent of their Bragg
angles. We also observe that, all other factors being equal,
increasing the size of the crystallites decreases the expected
number of diffracting crystallites, E[NuM , Du

P∗ ], and increases its
RSD, u[NuM , Du

P∗ ] (Here, per Eq. (14), we are assuming that the
number of activated poles is equal to the number of diffracting
crystallites.). This results from the decrease in the acceptance
angle [Eq. (12)] of the crystallites with increasing size, which
reduces the diffraction probability, p∗hkl [Eq. (13)].

Using Eq. (14), the expected total number of diffracting
crystallites contributing to the powder pattern, E[N∗ptn

tot ], is
obtained as a sum over all finite reflections in the measure-
ment:

E[N∗ptn
tot ] =

∑
i

K ′NG
m(hkl)il

D

( )
= K ′′ Cl,

K ′′ = K ′NG

D

(17)

Here Cl, the sampling parameter, is defined as the product of
the wavelength, λ, used to acquire the pattern, and the sum of
multiplicities of all finite reflections included in the powder
pattern analysis:

Cl = l
∑
i

m(hkl)i (18)

Equation (17) shows that experimentally maximizing
E[N∗ptn

tot ] is an optimization problem: this value is linearly pro-
portional to the sampling parameter, Cl [Eq. (18)]. However,
for experiments utilizing monochromatic radiation, one needs
to decrease λ to increase the number of observed reflections.
Thus, from a strictly crystallite sampling perspective, decreas-
ing λ from 1.5 to 0.1 Å to obtain more reflections would
enhance crystallite sampling only if

∑
i m(hkl)i at the shorter

wavelength (higher energy) is 15 times larger.
The standard deviation, S[N∗ptn

tot ], and RSD, u[N∗ptn
tot ], for

E[N∗ptn
tot ] can be obtained from the variances, V[Nhkl] [Eq.

(2)] of all finite reflections:

S[N∗ptn
tot ] � K ′NG

D
Cl

( )1/2

(19)

u[Nptn
tot ] �

D

K ′NGCl

( )1/2

(20)

As expected, an increase in the sampling parameter, Cl,
decreases the RSD of E[Nptn

tot ].
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For a given specimen, the change in sampling efficiency
when the experiment wavelength is changed from λ1 to λ2
can be quantified using a sampling quotient QS

l1�l2
:

QS
l1�l2

= E[N ptn
tot ]l2

E[N ptn
tot ]l1

= l2
∑

j m(hkl)j

l1
∑

i m(hkl)i

= Cl2

Cl1

(21)

Sampling is enhanced if QS
l1�l2

.1.
If one estimates the total number of crystallites, NG, in the

beam for a given experiment, Eqs. (17)–(20) can be used to
calculate the number of crystallites with Scherrer crystallite
sizes, D, contributing to the powder pattern. If this population
is deemed inadequate, one can increase the number of reflections
used in the powder pattern analysis, or use Eq. (21) to choose a
wavelength that would provide better sampling. In what follows,
we test these predictions using Monte Carlo modeling.

III. MONTE CARLO SIMULATIONS

These simulations were limited to powder samples con-
sisting of crystallites with (coherently scattering) Scherrer
sizes, D, larger than 100 nm since our previous work showed
that Eqs. (14)–(16) are not applicable for particle sizes in the
nano-regime (Öztürk et al., 2014, 2015; Öztürk and Noyan,
2017). We used two sets of simulations: In the first set,
which is strictly based on geometry, we compared three differ-
ent approaches for simulating the number of poles in an angu-
lar interval, Δθ, as a function of its central position, θ, to
identify the most efficient modeling approach with acceptable
precision. These three approaches were, in order, (1)
completely uncorrelated, randomly oriented vectors; (2) ran-
domly oriented sets of correlated families of vectors from
one reflection, hkl (such as families of crystallographic direc-
tions from randomly oriented grains); and (3) sets of correlated
vectors from multiple reflections for all randomly oriented
crystals. (To make the problem computationally tractable,

we included only the first five reflections in simulations
based on the third approach.) We note that only the first
case satisfies the assumptions made in deriving the classical
Lorentz equation.

In the second set of simulations, we applied the procedure
determined above by introducing diffraction selectivity.

A. Geometric analysis

1. Uncorrelated vectors
These models satisfy all assumptions of the Lorentz-

Bernoulli formalism. Here, we generated sets of vectors
{NV}, NV∈ (600, 24 000 000), all originating from a single
point, O, which were oriented randomly in direct (Cartesian)
space [Figure 2(a)]. We tested these sets to verify that their
orientations were random (We used the Mathematica
“SpectralRandomnessTest” function for this purpose (https://
resources.wolframcloud.com/FunctionRepository/resources/
SpectralRandomnessTest).), and then counted the number of
poles (intersections) falling within bands of constant breadth,
Du = 0.5 (0.0087 radians), across the entire reflection half-
sphere [Figure 2(b)], with u [ (0.25◦, 89.75◦). Multiple
independent sets were generated for each population, NV, to
obtain statistical distributions. These results were, then, com-
pared with calculated values from Eqs. (6) and (7).

In Figure 3, the number of poles falling into each reflec-
tion band is plotted, along with the area fraction of each
band [Eq. (6), right ordinate] for 30 independent simulations,
each with NV = 5000. We observe that, for a fixed band
breadth, Du = 0.5, the fraction of poles decreases monotoni-
cally from approximately 0.42% to 0.1% for Bragg angles
between 15° to 150° 2θ. For NV = 5000, this corresponds to
25 to 5 poles per band, respectively. Also, while the averages
and standard deviations of 30 instances (i.e., averaging over
150 000 independent vectors) for these bands are quite close
to the predictions of Eqs. (6) and (7), these equations are quite

Figure 2. A random distribution of vectors within a unit sphere (a) and their intercepts on the sphere surface (b) used for testing the geometric analysis described
by Eqs. (5)–(8). The pole populations for various reflection bands, such as the shaded band in (b), are numerically determined and compared with the expected
values obtained from the analytical equations.
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imprecise in predicting the number of poles and their dispersion
in any band for any independent instance with NV = 5000.

To quantify the effect of NV on the distribution of poles in
a given interval, NuM , Du

P , we obtained the RSD, u[Nu, Du
P ], for

seven populations where NV∈ [600, 24 000 000]. For each
population, 10 instances were simulated. The results are sum-
marized in Figure 4. We observe good agreement between the
numerical model values and the analytical computations. We
also observe that, for each band centered at θM, log(u[N

uM , Du
P ])

decreases linearly with log(NV) with a slope equal to −(1/2).
This can be predicted by using Eqs. (5) and (8):

log(u[NuM ,Du
P ]) � − 1

2
(log( puM ,Du)+ log(NV )) (22)

Figure 4 shows that, for a fixed band breadth, Δθ, large NV

are required to minimize the RSD, u[NuM , Du
V∗ ], over the entire

angular (θ) range. A population of 1 000 000 vectors or greater

was required to obtain u[Nu, Du
V∗ ] less than 5% for any band of

width Du = 0.5◦ in the angular range u [ [0, 75◦].

2. Uncorrelated families of (correlated) vectors
For this set of simulations, we assumed a cubic crystal and

substituted a family of crystal directions, 〈hkl〉, with mhkl cor-
related vectors for each (randomly oriented) vector �Vi in
Figure 2(a). For example, in the case of the 〈h00〉 family,
each �Vi was replaced by the [001] direction of a particular fam-
ily, and all other 〈100〉 vectors, at the specific orientations dic-
tated by the (cubic) crystal symmetry, were also added. Thus,
any model with NG crystallites possessed NV = mhkl.NG vec-
tors. For these models, as expected, our tests indicated non-
random distributions of poles on the unit sphere surface;
while the orientations of “families-of-vectors” associated
with each �Vi were uncorrelated, the orientations of 〈hkl〉 vec-
tors associated with a given �Vi were non-random.

Figure 5 shows the number of 〈h00〉 poles falling into
each reflection band, Δθ = 0.5°, 0.25°≤ θ≤ 88.75°, obtained
for 10 independent simulations, each with 600 crystallites
(NG), corresponding to 3600 [h00] directions (NV). The results
exhibit some scatter due to the small NV. However, if we
compare the expected number of intercepts, E[N∗

h00], com-
puted from Eq. (6) for 3600 random vectors, with the overall
simulation average, N

∗
h00, we observe acceptable statistical

agreement.

3. Correlated families of (correlated) vectors
For this set of simulations, we assigned the crystal direc-

tion [001] to each (randomly oriented) vector �Vi in Figure 2(a),
and then added all vectors belonging to “j” families of crystal
directions, 〈hkl〉j to the model at the proper angular coordi-
nates dictated by crystal symmetry. Thus, each crystal contrib-
uted “j” correlated crystal direction families, each with mhklj
correlated vectors. For a model with NG crystallites, the num-
ber of poles distributed on the surface of the unit sphere was
NG

∑
j mhklj . Our tests showed that this distribution was also

non-random. We note that, even though a given reflection

Figure 3. The number of poles in each reflection band, Du = 0.5, 0.25≤
θ≤ 88.75, for 30 independent simulations, each with 5000 random vectors.
The average values and the expected number of intercepts, E[Nu, Du

V∗ ], are
also shown. The red dashed line also shows the area fraction of each band
[Eq. (6)] when the right ordinate is used.

Figure 4. Variation of the RSD of vector intercepts, (u[NuA , Du
V∗ ]), with set

population, NV, for several arbitrary band-center angles, θA. For all cases
, Du = 0.5. The dashed lines depict the values predicted by Eq. (8).

Figure 5. 〈h00〉 pole population in each reflection band, Δθ = 0.5°; 0.25°≤
θ≤ 88.75°, obtained from 10 independent simulations, each with 600
crystallites (NG). The average pole populations, their standard deviation, as
well as the expected number of poles (dashed line) and its standard
deviation for each band are also shown.
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band contains poles from many families of crystal directions,
only the poles belonging to the particular reflection satisfy
Bragg’s law, and are, thus, active poles, with corresponding
diffracted beams in the particular reflection band.

In Figure 6(a), we plot the variation of total vector inter-
cepts for the first five basis-permitted vectors of a diamond
cubic crystal, Nu,Du

V∗ = N∗
111 + N∗

220 + N∗
311 + N∗

400 + N∗
331,

falling into equi-angle reflection bands, Δθ = 0.5°, in the
range 0.25°≤ θ≤ 88.75°, obtained for 10 independent simula-
tions, each with 6 000 000 crystallites (NG). The average val-
ues for each interval from the simulation, the expected values
for non-correlated vectors computed from Eq. (6), and their
respective standard deviations are also shown. Because of
the very large number of crystal vectors (and poles),
Figure 6(a) is presented as a log–log plot to facilitate compar-
ison of the simulated and predicted values over the entire θ
range. We observe good agreement. This is better illustrated
in Figure 6(b), where the shaded range in Figure 6(a) is plotted
with linear axes. In this range, the differences between pre-
dicted and simulated (average) pole populations are less than
0.02%. We conclude that all reflection populations, N∗

hkl, and
their dispersions, could be predicted using Eqs. (6) and (7).

The results summarized in Figures 5 and 6 show that the
classical formalism based on the Bernoulli statistics [Eqs.
(6)–(8)] and the Lorentz sampling equation [Eq. (9)], while
strictly applicable only to the case of uncorrelated vectors in
Cartesian space (Figures 2 and 3), is also adequate for predict-
ing the pole density within a reflection band and its dispersion
parameters when there is:

1. crystallographic orientation correlation between lattice vec-
tors of any given 〈hkl〉 family for a particular grain, while
the orientation of this family is uncorrelated with the orien-
tations of all other vector families, or

2. crystallographic orientation correlation between all lattice
vectors belonging to a given crystallite, while orientations
of individual grains are uncorrelated.

Thus, both of these approaches are suitable for modeling
the number of crystallites contributing to a given diffraction
pattern; both sets of simulations yield results very close to

the expected values and standard deviations predicted using
Eqs. (6) and (7), respectively. We note that, since these equa-
tions do not take into account the angular relationships
between poles of a given family, or between poles of different
families, the geometric approach is valid for modeling crystal-
lites of arbitrary symmetry. In what follows, we utilize the sec-
ond approach, where the crystallographic correlations between
lattice vectors of a given family are maintained while the
angular distribution of families of directions are uncorrelated,
for modeling the diffracting grain fractions from ensembles of
Si crystallites. The third case, where all relevant reflections
were modeled together, with the geometrically required angu-
lar relationships between their poles, required significantly
larger computing power and much longer run times, while
yielding identical results with the second approach.

B. Diffraction pattern modeling

1. Monochromatic simulations
This set of simulations was conducted to study the effects

of incident beam wavelength on diffraction sampling. In the
simulations, plane-wave, monochromatic Cr, Cu, or MoKa
X-rays were specified. For each wavelength activated pole
populations of permitted reflections from ideal Si powders
for a set of Scherrer sizes (D) were modeled. For all cases
we assumed s = 4, ensuring that the reflection band captured
99% of the integrated intensity of the peak, and NG =6 000
000, which yielded less than 2% RSD for all reflections
over the angular range of interest (Figure 4). The number of
vectors for each reflection, NVhkl , had values between 36 ×
106 and 288 × 106 for (basis-permitted) h00 and hkl reflec-
tions, respectively. The parameters used in these simulations
are listed in Table I. In Figures 7(a)–7(c), we show example
powder patterns for the three wavelengths used in our simula-
tions. These patterns were computed with the HighScore Suite
(Degen et al., 2014), assuming an infinite number of crystal-
lites in the sample.

For most of these simulations, the FWHM (βhkl) values of
the Bragg peaks, computed from the Scherrer equation [Eq.
(11)], are significantly smaller [Figures 8(a)–8(c) for Cr, Cu,

Figure 6. (a) Variation of total pole population of the first five basis-permitted vectors of a diamond cubic crystal in each reflection band, Δθ = 0.5°, in the range
0.25°≤ θ≤ 88.75°, obtained for 10 independent instances, each with 6 000 000 crystallites. The average values for each interval, the expected values from Eq. (6),
and their standard deviation are also shown. The data in the shaded rectangle is plotted with linear axes in (b), which also depicts the legend for both figures.
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and Mo radiations, respectively] than the fixed reflection band
breadth, Δθ = 0.5°, used in the geometric analysis. During mod-
eling, the reflection half-sphere was divided into sub-bands of
angular width 0.001° to facilitate efficient numerical analysis;
the total number of activated poles for a given reflection was
obtained by summing over all sub-bands within the relevant
reflection band. (Since the sub-band breadth selected was much
smaller than the width of the narrowest reflection bands, this
simplification resulted in trivial errors in the simulation results.)

In Figures 9(a)–9(c), the variation of diffracting crystallite
fractions with Scherrer crystallite size are shown for individual
reflections, ( N∗

G/NG)hkl, for simulations with Cr, Cu, and Mo

TABLE I. Monte Carlo simulation parameters.

Hypothetical sample Si powder
Lattice parameter (Å) 5.430941
Scherrer constant (KSr) 0.9
Scherrer sizes (nm) 100, 150, 200, 250, 300,

350, 450
Powder sample population (NG) 6 000 000
Range parameter (s) 4
Angular range (◦u) 0.25–88.75
Radiation Cr (λ1) Cu (λ2) Mo (λ3)
Wavelength (Å) 2.2909 1.54059 0.71075
# of reflections in pattern 5 12 19

Figure 7. Silicon powder patterns simulated with monochromatic Cr (a), Cu (b), and Mo (c) Kα radiations using X’Pert HighScore Plus V4.8 software (Degen
et al., 2014) assuming infinite sample population. All reflections included in the Monte Carlo modeling are shown.
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radiation, respectively, along with the expected values com-
puted using Eq. (17). The following points can be observed:

1. For a given experiment (fixed Scherrer crystallite size, D,
and wavelength, λ) reflection multiplicity,mhkl, determines
diffracting crystallite fractions for individual reflections;
(N∗

G/NG)hkl are identical for reflections with identical mul-
tiplicities independent of the reflection angle.

2. For powders with crystallites larger than 300 nm, reflec-
tions with low multiplicities, such as h00, hhh, and hk0,
have very small sampling fractions (0.01≪) when the
higher energy (small λ) monochromatic X-rays were used.

In Figure 9(d), the total diffracting crystallite fractions for
the powder patterns, (N∗

G/NG)ptn, and the corresponding
expected values [Eq. (17), dashed lines] are plotted. For the
three cases simulated, (N∗

G/NG)ptn values are in the range of
33% for 100 nm crystallites illuminated with CuKα radiation,
to 3.4% for 450 nm crystallites illuminated with CrKα radia-
tion. We note that these values correspond to complete
Debye rings azimuthally integrated to obtain one-dimensional
diffraction patterns. For systems utilizing, for example,
Bragg-Brentano geometry with parallel-beam slit optics, the
corresponding fractions can be two orders of magnitude
smaller (Appendix A).

Figure 9(d) also shows that the number of reflections in a
powder pattern is an insufficient metric for comparing diffract-
ing crystallite fractions for the whole pattern, (N∗

G/NG)ptn;
powder patterns modeled with Cu radiation (12 reflections)
had larger (N∗

G/NG)ptn values than those with Mo radiation
(19 reflections) for all Scherrer crystallite sizes.

To compare the sampling efficiency in the simulated
powder patterns, we computed the sampling quotient QS

l2−l1
[Eq. (21)] for each wavelength pair from the numerical models
and compared them to the values predicted by this equation.
The results are summarized in Figure 10. As expected,
QS

l2−l1
is independent of particle size. We observe that,

while switching from Cr to Cu or Mo radiation improves
sampling efficiency significantly, switching from Cu to Mo
radiation decreases the sampling efficiency by ∼20% even
though the powder pattern utilizing Mo radiation included
seven more reflections.

2. Multi-wavelength analysis
Our formalism can be extended to experiments that have

access to pink incident beams where one can use an energy-
dispersive detector, or an appropriate set of adjustable mono-
chromators, to easily obtain diffraction patterns for a set of
selected wavelengths. In this case, Eq. (17) is modified with

Figure 8. FWHM values of the reflections utilized in sampling simulations with Cr (a), Cu (b), and Mo (c) Kα wavelengths, respectively.
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an additional sum over all wavelengths:

E[N ptn
tot,PB, l pn

] = K ′NG

D

( )∑
j

∑
i

m(hkl)ilj (23)

The fraction of diffracting crystallites is given by:

E[N ptn
tot,PB,l pn

]

NG
= K ′

D

( )∑
j

∑
i

m(hkl)ilj (24)

For our simulations with three wavelengths, the sum in
Eq. (23) becomes:

E[N ptn
tot,PB,l pn

]

NG
= K ′

D

( ) ∑5
1

m(hkl)i

∑3
1

lj

( )[

+
∑12
6

m(hkl)i

∑3
2

lj

( )
+ l3

∑19
13

m(hkl)i

( )]
(25)

The first five reflections are accessible in the powder pat-
terns simulated with all three wavelengths, λ1, λ2, and λ3
(Table I), reflections 6–12 are accessible for λ2 and λ3,
while reflections 13–19 are accessible only with λ3. We note
that, in the geometry shown in Figure 1, different crystallites
contribute to Debye-Scherrer halos of the higher orders of a
given reflection. This is not the case for all diffraction geom-
etries: for radial scans with the Bragg-Brentano geometry,
Eqs. (23) and (24) cannot be used without modification

Figure 9. Variation of modeled diffracting crystallite fractions for individual reflections, (N∗
G/NG)hkl with Cr (a), Cu (b), andMo (c) radiation. The total crystallite

fractions, (N∗
G/NG)ptn, diffracting into the respective powder patterns are plotted in (d). The dashed lines in (d) were computed using Eq. (17).

Figure 10. The sampling quotient QS
l2−l1

[Eq. (21)] plotted as a function of
crystallite size for each wavelength pair from the numerical models. Analytical
predictions are shown by dashed lines.
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since this scan type limits the orientation of the diffracting
plane vectors to those parallel with the sample surface normal
(Appendix A).

Figure 11 shows the fraction of crystallites contributing to
the information volume of a powder diffraction experiment
when our hypothetical sample is illuminated with a pink
X-ray beam and the three wavelengths shown in Table I are
selected, sequentially, with appropriate monochromators.
Here the symbols are results obtained from the simulation,
and the dashed line is calculated from Eq. (24). When full
Debye rings are recorded, the fraction of crystallites contribut-
ing to the diffraction pattern is in the range of 0.75 and 0.16,
for powders consisting of 100 and 450 nm diameter crystal-
lites, respectively. The corresponding sampling fractions
achieved when CuKa radiation was used by itself were
∼0.34 and 0.08, respectively. We observe that pooling the
information volumes from all three wavelengths improves sam-
pling by almost a factor of two for all (Scherrer) crystallite sizes.

IV. DISCUSSION

The formalism described above is only applicable to an
ideal diffraction experiment utilizing the transmission geometry
shown in Figure 1, where a monochromatic, plane-wave inci-
dent beam illuminates all crystallites in the beam path, and the
(kinematic) diffracted signal is recorded on an area detector
which captures complete Debye rings for all (basis-permitted)
reflections. Under these conditions, in a given experiment with
fixed Scherrer size, the sampling parameter, Cl = l

∑
i m(hkl)i

[Eq. (18)] is the primary variable governing diffraction sam-
pling. This parameter shows, trivially, that for fixed λ, sampling
statistics are improved if one includes more reflections, espe-
cially those with higher mhkl. If the angular range of the exper-
iment does not permit accessing such reflections, one can use
higher energy (smaller λ) to access more of the reciprocal
space. In such cases, maximizing Cl becomes an optimization
problem; the presence of more reflections at a smaller λ does
not necessarily improve particle sampling (Figure 9(d)). If one
records patterns for several (monochromatic) wavelengths, the

(multi-pattern) sampling parameter is significantly improved
and includes a sum over these λ:

Cmp
l =

∑
j

∑
i

m(hkl)ilj (26)

Here, the inner sum is over those reflections that are
accessed for each wavelength λj. In the case of an incident
beam where the wavelength distribution is continuous over
some range (such as time-of-flight (TOF) thermal-neutron dif-
fraction experiments), it might be possible to replace the outer
sum with suitable integrals. This point is under investigation
(As the number of wavelengths increases, some grains will
contribute to more than one Debye-Scherrer cone (Stoica
et al., 2019). To obtain the proper average values of direction-
dependent parameters from diffraction analysis requires taking
such oversampling into account. This is a non-trivial problem
and will be reported later.).

In our ideal treatment, the effects of incident beam diver-
gence, photo-electric absorption, instrumental broadening,
fractional capture of Debye rings and other, similar, geometric
effects are neglected. If the (monochromatic) incident beam
has finite divergence, more grains will satisfy the diffraction
condition, but the number of grains around the exact Bragg
angle will have minimal changes (Appendix A). These effects
can be taken into account by changing the range factor, s [Eq.
(12)], which is a multiplier in all subsequent equations.
Consequently, the trends predicted by Eqs. (12)–(24) would
not change, while absolute magnitudes of diffracting grain
fractions might. Similar considerations apply to the fractional
capture of Debye rings: provided that identical fractions of mul-
tiple rings are recorded, and azimuthally integrated into a one-
dimensional powder pattern, the predicted trends should be
valid. We note that, in real experiments, the effects of instrumen-
tal peak broadening, peak asymmetry, along with any strain-
broadening should be removed from the (measured) peak pro-
file(s) using standard deconvolution methods (Azâroff, 1974;
Jenkins and Snyder, 1996) if experimental FWHM values are
to be used for computing the acceptance angles of the crystallites.

The effect of photo-electric absorption will be more sig-
nificant in the formalism described here, especially in those
cases where the incident beam cannot penetrate the entire sam-
ple thickness, and different volumes within the sample con-
tribute to particular reflections. In such cases, the number of
illuminated grains for each reflection might be different, and
Eqs. (14)–(16) should be modified using the approaches
given in past literature (De Wolff, 1959; De Wolff et al.,
1959; Noyan and Kaldor, 2004; Ida et al., 2009). We note that
these modifications only involve the specification of the number
of illuminated crystallites, NG; all other considerations are
unchanged. Similar modifications would be needed in specifying
NG if some of the selected wavelengths in a polychromatic beam
could not penetrate the entire sample, or in experiments where
beam-hardening effects are significant. However, if all λ are ener-
getic enough to penetrate the entire sample thickness, the trends
predicted by Eqs. (14)–(23) would be unchanged.

Finally, particle sizes, D, appearing in Eqs. (12)–(20) are
only valid in the kinematic diffraction range. This has a lower
limit at approximately 100 nm where particle size broadening
permits a single grain to contribute multiple active poles to the
reflection band (Öztürk et al., 2014, 2015; Öztürk and Noyan,
2017). Dynamic diffraction effects impose an upper limit at

Figure 11. Fraction of diffracting crystallites for a hypothetical multi-
wavelength experiment utilizing three wavelengths in the incident beam.
The symbols are simulation results, where the error bars are comparable in
size to the symbols. The dashed line is computed using Eq. (25).
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the dynamical extinction depth of (perfect) crystals, ξD,
beyond which the shape of the diffraction peak tends to the
Darwin-Prins profile; the breadth of this peak profile, and
the corresponding band-pass of the (perfect) crystallite, can
no longer be described by the Scherrer equation (Authier,
2003). We note that ξD for a given reflection is weakly depen-
dent on the incident wavelength and is less than ∼5 μm for
most reflections from perfect crystals. Thus, experimental
results of articles which use larger (perfect) crystallites in eval-
uating intensities and particle statistics might require some
care in interpretation.

V. CONCLUSION

We have derived and validated a set of simple equations,
based on the Lorentz-Scherrer equation and Bernoulli statis-
tics, for estimating the fraction of crystallites (and the associ-
ated uncertainty parameters) contributing to all finite Bragg
peaks of a powder pattern obtained in the transmission geom-
etry with an area detector. These equations are applicable only
for kinematically scattering crystallites, with coherently scat-
tering domain sizes along the scattering vector between
100 nm and 5 μm. This formalism can be extended to other
types of detectors in this geometry, or for other diffraction
geometries (Appendix A), and used in optimizing powder dif-
fraction experiments using X-rays or constant wavelenght
(CW) neutrons, from stationary, solid polycrystalline speci-
mens for sampling efficiency. Our results show that compar-
ing sampling efficiencies of different wavelengths in
acquiring powder diffraction patterns from a given sample
cannot be based solely on comparing the number of reflections
included in each pattern. For such comparisons, the sampling
quotient QS

l1�l2
[Eq. (21)] might provide a first-order esti-

mate. Finally, it might be useful if studies utilizing powder dif-
fraction data for information-volume sensitive parameters,
such as lattice strain/residual stress analysis and texture mea-
surements, reported the fraction of grains sampled in their
experiments, and discussed why this fraction was deemed sat-
isfactory, from a sampling perspective, for any continuum-
mechanics based analysis. Such reporting would be facilitated
if our formalism and/or its extensions for specific measure-
ment geometries were included in standard Rietveld codes,
where most parameters required for such computations are
readily available.
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APPENDIX A

The formalism described by Eqs. (12)–(24) is strictly
applicable only when a parallel incident beam is used and
entire Debye rings are captured using area detectors. These
conditions are best approximated in experiments utilizing
high-energy beamlines in synchrotron sources. Most conven-
tional powder diffraction measurements utilizing laboratory
sources, such as the ubiquitous Bragg-Brentano (B–B) geom-
etry, take pseudo-one-dimensional cuts through the rings,
either horizontally or vertically, depending on the diffractom-
eter geometry (Figure 12). In such cases, crystallite fraction
contributing intensity to a given Bragg peak is proportional
to the fraction of the corresponding Debye ring circumference
captured by the receiving slit of the diffracted beam optics
(Noyan and Kaldor, 2004):

fS = LS
2pR sin2uB

(A1)

Since the diffractometer radius R is usually much greater
than the slit height, LS, the fraction of diffracting grains for
B–B scans employing a parallel incident beam can be much
smaller than the fractions shown in Figure 9. In addition, for
symmetric (radial) scans, the grains contributing to any reflec-
tion, hkl, must have their {hkl} planes parallel to the sample sur-
face. This will further decrease the fraction of crystallites
contributing to the powder pattern since some subsets of crys-
tallite groups contributing to the higher orders of a given reflec-
tion are identical. (The illuminated volume, the product of the
spot area on the specimen and the penetration depth, is constant

for a symmetric B–B scan: as θ increases, the decrease in the
area of the incident beam spot on the sample surface is balanced
by an increase in the penetration depth. If the Scherrer size is
larger than the X-ray penetration depth, the decrease in spot
size might decrease the number of diffracting grains for the
higher-order reflection.) Thus, including higher-order reflec-
tions in the powder pattern might not provide additional crystal-
lite volumes to the measurement.

On the other hand, if parafocussing Bragg-Brentano
geometry with a curved specimen is utilized, more crystallites
illuminated by the divergent incident beam will satisfy the
Bragg condition (Figure 13). In this case, the angular breadth
of the “reflection band”will be much wider than the band-pass
of the individual crystallites, and Δθ in Eq. (9) can be replaced
by the beam divergence angle, α:

p∗hkl �
1
2
a mhklcosuB,hkl (A2)

This will significantly increase the fraction of grains con-
tributing (focused) diffracted beams into the detector.
However, since the distribution of incident intensity within
the divergent beam fan decreases monotonically as one
moves away from the central ray (Noyan et al., 2000), the
number of grains contributing maximum intensity to the
Bragg peak can be quite small. In an actual scanning micro-
beam experiment with a divergent beam (a = 0.36◦) illumi-
nating a large-grained Cu sample (optical grain size 29 ±
8 mm), approximately 120 grains, out of ∼4000 illuminated
grains, contributed finite intensity to the 222 reflection. Of
these 120, only five contributed intensities exceeding half of
the maximum intensity (Noyan and Kaldor, 2004). We con-
clude that the fraction of diffracting grains obtained from
Eq. (A2) is an upper limit.

Figure 12. Pseudo-one-dimensional strip of a Debye cone sampled by a
receiving slit in the Bragg-Brentano geometry. The incident and diffracted
beam vectors define the diffractometer plane, which also contains
the diffracting plane normal. For the best angular resolution, the width of the
receiving slit in the diffractometer plane should be much smaller than the
FWHM of the Bragg peak, β. For symmetric scans, the sample rotation angle,
ω, is exactly half of the detector angle, 2θ, for 0◦ ≤ 2u ≤ 180◦.

Figure 13. Parafocussing geometry for a Bragg-Brentano diffractometer.
Only the focusing circle is shown. All diffracted rays from grains within the
arc-segment AB of the (curved) polycrystalline specimen will be focused at
the detector D. The inset shows the diffraction geometry at point B. The
central ray SC will be the most intense ray of the divergent incident beam
fan. The angular variable, GB = (p/2)− uB, is identical to ΓB defined in
Figure 1. For illustration purposes, the (arc) length of the (curved) specimen
is highly exaggerated.
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