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Abstract

We show that the null limit hypothesis, in the definition of a barrier, can be relaxed for normal boundary
points that satisfy a mild additional condition. We also give a simple necessary and sufficient condition
for the regularity of semi-singular boundary points.
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1. Introduction

The regularity of boundary points in the Dirichlet problem for the heat equation has
been studied by many authors, for example in [1–13]. Most have used the notion of a
barrier, a positive supertemperature on a relative neighbourhood of the boundary point
which has a null limit at that point. In this paper, we show that the null limit hypothesis
can be relaxed for suitable boundary points. In fact, the null limit need not be taken in
the usual topology; it suffices that there is a null limit through heat balls centred at the
boundary point.

To achieve this, we first study the extension of the Green function to the whole
space, which was given by Doob in [4, page 343]. Although his treatment of the
corresponding extension in the context of Laplace’s equation [4, page 90] included a
formula for the value of the extension at any boundary point, he gave no such formula
in the context of the heat equation. We give such a formula in Theorem 2.1 and use
it in Theorem 2.2 to relax the null limit hypothesis in the Green function criterion for
regularity, [13, Theorem 8.53], for those normal boundary points that satisfy a mild
additional condition.

Motivated by this relaxation, in Section 3 we introduce the notion of a heat ball
barrier, which differs from an ordinary barrier only in that the null limit is required
only through heat balls centred at the boundary point in question. Our main result
is that the existence of a heat ball barrier at the point is a sufficient condition for its
regularity.
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In our final section, we turn our attention to semi-singular boundary points, and
give a simple necessary and sufficient condition for the regularity of such points.

Notation and terminology will follow [13], where further details can be found; but
we briefly summarise it here. We work in Rn+1 = {(x, t) : x ∈ Rn, t ∈ R}, and denote a
typical point by p or (x, t) as convenient. Let

W(x, t) =

(4πt)−n/2exp
(
−
|x|2

4t

)
if t > 0,

0 if t ≤ 0.

For any point p0 = (x0, t0) ∈ Rn+1 and any positive number c, the set

Ω(p0; c) = Ω(x0, t0; c) = {( y, s) ∈ Rn+1 : W(x0 − y, t0 − s) > (4πc)−n/2}

is called the heat ball with centre (x0, t0) and radius c. Given a function u on the heat
ball Ω(x0, t0; c) for which the integral exists, we define the volume mean value of u by

V(u; x0, t0; c) = (4πc)−n/2
"

Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2 u(x, t) dx dt.

Given any two points p = (x, t) and q = (y, s), we put G(p; q) = W(x − y, t − s). For
any open set E, the Green function GE for E is the nonnegative, real-valued function
defined on E × E by putting

GE(p; q) = G(p; q) − hE(p; q),

where for each q ∈ E the function hE(·; q) is the greatest thermic minorant of G(·; q)
on E. We may refer to GE(·; q) as the Green function for E with pole at q. The Green
function for Rn+1 is G. If q = (y, s) ∈ E, we denote by Λ∗(q; E) the set of points p ∈ E
for which there is a polygonal path γ ⊆ E joining q to p, along which the temporal
variable is strictly increasing. The boundary of any set is taken relative to the one-
point compactification of Rn+1. Thus ∂E contains the point at infinity if and only if E
is unbounded.

Given any point p0 = (x0, t0) ∈ Rn+1 and r > 0, we denote by H(p0, r) the open
lower half-ball {(x, t) : |x − x0|

2 + (t − t0)2 < r2, t < t0}, and by H∗(p0, r) the open upper
half-ball {(x, t) : |x − x0|

2 + (t − t0)2 < r2, t > t0}. Let q be a boundary point of the
open set E, including the point at infinity if E is unbounded. In our classification of
boundary points, we always suppose that the boundary of E does not contain any
polar set whose union with E would give another open set. We call q a normal
boundary point if either q is the point at infinity, or q ∈ Rn+1 and every lower half-
ball centred at q meets the complement of E. Otherwise, we call q an abnormal
boundary point. The abnormal boundary points are of two kinds, according to whether
they can be approached from above by points in E. If there is some r0 > 0 such that
H∗(q, r0) ∩ E = ∅, then q is called a singular boundary point. Otherwise, if for every
r > 0 we have H∗(q, r) ∩ E , ∅, then q is called a semi-singular boundary point. The
set of all normal boundary points of E is denoted by ∂nE, that of all abnormal points
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478 N. A. Watson [3]

by ∂aE, that of all singular points by ∂sE, and that of all semi-singular points by ∂ssE.
Thus ∂E = ∂nE ∪ ∂aE and ∂aE = ∂sE ∪ ∂ssE. The essential boundary ∂eE is defined
by ∂eE = ∂nE ∪ ∂ssE = ∂E\∂sE.

If E is an open set, and f is an extended-real valued function defined on ∂eE,
the upper class determined by f , denoted by UE

f , consists of all lower bounded
hypertemperatures on E that satisfy

lim inf
(x,t)→(y,s)

w(x, t) ≥ f (y, s) for all (y, s) ∈ ∂nE,

and
lim inf

(x,t)→(y,s+)
w(x, t) ≥ f (y, s) for all (y, s) ∈ ∂ssE.

The lower class determined by f , denoted by LE
f , consists of all upper bounded

hypotemperatures on E that satisfy

lim sup
(x,t)→(y,s)

w(x, t) ≤ f (y, s) for all (y, s) ∈ ∂nE,

and
lim sup

(x,t)→(y,s+)
w(x, t) ≤ f (y, s) for all (y, s) ∈ ∂ssE.

The function UE
f = inf{w : w ∈ UE

f } is called the upper solution for f on E, and
LE

f = sup{w : w ∈ LE
f } is called the lower solution for f on E. We say that f is

resolutive for E if LE
f = UE

f and is a temperature on E, in which case the function
S E

f = LE
f = UE

f is called the PWB solution for f on E. A point q ∈ ∂nE is called regular
if limp→q S E

f (p) = f (q) for all f ∈ C(∂eE). A point q = (y, s) ∈ ∂ssE is called regular if
lim(x,t)→(y,s+) S E

f (x, t) = f (y, s) for all f ∈ C(∂eE).
A function w is called a barrier at a finite point q ∈ ∂eE if it is defined on N ∩ E for

some open neighbourhood N of q, is a supertemperature on N ∩ E, is (strictly) positive
on N ∩ E, and satisfies lim(x,t)→(y,s) w(x, t) = 0 if q ∈ ∂nE, or lim(x,t)→(y,s+) w(x, t) = 0 if
q ∈ ∂ssE.

The thermal fine topology is the coarsest topology on Rn+1 that makes every
supertemperature continuous. Concepts relative to the thermal fine topology will be
prefixed with ‘Θ − f ’; for example, Θ − f lim. Concepts with no prefix will refer to
the Euclidean topology. A set L ⊆ Rn+1 is called a semipolar subset of Rn+1 if it can
be written in the form L =

⋃∞
i=1 Li, where each set Li has no thermal fine limit point in

Rn+1.

2. The extension of the Green function of an arbitrary open set

In this section, we supplement Doob’s treatment of the extension of GE(·; q) to Rn+1

by giving a formula for the value of the extension at any finite boundary point of E.
We also use this formula to show that the null limit hypothesis in the Green function
criterion for regularity can be relaxed.
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[4] Regularity of boundary points 479

Theorem 2.1. Let E be an open set, and let q ∈ E. Then GE(·; q) can be uniquely
extended to a function G=

E(·; q) on Rn+1 with the following properties:

(a) G=
E(·; q) is a nonnegative subtemperature on Rn+1\{q}.

(b) G=
E(·; q) = 0 on Rn+1\E and at every finite regular point of ∂nE.

(c) For each finite point q0 ∈ ∂E, either there is c > 0 such that Ω(q0; c) ∩ E = ∅, in
which case G=

E(q0; q) = 0, or there is no such c, in which case

G=
E(q0; q) = lim

c→0+

(
sup

Ω(q0;c)∩E
GE(·; q)

)
. (2.1)

Proof. All except part (c) is given in [4, page 343], but we include a proof for the
convenience of the reader.

We first show that such an extension is unique. Two extensions that satisfy (a) would
both be thermal fine continuous on Rn+1 by [13, Lemma 9.3]. Two extensions that
satisfy (b) would be equal outside the union Z of ∂aE with the set of irregular points of
∂nE, which is a semipolar subset of Rn+1 by [13, Corollary 9.47], and hence thermal
fine nowhere dense in Rn+1 by [13, Lemma 9.24]. Two extensions that satisfy both (a)
and (b) would therefore be equal everywhere on Rn+1.

Let {Dk} be a sequence of open circular cylinders such that Dk ⊆ E for all k,⋃∞
k=1 Dk = E, and each cylinder in the collection {Dk : k ∈ N} occurs infinitely often

in the sequence. Using the notation of [13, Theorem 3.21], for each k we put wk =

πDk · · · πD1G(·; q) on Rn+1. It follows from [13, Theorem 3.21] that {wk} is a decreasing
sequence of supertemperatures on Rn+1. Moreover, by [13, Theorem 6.8], the
restriction to E of the limit of this sequence is the greatest thermic minorant of G(·; q)
on E. We put u(·; q) = limk→∞wk on Rn+1, and note that u(·; q) = G(·; q) on Rn+1\E. By
the fundamental convergence theorem ([4, page 314], [13, Theorem 9.30]), the lower
semicontinuous smoothing û(·; q) is a supertemperature on Rn+1, and

û(r; q) = Θ − f lim
p→r

u(p; q)

for all r ∈ Rn+1. If r is a finite regular point of ∂nE, then r is a thermal fine limit point
of Rn+1\E, by [13, Theorem 9.40], so that

û(r; q) = Θ − f lim
p→r

G(p; q) = G(r; q)

because u(·; q) = G(·; q) on Rn+1\E. Defining

G=
E(·; q) = G(·; q) − û(·; q)

on Rn+1, we obtain a function which possesses properties (a) and (b).
We know from (b) that Z contains the set of points outside E where G=

E(·; q) > 0. We
have already noted that Z is a semipolar subset of Rn+1, and so Z has Lebesgue measure
zero by [13, Theorem 9.27]. Thus G=

E(·; q) = 0 almost everywhere on Rn+1\E. Let q0
be a finite point of ∂E. If there is c > 0 such that Ω(q0; c) ∩ E = ∅, then q0 ∈ ∂nE
and is a regular point by any one of several tests, the most elementary being given
by Pini [10] (for n = 1) and Watson [12, Theorem 36], [13, Theorem 8.49]. Hence
G=

E(q0; q) = 0 by (b). On the other hand, if there is no such c, we put l equal to the
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upper limit in (2.1). Then

l ≤ lim sup
p→q0, p∈E

GE(p; q) ≤ lim sup
p→q0

G=
E(p; q) ≤ G=

E(q0; q) < +∞, (2.2)

because G=
E(·; q) is upper semicontinuous and upper finite on Rn+1\{q}, by part (a).

Given any number L > l, we can find a heat ball Ω(q0; c0) such that q < Ω(q0; c0)
and GE(p; q) ≤ L for all points p ∈ Ω(q0; c0) ∩ E. Therefore, by part (a) and
[13, Theorem 3.51],

G=
E(q0; q) ≤ V(G=

E(·; q); q0; c0) =V(GE(·; q)χE; q0; c0) ≤ V(LχE; q0; c0) ≤ L.

Thus G=
E(q0; q) ≤ L whenever l < L, so that G=

E(q0; q) ≤ l. This, together with (2.2),
shows that G=

E(q0; q) = l. �

Theorem 2.1(c) leads to the following sharpening of the regularity criterion in
[13, Theorem 8.53(c)] for normal boundary points of E. The improvement lies in
the replacement of the condition limp→q0 GE(p; pk) = 0 by condition (2.3) below.

Theorem 2.2. Let E be an open set and let q0 be a finite point of ∂nE. If there is a
countable set {pk : k ∈ I ⊆ N} of points in E such that⋃

k∈I

Λ∗(pk; E) ⊇ E ∩ N

for some neighbourhood N of q0, and if for each k ∈ I such that Ω(q0; c) meets
Λ∗(pk; E) for every c > 0 we have

lim
c→0+

(
sup

Ω(q0;c)∩E
GE(·; pk)

)
= 0, (2.3)

then q0 is regular for E.

Proof. For each k ∈ I, we choose a point rk ∈ E such that pk ∈ Λ∗(rk; E). We denote
by Gk the Green function of Λ∗(rk; E), which is the restriction of GE to Λ∗(rk; E) ×
Λ∗(rk; E) by [13, Theorem 6.7(b)]. Applying Theorem 2.1 to Λ∗(rk; E), we obtain an
extension G=

k (·; pk) of Gk(·; pk) such that (i) G=
k (·; pk) is a nonnegative subtemperature

on Rn+1\{pk}, (ii) G=
k (·; pk) = 0 outside the closure of Λ∗(rk; E), and (iii) if q0 ∈

∂Λ∗(rk; E) then either there is c > 0 such that Ω(q0; c) ∩ Λ∗(rk; E) = ∅, in which case
G=

k (q0; pk) = 0, or there is no such c, in which case

G=
k (q0; pk) = lim

c→0+

(
sup

Ω(q0;c)∩Λ∗(rk;E)
Gk(·; pk)

)
.

In the latter case, our hypothesis (2.3) gives

G=
k (q0; pk) ≤ lim

c→0+

(
sup

Ω(q0;c)∩E
GE(·; pk)

)
= 0.

Hence G=
k (q0; pk) = 0 whenever q0 ∈ ∂Λ∗(rk; E). Since G=

k (·; pk) is a nonnegative
subtemperature on Rn+1\{pk}, we obtain

0 ≤ lim sup
p→q0,p∈Λ∗(rk;E)

Gk(p; pk) ≤ lim sup
p→q0

G=
k (p; pk) ≤ G=

k (q0; pk) = 0.
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Since Gk = GE on Λ∗(rk; E) × Λ∗(rk; E), we deduce that

lim
p→q0,p∈Λ∗(rk;E)

GE(p; pk) = 0 (2.4)

for all k ∈ I such that q0 ∈ ∂Λ∗(rk; E).
We now define a function u on E by putting

u =
∑
k∈I

(GE(·; pk) ∧ 2−k−1),

and show that u is a barrier for E at q0. Since GE(·; pk) > 0 on Λ∗(pk; E) for every k,
we have u > 0 on

⋃
k∈I Λ∗(pk; E) ⊇ E ∩ N. Since a finite sum of supertemperatures is

itself a supertemperature, u is clearly a supertemperature if I is finite. On the other
hand, if I is infinite, [13, Theorem 3.60] and the uniform convergence of the defining
series imply that u is a supertemperature on E. We put J = {k ∈ I : q0 ∈ ∂Λ∗(pk; E)},
and define

v =
∑
k∈J

(GE(·; pk) ∧ 2−k−1), w =
∑
k∈I\J

(GE(·; pk) ∧ 2−k−1)

on E, so that u = v + w. If I\J , ∅, we arrange its elements as a finite or infinite
sequence {ki}1≤i<m, where 1 ≤ m ≤ ∞. For each i there is a neighbourhood Ni of q0
such that GE(·; pki ) = 0 on Ni ∩ E, because GE(·; pki ) = 0 on E\Λ∗(pki ; E). Given any
positive integer j, we put V j =

⋂
ki∈I\J, i≤ j Ni. Then V j is a neighbourhood of q0 such

that ∑
ki∈I\J,i≤ j

(GE(·; pki ) ∧ 2−ki−1) = 0

on V j ∩ E. Therefore

w =
∑

ki∈I\J,i> j

(GE(·; pki ) ∧ 2−ki−1) ≤
∑

ki∈I\J,i> j

2−ki−1 ≤

∞∑
i= j+1

2−i−1 = 2− j−1

on V j ∩ E. Thus limp→q0 w(p) = 0. To consider v, we arrange the elements of J
as a finite or infinite sequence {li}1≤i<h, where 1 ≤ h ≤ ∞. Let ε be a given positive
number. Since (2.4) holds for each k ∈ J, for each i we can find a neighbourhood Bi
of q0 such that GE(·; pli ) < 2−li−1ε on Bi ∩ Λ∗(rli ; E), and therefore on Bi ∩ E because
GE(·; pli ) = 0 on E\Λ∗(pli ; E) ⊇ E\Λ∗(rli ; E). Given any positive integer j such that
2− j < ε, we put U j =

⋂ j
i=1 Bi. Then on U j ∩ E we have

v ≤
∑

li∈J, i≤ j

2−li−1ε +
∑

li∈J, i> j

2−li−1

≤

j∑
i=1

2−i−1ε +

∞∑
i= j+1

2−i−1

≤
ε

2
+ 2− j−1 < ε.

Thus limp→q0 v(p) = 0, and hence limp→q0 u(p) = 0. Therefore u is a barrier for E at
q0, and [13, Theorem 8.46] shows that q0 is regular for E. �
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3. The regularity of normal boundary points

The relaxation of the null limit criterion, given in Theorem 2.2, suggests that a
similar relaxation should be possible using barriers other than those derived from the
Green function. In this section we show that this is the case.

Definition 3.1. Let E be an open set, and let q0 be a finite point of ∂nE such that,
for all c > 0, Ω(q0; c) ∩ E , ∅. A function w is called a heat ball barrier at q0 if it is
defined on N ∩ E for some open neighbourhood N of q, and possesses the following
properties:

(a) w is a supertemperature on N ∩ E;
(b) w > 0 on N ∩ E;
(c) w has a null limit through heat balls centred at q0, that is

lim
c→0+

(
sup

Ω(q0;c)∩E
w
)

= 0.

The condition that, for all c > 0, Ω(q0; c) ∩ E , ∅, is not an important restriction,
because if it is not satisfied then there is c0 > 0 such that Ω(q0; c0) ⊆ Rn+1\E, and so
q0 is regular.

Theorem 3.2. Let E be an open set, and let q0 be a finite point of ∂nE such that, for
all c > 0, Ω(q0; c) ∩ E , ∅. If there is a heat ball barrier u at q0, then there is also
a heat ball barrier v at q0 such that v is a supertemperature on the whole of E and
infE\N v > 0 for each neighbourhood N of q0.

Proof. The proof is an easy modification of the proof of the corresponding result for
standard barriers given, for example, in [13, Ch. 8]. �

Theorem 3.3. Let E be an open set, and let q0 be a finite point of ∂nE such that, for all
c > 0, Ω(q0; c) ∩ E , ∅. If f is an upper bounded function on ∂eE, and there is a heat
ball barrier at q0, then

lim
c→0+

(
sup

Ω(q0;c)∩E
UE

f

)
≤ lim sup

q→q0

f (q).

Proof. By Theorem 3.2, there is a heat ball barrier v at q0 such that v is a
supertemperature on the whole of E and infE\N v > 0 for each neighbourhood N of q0.
We put L = lim supq→q0

f (q), and note that L < +∞ because f is upper bounded. Given
any number M > L, we can find a closed neighbourhood V of q0 such that f (q) < M
for all points q ∈ (V ∩ ∂eE)\{q0}. Since infE\V v > 0, we can choose a positive number
κ such that

M + κ inf
E\V

v > sup
∂eE

f .

By [13, Theorem 7.53], there is a nonnegative supertemperature w on Rn+1 such that
w(q0) = +∞ and w(p) < +∞ for all p , q0. The lower semicontinuity of w implies that
w(p)→ +∞ as p→ q0. Let ε be any positive number. We now put u = M + κv + εw
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on E, and note that u is a lower bounded supertemperature on E. For all points
q ∈ (∂eE)\V , we have

lim inf
p→q

u(p) ≥ M + κ inf
E\V

v > sup
∂eE

f ≥ f (q).

For all points q ∈ (V ∩ ∂eE)\{q0} we have f (q) < M, so that

lim inf
p→q

u(p) ≥ M > f (q).

Moreover,
lim inf

p→q0
u(p) ≥ M + ε lim

p→q0
w(p) = +∞ ≥ f (q0).

It follows that u ∈ UE
f , so that u ≥ UE

f on E. Since ε is arbitrary and w < +∞ on E, we
deduce that M + κv ≥ UE

f . Hence

lim
c→0+

(
sup

Ω(q0;c)∩E
UE

f

)
≤ M + κ lim

c→0+

(
sup

Ω(q0;c)∩E
v
)

= M.

Since M is arbitrary, the result follows. �

Corollary 3.4. Let E be an open set, and let q0 be a finite point of ∂nE such that, for
all c > 0, Ω(q0; c) ∩ E , ∅. If f is a bounded function on ∂eE which is continuous at
q0, and there is a heat ball barrier at q0, then

lim
c→0+

(
sup

Ω(q0;c)∩E
UE

f

)
= lim

c→0+

(
inf

Ω(q0;c)∩E
UE

f

)
= f (q0).

Proof. Theorem 3.3 shows that

lim
c→0+

(
sup

Ω(q0;c)∩E
UE

f

)
≤ f (q0)

and that
lim

c→0+

(
sup

Ω(q0;c)∩E
UE
− f

)
≤ − f (q0),

which implies that
lim

c→0+

(
inf

Ω(q0;c)∩E
LE

f

)
≥ f (q0).

Therefore, because LE
f ≤ UE

f , we have

f (q0) ≤ lim
c→0+

(
inf

Ω(q0;c)∩E
LE

f

)
≤ lim

c→0+

(
sup

Ω(q0;c)∩E
UE

f

)
≤ f (q0). �

Theorem 3.5. Let E be an open set, and let q0 be a finite point of ∂nE such that, for all
c > 0, Ω(q0; c) ∩ E , ∅. If there is a heat ball barrier at q0, then q0 is regular for E.

Proof. By [13, Theorem 8.53(a)], for each point q ∈ E the Green function for E has
the representation GE(·; q) = G(·; q) − S E

G(·;q). Therefore, if there is a heat ball barrier
at q0, then the above corollary shows that

lim
c→0+

(
sup

Ω(q0;c)∩E
GE(·; q)

)
≤ G(q0; q) − lim

c→0+

(
inf

Ω(q0;c)∩E
S E

G(·;q)

)
= 0.

It now follows from Theorem 2.2 and the Lindelöf theorem that q0 is regular for E. �
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4. The regularity of semi-singular boundary points

For semi-singular boundary points, we have the following criterion for regularity.

Theorem 4.1. Let E be an open set, and let q0 = (y0, s0) ∈ ∂ssE. Then q0 is regular
for E if and only if there is a positive number r1 such that H(q0, r1) is a component of
E ∩ B(q0, r1).

Proof. If there is such a number r1, then the restriction of the function w, defined by

w(x, t) =


∫
Rn W(x − z, t − s0)|z − y0| dz if t > s0,

1 if t ≤ s0,

to E ∩ B(q0, r1) is a positive temperature which satisfies lim(x,t)→(y0,s0+) w(x, t) = 0, in
view of [13, Theorem 4.8]. It is therefore a barrier for E at q0, and hence q0 is regular
for E, by [13, Theorem 8.46(a)].

We now suppose, conversely, that there is no such number r1. We choose a
number r0 ∈ ]0, 1[ such that H(q0, r0) ⊆ E, and define a function f on ∂eE by putting
f (p) = |p − q0| ∧ 1. Then f is resolutive for E by [13, Theorem 8.26]. If D = {(x, t) ∈
E : t < s0}, then the restriction of f to ∂eD is resolutive for D, and [13, Lemma 8.10]
shows that S E

f = S D
f on D. Since H(q0, r0) ⊆ E, we have f (x, t) ≥ r0 whenever

t < s0. Therefore f ≥ r0 on ∂eD, and so S D
f ≥ r0 on D by [13, Lemma 8.14(c)].

Hence S E
f (x, t) ≥ r0 whenever t ≤ s0. Our hypothesis implies that, for any positive

integer j, we can find a point (x j, s0) ∈ E such that |x j − y0| < 2− j. Since S E
f is

continuous at (x j, s0) and S E
f (x j, s0) ≥ r0, we can find a point (x j, s j) ∈ E such that

2− j > s j − s0 > 0 and S E
f (x j, s j) > r0/2. Making j→∞, we have (x j, s j)→ (y, s0+)

but S E
f (x j, s j)9 0 = f (y0, s0). Hence q0 is irregular for E. �

Corollary 4.2. Let E be an open set, let C be a component of E, and let q0 be a point
in ∂ssC ∩ ∂ssE. Then q0 is regular for C if and only if q0 is regular for E.
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