
SHEETS OF REAL ANALYTIC VARIETIES 

ANDREW H. WALLACE 

Introduction. In a previous paper (4) the author worked out some results 
on the analytic connectivity properties of real algebraic varieties, that is to 
say, properties associated with the joining of points of the variety by analytic 
arcs lying on the variety. It is natural to ask whether these properties can be 
carried over to analytic varieties, since the proofs in the algebraic case depend 
mainly on local properties. But although this generalization can be carried 
out to a large extent, there are, nevertheless, difficulties in the analytic case, 
owing mainly to the fact (cf. 2, § 11) that a real analytic variety may not be 
definable by means of a set of global equations. Thus, although the general 
idea of the treatment given here is the same as in (4), some variation in the 
details of the method has proved to be necessary, and some of the final results 
are slightly weaker in form. 

As in (4) the key result is an approximation theorem for piecewise analytic 
curves on a variety; this theorem is stated in § 2 and then proved in §§ 3 
and 4. In § 5 the approximation theorem is applied to the discussion of the 
sheets, that is, the maximal analytically connected sets, of a real analytic 
variety. 

As regards further literature on the subject of real analytic varieties, see 
Whitney (5 and 6); in the former paper an approximation theorem of the 
type just mentioned is proved for analytic manifolds (that is, varieties without 
singularities), while in the latter certain decomposition theorems are obtained 
for a wide class of varieties. 

1. Real analytic varieties. In this paper the term real analytic variety 
will be applied to a set F in a fixed Euclidean space En such that V is closed 
in En and each point p of V has a neighbourhood U in the ambient space such 
that U r\ V is the set of zeros of a finite collection of functions analytic in 
U. Thus the term is equivalent to "sous-ensemble analytique" as in (2). At 
each point p of V, V defines a germ of a real analytic variety VP. Write Vp 

for the complexification of VPJ that is to say, the smallest germ of a complex 
analytic variety containing Vp and contained in the complex w-space obtained 
by allowing the co-ordinates in En to take complex values. The dimension 
of Vp (that is to say, the dimension of the highest dimensional component 
of Vp') will be called the local dimension of V at p, to be written as dimpF. 
Dim pF has a maximum (< n) over all points p of V\ this maximum will be 
called dimF. 
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A regular or simple point of F is a point p a t which dim^ V = dim V and a t 
which local analyt ic co-ordinates can be set up in En in such a way t ha t V 
has locally the equations xT+i = xT+2 = • • • = xn = 0. A singular point of V 
is a point which is not regular; note t h a t this includes any point where the 
local dimension is less than the maximum for V. T h e set of all singular points 
of V will be called the singular locus of V. 

I t is essential a t this point to note t h a t the singular locus of a real analyt ic 
var ie ty is not necessarily an analyt ic variety. For example, consider the 
analyt ic var ie ty defined in E3 by the single equation x2yz — z2(y + z) = 0. 
T h e cross-section of this surface by a plane y = cons tan t is a cubic curve 
with a loop, and as y tends to zero this loop flattens out into the line segment 
on the x-axis joining the points x = ± 2 /3 \ / 3 . I t is then easy to check t h a t 
the singular locus of this var ie ty consists of this line segment along with the 
whole 3>-axis, and this set is certainly not an analyt ic var ie ty. Of course the 
surface under consideration could be regarded as a real algebraic var ie ty , in 
which case the whole of the x-axis would be included in the singular locus, 
and this locus would be an algebraic sub-variety. T h e essential difference is 
t h a t for real analyt ic varieties the regulari ty or otherwise of a point is deter­
mined by local equations, and not, as in the algebraic case, by global equat ions 
(which in general do not exist in the analyt ic case; cf. (2)) . 

Another feature of the example jus t given concerns the approximation of 
analyt ic arcs (definition a t the beginning of § 2) on the surface V with the 
equation x2yz — z2{y + z) = 0. T a k e two regular points of V on the x-axis 
and on opposite sides of the origin, say the points (db 1, 0, 0), and call them 
p and q. T h e segment pq of the x-axis is an analyt ic arc joining p and q bu t 
there is no other arc joining these points in such a direct manner . In fact if C 
is any other arc on V joining p and q and if K is its projection on the (x, y)-
plane, then the pa r t of K lying in the str ip defined by |x| < 2 / 3 \ / 3 is covered 
three times by pa r t of C. I t follows, for example, from this t h a t an approxi­
mation of K, however good, cannot be lifted to an approximation of C in V 
in the manner of (4). T h e trouble is t h a t in (4) the success of the method 
used depended on the fact t h a t the arcs studied never had more than 
finitely many points in common with the singular locus of the var ie ty. But , as 
can be seen from the present example, an arc on a real analyt ic var ie ty can 
have a sub-arc in common with the singular locus, even when the end-points 
are regular. 

T h e example jus t given indicates tha t , in order to s tudy properties of real 
analyt ic varieties analogous to those studied in (4) for algebraic varieties, a 
weaker form of approximation for curves will have to be used, in which the 
approximation C of a given curve C will lie in a preassigned neighbourhood 
of C, bu t C will be mapped on C by a mapping which m a y be (at least along 
certain arcs) many-one. 

2. Statement of the approximation theroem. For convenience some 
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of the definitions of (4) will be repeated here. An analytic arc in Euclidean 
n-space En is an arc given by parametr ic equations xt = fi(t), i = 1, 2, . . . , n, 
where the ft are real analytic functions of t. The end-points of such an arc 
are assumed to be non-singular; t ha t is to say, the given equations define a 
simple linear branch a t each end-point. A piecewise analytic curve is a union 
of finitely many analytic arcs joined end to end, in such a way t h a t a t a com­
mon end-point P of two of the arcs, say Ci and C2, exactly these two arcs 
meet and no others, and d and Cz have distinct tangents a t P. Each point P 
of the type described is called a joint of the curve. A curve C is said to be 
an e-approximation of a curve C if there is a homeomorphism / of C on C 
such t h a t the distance of p from f(p) is less than e for each p. C and C are 
said to be analytically equivalent a t p if f(p) = p, and if, in a sufficiently 
small neighbourhood U of p, there is defined a mapping T of the form 
T(xi) — xt + hi(x), where the ht are real analytic functions of 
a t p, such t ha t T{C C\ U) = Cf C\ U. Here the hu expanded in power series 
a t p, are assumed to be of order > 2; if they are of order > r, the analyt ic 
equivalence is said to be of order > r. 

One of the main results of (4), which will be required here is: 

LEMMA 2.1. Let C be a piecewise analytic curve in En and let S be a finite set 
of points on C including all singular points of C {note that the joints of C are 
not to be counted as singularities of C). Then for any preassigned e and r there 
is an analytic curve C which is an e-approximation of C with analytic equivalence 
of order > r at each point of S. 

For any set A in En the e-neighbourhood of A is the set of points in the 
union of all spheres of radius e with centres a t the points of A. Wi th this 
terminology the approximation theorem to be proved in this paper can be 
s tated. 

T H E O R E M 1. Let V be a real analytic variety in En and let C be a piecewise 
analytic curve on V, all the joints of C being regular on V. Then for any pre­
assigned e there is an analytic arc C on V and contained in the e-neighbourhood 
of C. In particular the end-points of C are within e-neighbourhoods of those 
of C, and if C is closed so is C. 

T h e idea of the proof of this theorem is as follows. If dim F = r, C will be 
projected on a suitable r-dimensional linear subspace Er of En. Wri t ing the 
projected curve as K, Lemma 2.1 will be applied to give an approximation 
Kr of K. Kr is then to be lifted into V. In the case of a real algebraic var ie ty 
V (or more generally a real analytic var iety given by global equations, with 
singular points defined globally as in algebraic geometry), this lifting is in 
general carried ou t by a one-one correspondence, yielding the stronger approxi­
mation theorem of (4). Here, however, the lifting has to be done by means 
of the local equations of V, splitt ing Kr into a sequence of arcs for the purpose, 
and lifting each one in turn. T h e lifted arcs are then to be s t rung together to 
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give the required curve C. As il lustrated in the example of § 1 the sequence 
of lifted arcs may double back on itself covering pa r t s of K' several t imes. I t 
has to be checked of course t h a t C cannot break up into closed loops, or the 
last condition to be proved in the theorem would not hold. 

Most of the proof is taken up with the process of choosing a set of co-ordi­
nates so t h a t the projection jus t referred to is the orthogonal projection on to 
the space xr+i = xr+2 = . . . = xn = 0. T h e method is to take a point p on 
C, and using local equat ions for F in a neighbourhood U(p) of p, to make a 
list of the various conditions unfavourable to the projection, approximation 
and lifting process described above. I t tu rns out tha t , if co-ordinates are t o 
be changed by orthogonal t ransformations, then the choices which are un­
favourable, in U(p), correspond to an analyt ic subvar ie ty in the space of 
orthogonal t ransformations. Since the curve C can be contained in a finite 
number of neighbourhoods of the type U(p) it follows t h a t a choice of co­
ordinates can be made which is favourable for the whole of C. 

3. Cho ice of c o - o r d i n a t e s . T h e procedure sketched a t the end of the 
last section will now be carried out in detail . T a k e a point p of F as origin. In 
a neighbourhood U(p) of p, V is defined as the set of zeros of a finite number 
of power series in x\, x2, . . . , xn with real coefficients, convergent in U(p). 
Alternatively, V is the set of real zeros of an ideal / in the ring of power 
series in Xi, x2, . . . , xn with real coefficients convergent near p. Wri te V for 
the complexification of V a t p, t h a t is to say, the smallest complex analyt ic 
variety, defined in a complex neighbourhood U' (p) of p (obtained by allowing 
all the co-ordinates to assume complex values) whose set of real points coin­
cides with V r\ U(p). If I is the ideal of V&tp then the ideal of V is generated 
by I in the ring of power series with complex coefficients convergent around p. 

T a k e an irreducible component V0 of V C\ U{p) with dim V0 = dim V, 
provided such a component exists. In the applications to follow this choice 
will always be possible; bu t to cover the cont rary case, if d i m p F 9^ dim I7, no 
restriction will be imposed on the choice of co-ordinates around p. T h e co­
ordinates are now to be changed in such a way t h a t the prime ideal of V0 a t p 
becomes a regular ideal (1 , p . 208). This means tha t , in the new co-ordinates 
Ji, yi, • • . , yn, the ideal is to contain no power series independent of yr+i, 
yr+2, • • • , yn bu t for each In > r it mus t contain a power series regular with 
respect to yn, t h a t is to say, having an exact power of yn among its terms 
of lowest order. T h e method of regularizing an ideal is explained in (1 , p. 208, 
Theorem 4) . I t involves a sequence of linear changes of co-ordinates, which 
can in fact be taken to be orthogonal. And a t each stage the condition t h a t 
a change of co-ordinates should not be suitable is t h a t the elements of the 
corresponding matr ix should satisfy certain algebraic equations. However, 
the procedure followed in (1) is not qui te suitable for the present purpose. 
For there the discussion is carried out in terms of formal series, after which 
a check has to be made as to the region of convergence. This region may 
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well depend on the particular choice of co-ordinates made, whereas here it is 
necessary to work in a sequence of steps, making sure t h a t a t each there is a 
region of convergence independent of the co-ordinates chosen. T h e following 
is a var ian t of the method of (1) designed to meet this requirement. 

LEMMA 3.1. Let C be a compact set of the real analytic variety V. Then co­
ordinates can be chosen, making an orthogonal linear transformation from those 
originally given, such that, in a neighbourhood of each point p of C the co-ordi­
nates of points on V satisfy a polynomial equation in xn with coefficients analytic 
in Xi, X2, . . • , xn-i at p. 

Proof. T h e set C used here will eventually be an analytic curve on V, b u t 
for the moment compactness is the only property wanted. Let p £ C, and 
for convenience shift the origin of the given co-ordinates X\, #2, • . • , xn in 
En to p. In a neighbourhood U(p) of p the points of V are the zeros of an 
ideal / in the ring of power series in the xt with real coefficients convergent 
around p. T a k e a series / in / and assume U(p) is such t h a t / is convergent 
in U (p). Let A be a generic orthogonal n X n matr ix and define the co-ordinates 
3/1 by )/i = !Lnj=iaijXj' Clearly there is an algebraic subvariety W(p) of the 
set 0n of orthogonal n X n matrices such t h a t any specialization of A not 
in W(p) will give a set of co-ordinates y±, . . . , yn such t h a t / is regular with 
respect to yn. Now, by the Weierstrass preparat ion theorem, / can be multi­
plied by a power series in the yt, not vanishing a t p, to give a polynomial g 
in yn whose highest coefficient is 1 and whose other coefficients all are power 
series in y±, y2, . . . , yn-i vanishing a t p. Now the proof of the Weierstrass 
preparat ion theorem (1) shows t h a t all the series involved in the theorem 
are convergent in a smaller neighbourhood W (p) than U(p), obtained in fact 
by reducing the bounds of the various co-ordinates by a factor which depends 
on the upper bound o f / in U(p). Bearing in mind t h a t the linear change of 
co-ordinates being made here is orthogonal, thus leaving spheres invariant , it 
follows t h a t if U(p) is taken as a spherical neighbourhood, U'' (p) can be taken 
as a smaller sphere whose radius is a fraction of t h a t of U(p). T h e fraction 
depends on the upper bound o f / i n U(p), b u t does not depend on the part icular 
choice of the orthogonal matr ix A. C, being compact, can be covered by a 
finite number of neighbourhoods of the type Uf(p), and so the union of the 
corresponding W(p) makes up an algebraic subvariety of the set 0n. If the 
matr ix A changing the co-ordinates from the xt to the yj is chosen not in this 
subvariety it follows a t once t ha t the conditions of the lemma are satisfied 
by the new co-ordinates. 

Note tha t , as the conclusion of the lemma has been left, it is not necessarily 
t rue t h a t the polynomial in y corresponding to some point p of C has its 
coefficients vanishing a t p, unless p happens to be one of the finite set of 
points corresponding to the finite set of V(p) covering C. However some 
factor of this polynomial will satisfy this condition if the origin is shifted so 
t h a t yn = 0 a t p. On the other hand, even without taking any further steps 
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beyond the proof described above, the polynomial in yn corresponding to 
any point of C will always have the coefficient of the highest power of yn 

equal to 1. 
The choice of co-ordinates made in the last lemma is to fix yn once and for 

all, subsequent changes affecting only the co-ordinates, yu y2, . . . , yn-i- With 
the choice of co-ordinates just described, let p be any point of C, and repeat 
the argument of Lemma 3.1, replacing the ideal I of that lemma by the 
intersection of / with the ring of real analytic functions at p independent 
of yn. This argument shows that, for points of F in a neighbourhood of each 
point of C, yn-\ satisfies a polynomial equation with coefficients analytic in 
yi> J2, . . • , yn-2 at p, in particular the coefficient of the highest power of yn-i 
being 1. Proceeding in this way step by step, the following result is obtained: 

LEMMA 3.2. With the assumptions of the last lemma, there ia a choice of co­
ordinates En such that in some neighbourhood of each point 
p of C, the co-ordinates of points on V satisfy a set of equations of the form: 

(1) fi(xu x2, . . . , xr+i) = 0, i = 1, 2, . . . , n - r} 

where ft is a polynomial in xr+i with coefficients real analytic in x±, x2, x3, . . . , 
Xr+i-i at p, the coefficient of the highest power of xr+i being 1. 

It is to be understood in this statement that the set of/* may change when 
the point p is changed. On the other hand, in the case which is to be considered 
later, it will be true that dim^F = dim F at each point p of C, and this will 
be precisely the value of r for each set of equations of the type (1). 

A further adjustment to the co-ordinate system is necessary to enable the 
local equations of V to be brought into a certain canonical form. Let p be a 
point of V at which dim^F = dim F = r, and let F0 be an r-dimensional 
component of F in a neighbourhood of p. Taking p as origin let Rn denote the 
ring of power series in Xi, x2, . . . , xn with real coefficients convergent around 
p and let I be the ideal of Fo in this ring. In the residue class ring Rn/I let 
£* be the residue class of xt, for each i. Then equations (1) are satisfied with 
(#i, x2, . . . , xn) replaced by (£i, £2, • • • , £n), from which it follows at once that 
the quotient field of Rn/I is a finite algebraic extension of that of Rr, the ring 
of convergent power series in £i, £2, . • . , £r with real coefficients. In addition, 
the dimensional condition imposed at p implies that the £* for i — 1, 2, . . . , r 
are independent indeterminates over the real numbers. The object of the next 
bit of working is to pick out a primitive root for this extension, and then to 
change the co-ordinates so that this root will be the residue class of one of 
the co-ordinates. That this can be done locally at the point p is, of course, a 
well-known result. But here the idea is to make the choice of co-ordinates in 
such a way as to bear the relation just described to each component of F in 
some neighbourhood of each point of a compact subset C. 

Returning now to the notation just introduced, note that the %T+i for 
i = 1, 2, . . . , n — r are integral over Rr. Let Ui, u2l . . . , un-r be independent 

https://doi.org/10.4153/CJM-1960-006-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-006-3


SHEETS OF REAL ANALYTIC VARIETIES 57 

indeterminates over the quotient field of Rr and write Rr
r = Rr[ui, u2j. . . , un-r]. 

Then clearly 
n—r 

£ = z2 u£r+i 

is integral over R/. T h u s £ will satisfy an equation of the type : 

(2) r + a.r-1 +... + am = o, 
where each of the at is in R/. As regards the convergence conditions, each of 
the at is a polynomial in the Uj with coefficients in Rr, and so only finitely 
many power series are involved in the equation (2), each series being con­
vergent for sufficiently small values of the £*. (Tha t these series are con­
vergent a t all can be seen, for example, from the fact t ha t equation (2) can 
be derived by rational processes from equations satisfied by the individual 
%r+i, i = 1, 2, . . . , n — r, such as the equations (1), where convergence is 
known. Note t h a t so far nothing is said or known about the reducibility or 
otherwise of (2).) Now the theorem of the primitive root for a finite algebraic 
extension (3) says tha t , provided the ut do not satisfy a set of linear equations 
(which they do not, being independent indeterminates) , £ is a primitive root 
for the quotient field of R/ (£r+i, £r+2, . • • , £w). This means in part icular t h a t 

(3) it = Ft{u, fi, f2, • • • , £r, f ) /G(« , Éi, É2, • • • , fr) 

for each i = 1, 2, . . . , w — r, where each Ft is a polynomial in the Uj and £, 
with coefficients in Rri and G is a polynomial in the Uj with coefficients in 
Rr. Then in all the equations (3) there are only finitely many power series in 
?i> £2, • • • > £r, all convergent for sufficiently small values of the £*. Identifying 
£i with Xi for each i = 1, 2, . . . , r, it follows t h a t there is a neighbourhood 
£/(£) of p in which all the series (in Xi, x2, . . . , x r) appearing in the equations 
(2) and (3) are convergent. Also denote by L(p) the set of linear equations 
in the ut which must not be satisfied if £ is to be a primitive root as jus t 
described. Then if C is a compact set on V it can be covered by a finite number 
of neighbourhoods of the type U(p), and the ut can be given real values such 
t h a t none of the corresponding sets of equations L(p) are satisfied, and such 
t h a t the rational functions appearing in the equations of the type (3) corre­
sponding to each of these neighbourhoods are defined. At least one of the 
ut will be non-zero, say U\. Then take as a new set of co-ordinates in En 

n—r 

X i , X2> • • • » Xf, / j Ui%r-j-i, Xf-\-2, . . . , Xfi. 
i=l 

Changing the notat ion so t ha t these co-ordinates are again wri t ten as Xi, X2, 
. . . , xn the result obtained can be summed up as follows: 

L E M M A 3.3. Let C be a compact subset of the real analytic variety V such that, 
at each point p of C, dimp V = dim V = r. Then co-ordinates in En can be chosen 
in such a way that C is covered by a finite number of neighbourhoods in each of 

https://doi.org/10.4153/CJM-1960-006-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-006-3


58 ANDREW H. WALLACE 

which the points of each r-dimensional local component of V satisfy equations 
of the form 

(4) F(xr+1) = 0 
xt = Fi(xr+i)/G, i = 2, . . . , n — r, 

where F and the Ft are polynomials in x r +i with coefficients which are power 
series in xi, x2, . . . , xr, and G is a power series in Xi, x2, . . . , xT1 all the series 
being convergent in the relevant neighbourhood. 

(It is assumed in speaking of these power series that the origin has been shifted 
to a certain point of the neighbourhood in question.) 

Finally take any point p on the compact set C as origin, p will lie in some 
neighbourhood of the covering of C described in the last lemma, and so the 
points of the r-dimensional components of V at p will satisfy equations of 
the type (4), with G and the coefficients of the Ft and of F real analytic 
at p. The irreducible factors of F corresponding to these components can now 
be picked out, and will have coefficients which can be written as power series 
in Xi, x2, • . . , xT convergent in some neighbourhood of p; the co-ordinates 
xr+2, xr+3, . . . , xn for points of these components will still be given by (4), 
convergence of the series involved holding in some neighbourhood of p. These 
remarks enable a refinement of Lemma 3.3. to be stated: 

LEMMA 3.4. C being as in the last lemma each point p of C has a neighbourhood 
U(p) in which each r-dimensional component of V is exactly the set of points 
satisfying equations of the type (4) with F and the Ft polynomials in xT+i and 
{with p as origin) G and the coefficients of F and the Ft power series in Xi, x2, . . . , 
xT convergent in U(p). In addition, C, being compact, can be covered by a finite 
number of neighbourhoods of the type U(p). 

At this stage it is convenient to make a definition in preparation for the 
next section. In the notation of the last lemma, cover C by a finite number of 
the neighbourhoods U(p), and set up equations of the type (4) for each 
r-dimensional component of V in each such neighbourhood. Let D be the 
discriminant of F\ it will be a series convergent in U(p). Then the set of points 
in (xi, x2, . . . , xr)-space defined by G — D = 0 is a local analytic variety in 
the projection of U(p). The union of all the local varieties obtained in this 
way from all the r-dimensional local components of V in all the U(p) of the 
finite covering of C described in Lemma 3.4. will be called the branch locus 
of V relative to the sets of local equations described in that lemma (or simply 
branch locus if the context is clear). For brevity a set of points in a Euclidean 
space which, like the branch locus just introduced, in the union of a finite 
number of local analytic varieties, each defined in some neighbourhood, will 
be called an open variety. 

4. Displacement of an arc from an open variety. As already pointed 
out, one of the difficulties presented by real analytic varieties is that a curve, 
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a l though not lying entirely in the singular locus, may nevertheless have an 
arc in common with t h a t locus. T h e lemma about to be proved is the main 
step towards resolving this difficulty. 

L E M M A 4.1 . Let V be an open variety in Euclidean n-space Eni and let C be 
an analytic arc contained in V. Then there exists in En an analytic arc C, which 
is an arbitrarily good approximation of C and which meets V only at finitely 
many points. 

Proof. Clearly no generality is lost by assuming t h a t all the components 
of the various local analytic varieties of which V is composed are of dimen­
sion n — 1; this can always be arranged if necessary by enlarging V. T h e 
discussion of the last section can now be applied to V. T h e argument is not 
affected by the fact t h a t V is now an open variety ra ther than a real analyt ic 
var ie ty , since a t each stage only local properties are used. I t then follows 
t h a t co-ordinates can be chosen in such a way t h a t C is covered by a finite 
number of neighbourhoods in each of which V is given by equations of the 
type (4). In this case these equations reduce to a single polynomial equation 
in xn with coefficients which are power series in the remaining variables con­
vergent in the neighbourhood in question, a point in t h a t neighbourhood 
being taken as origin. Let the parametr ic equations of C be xt = fi(t), 
i — 1, 2, . . . , n} where the ft are real analytic functions of t, and t varies 
over some finite interval, say 0 < t < 1. Then there is an analytic mapping 
of the (t, x„)-plane into En given by f(t, xn) = (fi(t),f2(t),... , /„_i(J), xn). T h e 
image of / in En is a piece of analytic surface S containing C, and in part icular 
C is the image of the curve C in the (t, xn)-plane with the equation xn = fn{t). 
If F(xi, X2, . . . , xn) = 0 is the equation defining one of the local varieties 
of which V is composed, then the equation 

^ ( / i ( 0 , / 2 ( 0 , - - - , / » - i ( 0 , ^ ) = 0 
defines a local variety in a neighbourhood of some point of the (t, xn)-plane, 
and the union of all the local varieties obtained in this way forms an open 
variety in this plane. Denote this variety by V. I t is clear t h a t the image 
of V under / is the intersection of 5 and V, and, moreover, the points of V 
are the only ones mapped into S H 7 . And so if the lemma can be proved 
for the curve C relative to the open variety V in the (t, xn)-plane, giving an 
approximation C of C meeting V a t only finitely many points, then the curve 
C = f(C') will satisfy the requirements of the lemma. In order to prove the 
lemma in the plane it is clearly sufficient to take C' to be any sufficiently 
good approximation of C in the plane. Bu t in view of the applications to be 
made of this result, it is necessary to make the approximation in a part icular 
way, as will now be explained. The open variety V consists of a finite number 
of curve branches, each defined in some neighbourhood; let the finite collection 
of points pi denote the centres of these branches along with a finite set of 
points arbitrari ly chosen on C. Let tt be the value of t a t pt. Let g(t) be a 
polynomial in t vanishing only a t the tu to an order a t least r. For example 
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g(t) = II (t — ti)r will do. Then , remembering t h a t C has the equation xn = fn (/) 
define C as the curve with equat ion xn = fn{t) + \g(t), where X is a real 
parameter . Note tha t , in a neighbourhood of each pi the power series express­
ions of the parametr ic equation of C and of C' differ only by high power of 
the parameter if r is taken large, and also tha t , as the parameter X tends to 
zero, the approximation of C by C can be made arbi t rar i ly close. Since one 
of the branches making up V a t each pt is pa r t of C, and since C and C' meet 
only a t the piy it is no t hard to see tha t , for X samll enough, C will meet V 
only a t the pi. Applying the mapping / to the curve C' constructed in this 
way, the following corollary of the above lemma is obta ined: 

COROLLARY. In the above lemma, C can be constructed in such a way that, at 
each of the finitely many points where it meets V, each of its branches is associated 
with a branch of C, and, with a suitable choice of parameter, the parametric 
equations of these branches differ only by terms of high order with coefficients 
depending analytically on a parameter X and tending to zero as X tends to zero. 

T h e proof of Theorem 1 can now be under taken, the following lemma giving 
the discussion of the most difficult s tep in the proof. 

L E M M A 4.2. Let V be a real analytic variety in En and let C be an analytic 
arc on V with at least one of its end-points regular on V. Let C0 be the set of 
points on Cfor which the local dimension of V is r = dimV, and let co-ordinates 
be chosen in En in accordance with Lemma 3.4, relative to the compact set C0 

on V. Let B be the branch locus in (x\, x2, . . . , xr)-space Er corresponding to 
this co-ordinate choice, and to the choice of local equations for V around a finite 
number of points of Co. Then in the ^-neighbourhood of C on V,for preassigned e, 
there is an analytic arc C whose projection in Er meets B at only finitely many 
points. And in particular the end-points of C will lie in e-neighbourhoods of 
those of C. 

Proof. Let K be the projection of C in Er. If KC\B a lready consists of 
finitely m a n y points there is nothing to be done, for C can be taken equal to 
C. B u t it m a y be t h a t subarcs of K lie in B. In this case a set of points pt is 
to be defined on C, along with their projections qt on K (the qt being not 
necessarily all dist inct) . T h e qt are to include all singularities of K and all 
isolated points of K C\ B, and the pt are to include all points of C projecting 
on these. Using local equations of the type (4) for V in neighbourhoods of a 
finite number of points of C, i t may turn ou t t h a t certain arcs on K can be 
lifted to give several copies on V, a p a r t from those which form pa r t of C. T h e 
pi are to include the intersections of C wi th these other copies (these points 
will clearly be finite in number) and the qt are to include their projections. 
Finally, approximate K by an arc Kf in Er as in L e m m a 4.1 and its corollary. 
According to these results Kr C\ B consists of finitely many points, and it is 
clear from the proof of the corollary t h a t these can be assumed to include 
the Qi a lready defined. Any addit ional intersections of Kr and B are now to 
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be included also among the qu and as before all points of C projecting on 
them are to be taken among the pt. I t will be remembered t h a t according to 
the corollary to Lemma 4.1 , K! depends on a parameter X and tha t , around 
the qu Kf takes the limiting position K as X tends to zero. I t is now to be 
shown tha t , if the approximation of K by K! is close enough and if X is small 
enough there is an arc C on V satisfying the requirements of this lemma 
and projecting on K'. 

T o establish the existence of this arc C , sets of neighbourhoods covering 
C and K will now be constructed. K' will then be made to lie in the union 
of these neighbourhoods, and will be divided into arcs each lying in one of 
the neighbourhoods. These arcs will then be lifted into V, and it will be shown 
t h a t some of them can be joined end to end to form the required analyt ic 
arc C. First define £/(#*) as a neighbourhood of qt such t ha t the parametr ic 
equat ions of each branch of K! a t qt, when expressed in terms of a suitable 
parameter , give each co-ordinate as a power series convergent in £/((?*)> and 
in fact uniformly convergent with respect to X, and also such tha t , if these 
equat ions are subst i tuted into the equations of the type (4) for V around pu 

the resulting equations can be solved for x r + i , x r +2, • • • , xn as fractional power 
series in the parameter , convergent for values of the parameter corresponding 
to points of K' in £/(<?*). If several qt coincide, take £/(#*) as the smallest 
of the corresponding neighbourhoods. U(pi) is then to be a neighbourhood 
of pt projecting onto U(qï). In addition U(pi) is assumed to be taken so 
small t h a t no two curve branches on V dit pi projecting into branches of K' 
a t qt have any point in common other than pt. I t should be noted tha t , as 
the results of § 3 are being used here, wha t has jus t been said makes sense 
only around the points of Co and their projections. I t will appear presently, 
however, t h a t C = Co. The curves C, K, Kr will now be split up into a number 
of arcs for which it is convenient to introduce some terminology now. These 
arcs will be called C-arcs, i^-arcs, or X'-arcs according to the curve they lie 
on. C-arcs lying in the neighbourhoods U(pt) will be said to be of the first 
kind. When these arcs are removed the remainder of C consists of finitely 
many disjoint non-singular arcs. Those whose projections are contained in B 
will be said to be of the second kind, and those whose projections do not 
meet B of the third kind. There is a certain amount of arbitrariness in the 
definition of B, depending as it does in the choice of particular neighbour­
hoods; it is not hard to see tha t , by shrinking certain of these neigbourhoods 
if necessary, it can be arranged tha t the whole of C is a union of arcs of the 
three kinds described. T h e projections of these arcs will be called i£-arcs of 
the first, second, and third kinds, respectively. 

Construct now an open covering of C by sets in V. Let 7 be a C-arc of the 
second or third kind, and let K be its projection in Er. Let U(y) be a neigh­
bourhood of 7 not meeting C except in the points of an arc obtained by 
extending 7 slightly in each direction (not far enough to reach any of the 
pi). Also U(y) is to be chosen so t ha t its projection U(K) meets K in the 
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arc K slightly extended at each end. The set of U(pi) and U(y) covers C while 
the U(qt) and U(K) cover K. Now in each U(ql) there will be a set of branches 
of K' approximating i£-arcs of the first kind, and if the approximation of K 
by K! is sufficiently close each U(K) will contain exactly one non-singular 
arc of K' approximating K. These arcs of K! lying in the U{qt) and the U(K) 
will be called i£'-arcs of the first, second, or third kind according to the kind 
of i£-arc they approximate. 

C-arcs, some of which will make up the required curve C', will now be 
defined. To obtain a C-arc of the first kind, take a i£'-arc K! of the first kind, 
through qu say, and change the parameter on it so that it is zero at qt. Sub­
stitute these parametric equations into the appropriate equations of the type 
(4) for V, and calculate all the corresponding roots x r + 1 as fractional power 
series in the parameter /. By the choice of the U(pt) and U{g_i) convergence 
holds for these series for all t corresponding to points on K, and the resulting 
curve branches in En will all actually lie in U(pi). If the fractional power 
series corresponding to one of these branches involve an even root of /, the 
end-points of that branch will lie in the same set U(y) for some y whenever 
the parameter X on which K' depends is taken small enough. On the other 
hand, if an odd root of t is taken, the end-points of the branch will lie in 
two different £/(T) 'S for X small enough. The set of all branches on V obtained 
in this way will be called C-arcs of the first kind. Consider now a X'-arc K 
of the second kind approximating a K-arc K. K is to be lifted into V in a 
similar way to that applied to the arcs of the first kind, K in this case may 
pass through several neighbourhoods in each of which a different set of equa­
tions of the type (4) for V must be used, and so K must be lifted in sections. 
A number of copies will be obtained of K lifted in this way into F, and, taking 
a' to be a compact arc, it is clear that the points of certain of the lifted arcs 
will converge to the points of some C-arc lying over K, as the parameter X 
on which K' depends tends to zero, and the convergence is uniform with 
respect to the variable point on K . If y' is one of these lifted arcs, converging 
to the arc 7 as X tends to zero, y' will lie in U(y) for X sufficiently small. Assume 
now that X is so small that this happens for all arcs like y' obtained in this 
way; these arcs will be called C-arcs of the second kind. C-arcs of the third 
kind are obtained in the same way from the X'-arcs of the third kind. The 
only difference is that in this case there is a unique C-arc over a given K'-arc. 

Suppose that the family of Clares has been constructed and that X is so 
small that the conditions mentioned relative to the arcs of the second and 
third kinds and the end-points of those of the first kind are satisfied. A maximal 
C-arc can now be defined as a maximal union of C-arcs which is itself an 
analytic arc. Since two distinct analytic arcs cannot have a subarc in common, 
it is clear that each C-arc belongs to exactly one maximal arc, and also the 
C-arcs forming a maximal arc follow one another in a well-defined sequence 
(defined by the variation of an analytic parameter on the maximal arc) in 
which each C-arc is traced out exactly once, unless the maximal arc is closed. 
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Now one end-point p of C is assumed, in the hypothesis of the lemma, to 
be regular on V. If 71 is the C-arc on which p lies, it follows t h a t there is 
exactly one C-arc 7 / which has 71 as its limit when X tends to zero, and 
exactly one point p' of t h a t arc will have p as limit. T h e last s t a tement rules 
ou t the possibility t h a t 7 / is an arc of the first kind with parameter obtained 
from t h a t of 71 by taking an even root. Now define C to be the unique maximal 
C'-arc s tar t ing off with 7 / . C is certainly not closed, for it has p' as an end-
point. T h e other end of 7 / will be joined to a second C'-arc 72', t h a t to a third 
73

r , and so on until the other end of C is reached. This must happen after a 
finite number of steps, since there are only finitely many C'-arcs, no one of 
which can be used twice. Also, it has been arranged t ha t each C'-arc of the 
second or third kinds will lie in one of the U(y) and so can be assumed to end 
in one of the U(pi), so t h a t it will join up to an arc of the first kind; and 
similarly each C'-arc of the first kind will join up to one of the second or 
third kind; all this with the exception of arcs which end near the end-points 
of C. I t follows t h a t the second end-point of C will lie in a preassigned neigh­
bourhood of the second end-point of C, if X is small enough. Also, the definition 
of the C'-arcs has ensured tha t , if X is small enough, C will lie in a preassigned 
neighbourhood of C, and so the requirements of the lemma are satisfied by 
C , whose projection K' meets B a t only finitely many points. 

COROLLARY. With the notations of the last lemma, Co, the set of points on C 
where the local dimension of V is r = dim V, coincides with C. 

Proof. T h e proof of this is implicit in wha t has gone before. If the result 
is not t rue there will be a point po different from the initial point p of C such 
t h a t a t all points of the arc ppo the local dimension of' F is r, bu t following 
po and arbitrari ly close to it there will be points of lower local dimension. p0 

will in this case necessarily be among the points pt defined above. Let 7 be 
the C-arc which passes beyond po into the region of lower local dimension, 
K its projection, and K the i£'-arc which approximates it. Then every C'-arc 
lying in U(po) over K must correspond to taking an even root of the parameter 
on K, since the second half of K' has no points of V over it near p0. I t would 
follow t h a t C could not have a second end-point; for such an end-point could 
not lie over any point of K! preceding go, and yet it follows from wha t has 
jus t been said t ha t a moving point on C , s tar t ing a t p, mus t always double 
back when it reaches po, always projecting on a point of K' which precedes 
go- Bu t since there are only finitely many C'-arcs and C cannot be closed a 
contradict ion is thus obtained which proves the corollary. 

T h e proof of Theorem 1 will now be completed. C is now to be a piece-wise 
analyt ic curve on V with all the joints a t regular points of V. Co-ordinates 
in En are to be chosen as in Lemma 3.4, the curve C being taken as the com­
pact set; this choice of compact set is admissible in view of the corollary of 
the last lemma which shows t h a t the local dimension of V is r a t all points 
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of C. Apply Lemma 4.2 to each of the analyt ic arcs of which C is composed. 
T h e result is a collection of analyt ic arcs Ct lying in a preassigned neigh­
bourhood of C, with end-points lying arbi t rar i ly close to the end-points and 
joints of C, and with projections in Er meeting the branch locus B in finitely 
many points. In addit ion, since the joints of C are regular on V, it can be 
assumed t h a t the end-points of the d lie in cellular neighbourhoods of these 
points , and so they can be joined up by analyt ic arcs within these cells. And 
these new analyt ic arcs will have projections in Er not meeting B. Thus , given 
the piecewise analyt ic curve C, a new piecewise analyt ic curve C has been 
constructed in a preassigned neighbourhood of C, with its end-points in 
preassigned neighbourhoods of those of C, and such t h a t the projection K 
of C in Er meets the branch locus B in a t most finitely m a n y points. T h u s to 
complete the proof of Theorem 1 it is only necessary to prove the theorem 
for C. And the major difficulty has now been removed, namely t ha t caused 
by subarcs of the given curve projecting into the branch locus. Using Theorem 3 
of (4), quoted above as Lemma 2.1 , let K' be an approximation of K, with 
analyt ic equivalence a t all singularities of K and a t points of K C\ B, b u t 
smoothing K a t the joints. In addit ion, the results leading to Theorem 3 of 
(4) imply t h a t Kf can be assumed to depend on a parameter X in such a 
way tha t , as X tends to zero, Kf takes the limiting position K in a neigh­
bourhood of each of the singularities and points of K C\ B. Kf is now to be 
lifted into V to give the analyt ic curve C required by Theorem 1. T h e simplest 
way of doing this is to repeat the a rgument of Lemma 4.2, with the simplifi­
cation here t h a t there are no arcs of the second kind. Alternat ively the lifting 
can be done as in (4), using sets of local equat ions like (4) for V instead of 
the global equation which was available here. Note t h a t if this second method 
is used, it is possible to make C and C analytically equivalent a t the singu­
larities of the lat ter . This may be of interest if C happens to be the curve 
which is given. However if the given curve is such t h a t the initial ad jus tment 
replacing C by C (to avoid having arcs projecting into B) it necessary, any 
proper ty of analyt ic equivalence is liable to be lost in the process. I t is not 
hard to see t h a t this ad jus tment wTill be necessary if and only if C has arcs 
in common with the singular locus of V, a si tuation which has been shown 
to be possible by the example of § 1. 

One further remark mus t be made concerning Theorem 1. I t will be noticed 
t h a t the approximat ing curve C given by t h a t theorem passes through all 
the points pt constructed in the course of the proof of L e m m a 4.2, and t h a t 
along with the points which mus t belong to this set any finite collection of 
points on C can be included. This can be s ta ted as a corollary which s t rengthens 
the result of the theorem: 

COROLLARY 2. In Theorem 1, C can be constructed so as to pass through each 
of a finite set of points arbitrarily given on C. In particular the end-points of C 
can be made to coincide with those of C. 
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5. Sheets of an analytic variety. Let F be a real analytic variety 
in En. A subset 5 of V is said to be analytically connected if every pair of 
points of S can be joined by an analytic arc lying in S. A sheet of V is an 
analytically connected subset not contained in any larger analytically con­
nected subset of V. The sheet 5 is said to be proper if it contains a point p 
with a neighbourhood U in En such that V Pi U = S P U. This terminology 
agrees with that of (4). The following results correspond to some of the 
properties derived for sheets of real algebraic varieties in (4). 

LEMMA 5.1. Let p, q, r be three points of a real analytic variety V and let q 
be regular on V. Then, if there are analytic arcs on V joining p to q and joining 
q to r, there is an analytic arc on V joining p to r and meeting a preassigned 
neighbourhood of q. 

Proof. The proof is as for Lemma 17.1 of (4), using here Theorem 1 and 
its Corollary 2 to approximate the union of the given arcs pq and qr by an 
analytic arc from p to r. 

THEOREM 2. Let p be a regular point of the real analytic variety V and let S 
be the set of all points of V which can be joined to p by analytic arcs on V. Then 
S is a sheet of V, and every sheet of V containing a regular point can be con­
structed in this way. 

Proof. The proof, using Lemma 5.1, is essentially the same as that of 
Theorem 13 of (4). 

The following two corollaries correspond similarly to the corollaries of 
Theorem 13 in (4). 

COROLLARY 1. Each regular point of V belongs to exactly one sheet. 

COROLLARY 2. Each sheet of V containing a regular point of V is proper. 

The next theorem corresponds to the dimensional homogeneity established 
in (4) for sheets of real algebraic varieties: 

THEOREM 3. Let S be a sheet of a real analytic variety V containing a regular 
point p of V. Then for any q on S, every neighbourhood of q contains a point q' 
of S which is regular on V. 

Proof. Let C be an analytic arc joining p and q. Set up a co-ordinate system 
as for Lemma 4.2 relative to C, and apply that lemma, along with the Corollary 
2 at the end of § 4. This gives an analytic arc C joining p and q and with 
its projection K' in ET meeting the branch locus B in only finitely many 
points. In particular, C itself can meet the singular locus of V in at most 
finitely many points, and so any neighbourhood of q must contain a regular 
point q' of V lying on C. Since q' is joined to the regular point p by an analytic 
arc on V, Theorem 2 along with its first corollary implies that q' is on S as 
required. 
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A sheet 5 containing a regular point of V will be called /--dimensional. The 
local cellular decomposition described in § 18 of (4) carries over to the real 
analytic case, since the whole construction depends only on the setting up 
of local equations. The result is: 

LEMMA 5.2. Let p be a point of a real analytic variety of dimension r and let 
W be a subvariety containing p (W in fact need only be defined in a neighbour­
hood of p). Then in any preassigned neighbourhood of p there is a neighbourhood 
U of p such that V C\ U is the union of the closures of a set of disjoint open 
cells Ui of dimensions < r such that: 

(1) VJ Frlli = U C\W where W is an analytic subvariety of V, defined at 
least around p, such that U C\Wf D U C\W. 

(2) Each r-cell in the decomposition of V Pi U is contained in exactly one 
proper sheet (note that here, unlike the algebraic case, this statement is only made 
for the cells of highest dimension). 

(3) p G Û\for each i. 
(4) The neighbourhood V of p can be chosen so that all points of U C\ ( V — W) 

can be joined to p by analytic arcs on V meeting W only at p. 

To make the statement of part (2) of the above lemma complete, note 
that each s-cell (for 5 < r) in the decomposition described there consists of 
regular points of a real analytic variety of dimension 5 defined in a neigh­
bourhood of p. Such a cell is thus analytically connected, and so is contained 
in a maximal analytically connected subset of V, namely a sheet. But a 
sufficiently small neighbourhood of a point of the cell in question will meet V 
only at points of the cell, and so the sheet so obtained is proper. A slight 
strengthening of this statement gives the following theorem: 

THEOREM 4. Every point of a real analytic variety V belongs to a proper 
sheet of V. 

Proof. Take any point p on V, and construct a cellular decomposition of V 
around p as in Lemma 5.2. Let M be one of the cells, say of dimension s < r. 
As already pointed out, M is analytically connected. And so, by part (4) of 
Lemma 5.2, the set consisting of M along with the point p is analytically 
connected, and so is contained in some sheet. But a small neighbourhood of a 
point of M meets V only at points of M, and so this sheet is proper. 

It is worth noting that, in the notation of this theorem, the closure M of 
the cell M is analytically connected. For M is part of a real analytic variety 
Vo defined at least in a neighbourhood of p. Now take two points q\ and q2 

in M. If they are in M then they certainly be can joined by an analytic arc 
in M. Suppose q± G FrM. Then, applying Lemma 5.2 to V0 around qu it 
follows that qi can be joined by an analytic arc yi in il? to a point g3 of M, 
and if g2 G M then g3 and q2 can be joined by an analytic arc y2 in M. Then, 
applying Lemma 5.1 to Vo (the fact that Vo may be only locally defined 
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makes no difference), it follows t h a t the union of 71 and 72 can be replaced 
by an analytic arc in M joining qi and q2. A similar a rgument can be used 
if both gi and q2 are in FrM. 

T h e following result corresponds to Theorem 14 of (4) ; note, however, the 
restriction as to dimension. 

T H E O R E M 5. Let V be a real analytic variety in En of dimension r. Then each 
r-dimensional sheet of V is a closed set. 

Proof. Let 5 be an r-dimensional sheet of V, and let p be in the closure S 
of S. Then a neighbourhood U of p contains a point q of 5 , which, by Theorem 
3, can be assumed to be regular on V. By par t (4) of Lemma 5.2 if U is small 
enough p and q can be joined by an analytic arc on V, and so by Theorem 2 
and its Corollary 1, p belongs to the unique sheet determined by the regular 
point g, namely S. S is thus closed. 

In contras t to the algebraic case, the properties of the lower dimensional 
sheets of a real analyt ic variety are somewhat elusive. For al though such 
sheets are contained in the singular locus of V, this locus may not be an 
analyt ic variety. On the other hand, the points of V a t which the local dimen­
sion is less than the maximum form a subset of the singular locus and this 
subset is (as will be shown in a future paper) pa r t of a real analyt ic sub-
variety. Consequently, the results proved above will all extend to the proper 
sheets of V, regardless of their dimension. T h e proposed proof of the assertion 
jus t made depends on a t taching some sort of multiplicity to each singular 
point of V. This is done with reference to local systems of equations. Then , 
a t t empt ing to build up a variety of singular points, one fits the p-îold locus 
in one neighbourhood to the g-fold locus in an adjoining one, with p not 
necessarily equal to q. p and q are necessarily both even or both odd, and 
the process only breaks down if one of them is equal to 1. This cannot happen 
if one has s tar ted a t a point of lower local dimension, where the multiplicity 
a t tached is always even. 
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