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Abstract

A A-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite
labeled graphs and presents a subshift. In Doc. Math. 7 (2002) 1-30, the author constructed a C*-algebra
O¢ associated with a A-graph system £ from a graph theoretic view-point. If a A-graph system comes
from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that
there is a bijective correspondence between the lattice of all saturated hereditary subsets of £ and the
lattice of all ideals of the algebra Og, under a certain condition on £ called (II). As a result, the class
of the C*-algebras associated with A-graph systems under condition (II) is closed under quotients by its
ideals.

2000 Mathematics subject classification: primary 46L.35; secondary 46L.05, 37B10.

1. Introduction

In [7], Cuntz and Krieger presented a class of C*-algebras associated with finite
square matrices with entries in {0, 1}. The C*-algebras are called Cuntz-Krieger
algebras. They are simple if the matrices are irreducible with condition (I). Cuntz-
Krieger observed that the C*-algebras have a close relationship to topological Markov
shifts ([7]). The topological Markov shifts form a subclass of subshifts. For a finite
set X, a subshift (A, o) is a topological dynamical system defined by a closed shift-
invariant subset A of the compact set £ of all bi-infinite sequences of X with shift
transformation o. In [21] (compare {25, 5]), the author generalized the class of the
Cuntz-Krieger algebras to a class of C*-algebras associated with subshifts. He also
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introduced several topological conjugacy invariants and presentations for subshifts by
using K-theory and algebraic structure of the associated C*-algebras with the subshifts
in [23]. For presentation of subshifts, notions of the A-graph system and symbolic
matrix system have been introduced ([23]). They are generalizations of the A-graph
(labeled graph) and the symbolic matrix for sofic subshifts to general subshifts.

We henceforth denote by Z.. the set of all nonnegative integers. Let X be a finite
set that is called an alphabet. A A-graph system £ = (V, E, A, t) consists of a vertex
set V.= Uz, Vi» an edge set E = Uzez+ E;i41, a labeling map A : E - T and
a surjective map (= yy41) : Viz1 — V, for each ! € Z, with a certain compatible
condition, called the local property. Its matrix presentation (M, 41, I 1+1),] € Z, is
called a symbolic matrix system, denoted by (M, I). The A-graph systems give rise
to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams of
the A-graph systems. Conversely, there is a canonical method to construct a A-graph
system from an arbitrary subshift [23]. It is called the canonical A-graph system for
subshift A.

In [24], the author constructed C*-algebras from A-graph systems and studied
their structure. Let £ = (V, E, A, t) be a A-graph system over alphabet . Let
{vi, ..., vfn(,)} be the set of the vertex V;. We henceforth assume that a A-graph sys-
tem £ is left-resolving, that is, there are no distinct edges with the same label and the
same terminal vertex. The C*-algebra O is realized as a universal unique C*-algebra
subject to certain operator relations among generating partial isometries S,, corre-
sponding to the symbols @ € ¥ and projections E! corresponding to the vertices
vie Vi,i =1,...,m(), ! € Z,, encoded by the concatenation rule of £. Irre-
ducibility and aperiodicity for finite directed graphs have been generalized to A-graph
systems in [24]. If £ satisfies condition (I), a condition generalizing condition (I) for
finite square matrices defined by [7], and is irreducible, then the C*-algebra O is
simple. In particular, if £ is aperiodic, then Oy is simple and purely infinite ([24],
compare [27]).

In this paper, we investigate ideal structures of the C*-algebras Og. The discussions
are based on aline of Cuntz’s paper [6] in which the ideal structure of the Cuntz-Krieger
algebras were studied (compare [13]). We generalize condition (II) for finite directed
graphs, defined in [6], to A-graph systems. By considering saturated hereditary subsets
of £ with respect to arrows of edges, we show the following theorem.

THEOREM A (Proposition 3.5, Theorem 3.6). Suppose that £ satisfies condition (I1).
There is a bijective correspondence between the lattice of all saturated hereditary
subsets of £ and the lattice of all ideals of the algebra Og. Furthermore, for any
ideal I of Og, the quotient C*-algebra Og /1 is isomorphic to the C*-algebra Og\c;
associated with the A-graph system £\, obtained by removing the corresponding
saturated hereditary subset Cr for T.
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COROLLARY B. In the A-graph systems satisfying condition (1), the class of the
C*-algebras associated with A-graph systems is closed under quotients by ideals.

By Corollary B, it is expected that rich examples of simple purely infinite nuclear
C*-algebras of this class live outside Cuntz-Krieger algebras (compare [24, Theo-
rem 7.7], [16], [26] and [20]). We further study the structure of an ideal of O in
Section 4. We prove that an ideal of Oy is stably isomorphic to the C*-subalgebra
of Og associated with the corresponding saturated hereditary subset of V (Theo-
rem 4.3). As a result, the K-theory formulae for ideals of O are presented in terms
of the corresponding saturated hereditary subsets of V (Theorem 4.5).

If a A-graph system £ comes from a finite directed graph G, the associated C*-
algebra Og¢ becomes a Cuntz-Krieger algebra O, for its adjacency matrix A with
entries in {0, 1}. The results of this paper, Theorem A, Corollary B, Theorem 4.3,
Theorem 4.5, and Proposition 4.6 are generalizations of Cuntz’s result [6, Theorem 2.5]
for Cuntz-Krieger algebras. Other generalizations of Cuntz-Krieger algebras from
this graph point of view have been studied by [2, 10, 12, 15, 17, 18, 30, 34] and [35].
Related discussions for C*-algebras generated by Hilbert C*-bimodules can be found
in [14].

2. Review of the C*-algebras associated with A-graph systems

Recall that a A-graph system £ = (V, E, A, ¢) over an alphabet X is a directed
Bratteli diagram with vertex set V = (J,.;, Vi and edge set E = | J,;, Eis+1 that
is labeled with symbols in £ by A : E — X, and that is supplied with surjective
maps (= {41) : Vi1 = Vi forl € Z,. Here, both the vertex sets V,, [ € Z,
and the edge sets E; ., ! € Z, are finite disjoint sets. An edge e in E;;,; has
its source vertex s(e) in V; and its terminal vertex #(e) in V| respectively. Every
vertex in V has a successor and every vertex in V, for [ € N has a predecessor. It is
required that there exists a bijective correspondence, which preserves labels, between
{e € Ejjpr | t(e) = v,u(s(e)) = u}and {e € Ei_y; | s(e) = u,t(e) = t(v)} for
all pairs of vertices u € V;_; and v € V,;,. This property of the A-graph systems is
called the local property. We call an edge e € E,; ;) a A-edge and a connecting finite
sequence of A-edges a A-path. Foru,v € V, if 1(v) = u, we say that there exists an
t-edge from v to u. Similarly we use the term ¢-parh. We denote by {v{, v, ..., v},
the vertex set V; of V at level l. A finite labeled graph (G, A) over ¥ with underlying
finite directed graph G = (V, E) and labeling map A : E — X yields a A-graph
system £ by setting V, = V, Ej;;y = E forl € Z, and ¢ = id (compare {24,
Section 7]).

Let us now briefly review the C*-algebra Oy associated with the A-graph system £,
which was originally constructed in [24] to be a groupoid C*-algebra of a groupoid
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of a continuous graph obtained by £ (compare {8, 9, 31]). The C*-algebras O are
generalization of the C*-algebras associated with subshifts. That is, if the A-graph
system is the canonical A-graph system for a subshift A, the constructed C*-algebra
coincides with the C*-algebra O, associated with the subshift A in [26] (compare
[5D.

Let £ = (V, E, A,t) be a left-resolving A-graph system over ¥. We denote
by A the presented subshift Ag by £. We denote by A* the set of admissible
words in A of length k. We set A* = -, A%, where A° denotes the empty word.
Define the transition matrices A; 4y, 141 of £ by setting for i = 1,2, ..., m(),
j=L2,....m(l+1),xd€X,

o 1 if s(e) =}, A(e) = a,t(e) = v} forsome e € Ey 4,
Al,H—l(l’ o, ]) = .
0 otherwise,

1 if¢ vy =,
1,,1+1(i,j)=[ (0570 =

0 otherwise.

The C*-algebra Oy is realized as the universal unital C*-algebra generated by partial

isometries S,, @ € % and projections E!, i = 1,2,...,m(l), ] € Z, subject to the
following operator relations called (£)
2.1) D oSS =1,
a€l
m(l) m(+1)
(2.2) Y El=1, El=) LG DE,
i=1 j=1
(2.3) SpS,E; = E|S;S;,
m(l+1)
(2.4) SyEISp =Y A, B, HE,
j=1

forpe X, i=12,...,m(),l € Z,. It is nuclear ([24, Proposition 5.6]). The
relations (2.1), (2.3) and (2.4) yield the relations

ml+1)

(2.5) El =) 3 Aunl.e DSEMNS,

el j=1

fori =1,2,...,m(),! € Z,. Foraword u = p;---u, € A*, weset S, =
Sy, -+ S, Then the algebra of all finite linear combinations of the elements of the
form S, E!S!, foru,v e A*i=1,...,m(),l € Z,, is a dense *-subalgebra of Og.
We define three C*-subalgebras Fi, (k < 1), F° and Fg of Og. The first one,
Fi, is generated by S,E'S*, u,v € A, i = 1,...,m(l), the second one, F°, is
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generated by F}, k < 1,1 € Z,, and the third one, Fg, is generated by F>, k € Z,.
There exist two embeddings ¢4, : F. < F;*!, coming from the second relation
of (2.2) and Ay k41 : Fi <> Fit1, coming from (2.5). The latter embeddings induce
an embedding of F° into F?, that we also denote by A; ;4. Since the algebra F] is
finite dimensional, the embeddings ¢4, : F. < F;*', 1 € N yield the AF-algebra
F¢°, and the embeddings Ay x4y @ F° > F2,, k € Nyield the AF-algebra Fo.

For a vertex v} € V, set

there exists an edge e, .+ € E,ns forn > 1
such that v} = s(e1141), 1 (€nnt1) = S(€nt1,n42)s

r+@h) = {(al,az, ..)exV
A-(en,n+1) = 0p_14+1

the set of all label sequences in £ starting at v/. We say that £ satisfies condition (I)
if for each v/ € V, the set ['*(v!) contains at least two distinct sequences. Under
condition (I), the algebra Q¢ can be realized as the unique C*-algebra subject to the
relations (£). This means that if :S’\(,, o € X, and E\{, i=1,....,m),!l € Z,, are
another family of nonzero partial isometries and nonzero projections satisfying the
relations (£), then the map S, — S, E’ — E extends to an isomorphism from Og
onto the C*-algebra (’)g generated by Sa, a € X, and E! Li=1,....mW),1l e Z,
({24, Theorem 4.3]).

Let Ag be the C*-subalgebra of Og generated by the projections E!,i =1, 2, .
m(l),l € Z,. Let Qg the projective limit of the system ¢, : Vi, —» V, [ € Z+.
We endow Q¢ with the projective limit topology so that it is a compact Hausdorff
space. An element of Q¢ is called an (-orbit. By the universality of the algebra Og
the algebra A is isomorphic to the commutative C*-algebra C(§2¢) of all complex
valued continuous functions on 2. As a corollary of [24, Theorem 4.3], if £ satisfies
condition (I), for a nonzero ideal Z of Og, we have 7 N Ag # {0}.

A A-graph system £ is said to be irreducible if for a vertex v € V, and an t-orbit
x = (X:)iecz, € S2g, there exists a A-path starting at v and terminating at x,, v for some
N € N. Define a positive operator Ag on Ag by Ag(X) =Y ., S:XS, for X € Ag.
The operator A¢ on Ag induces the embedding F° C F%,, k € N so as to define the
AF-algebra F¢ = l_g)n F°. We say that Ag is irreducible if there exists no non-trivial
ideal of A invariant under Ag. Then £ is irreducible if and only if ¢ is irreducible.
If £ is irreducible with condition (I), the C*-algebra Oy is simple ([24, Theorem 4.7],
compare [27]).

3. Hereditary subsets of the vertices and ideals

This section and the next section are the main parts of this paper. In what follows we
assume that a A-graph system £ = (V, E, A, 1) over I is left-resolving and satisfies
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condition (I). We mean by an ideal of a C*-algebra a closed two-sided ideal. Recall
that the vertex set V, is denoted by {v}, ..., vh}.

. { . .
For vl € Vi and vt € Vi, we write v) > v} if 41 (0f"!) = v]. We also write

v > v if there ex1sts an edge ¢ € E;, such that s(e) = v}, t(e) = v"'. For

i

. t . A . .
le VI and V5™ € Vi, we write v} > vl (respectively v] > viH) if there exist

it L iR " such that

] k-1

&

13 I ¢ —1
> vi+1 L. I+k

A A A -1 A
vl{ i zl > v{+1 > > Ut+k 1 S 'Ul+k).

15 tk—1 —_ m

vt (respectively v

IV~

ez
A subset C of V is said to be (-hereditary (respectively A-hereditary) if for vl € CNV,
the condition v} > vi*! (respectively v/ é V™) implies vi*' € C. It is said to be
hereditary if C is both t-hereditary and A- hereditary It is said to be ¢- saturated
(respectively A- saturated) if it contains every vertex v! € C NV, for which v/ > v!*!
(respectively v/ > v'“) implies v’+l € C. If C is both (-saturated and - saturated it
is said to be saturated.

DEFINITION. A A-graph system £ = (V’, E’, ), ') over ¥’ is said to be a A-graph
subsystem of £ if it satisfies the following conditions:

B£V/ CVi, B#E),,, CEyun, forlel,
A.'Er = A./, le/ = l./, 2, - Z,

and an edge ¢ € E belongs to E’ if and only if the both vertices s(e), t(e) belong
to V’'. Hence a A-graph subsystem is determined by only its vertex set.

LEMMA 3.1. For a saturated hereditary subset C C V, set

V\€ = V\C,
C={ecE|s(e), tle) € V\C},

AN =Alpe, € =1t]pc.
Then (V\¢, E\¢, A\C, (\C) is a A-graph subsystem over T of L.

PROOF. For a vertex u € V,\C, there exists a vertex w € V,\fl such that ¢(w) = u,
because C is t-saturated. Similarly, there existanedgee € E,\V,C‘L1 anda vertex w’ € V,\fl
such that s(e) = u t(e) = w’, because C is A-saturated. Let u, v be vertices with
ue V) veVs 42 Putv’ = 1(v). As C is t-hereditary, we have that v’ belongs to V,\fl
As C is A-hereditary, if an edge e € E| ., satisfies  (¢) = v, one sees that s(e) belongs
to V,\ and hence ¢ belongs to E,\',CH. Therefore (V\¢, E\XC, A\€ (\C) inherits the local
property of £. Thus (V| E\¢, A\¢ (\C) becomes a A-graph system. O
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g

We denote by £\¢ the A-graph system (V\¢, E\C, A\C (\€) and call it the A-graph
subsystem of £ obtained by removing C. Let Z. be the closed ideal of Og generated
by the projections E! for v! € C, that is, Zc = Og{E! | v} € C}Og the closure of
OQ{E,’ | Ul( € C}Og

LEMMA 3.2. The set of all linear combinations of elements of the form

G.1) S,E'S?

i~y

for vl e C, u,veA*
is dense in Ic.

PROOF. Since the finite linear combinations of elements of the form S; E% S, for
IEl, Inl < p, f=1,...,m(p) is dense in Opg, elements of the form

S;E7S}E|S,E!S;, for vjeC, |, Inl <p, K. Iyl <q

g7y’
span the ideal Zc. Put T = S, E} S} E|S; EZS} and assume T # 0. The equality

m{l+(nl)

SIEIS, = Y A, n, HE;

j=1

holds, where A; 4, (i, n, j) = 1, if there exists a A-path from v/ to v?"" with label »,

otherwise A, 145G, 1, j) = 0. The vertex v/™™ belongs to C if A4y, 1, j) = 1,
because v] € C and C is A-hereditary. As T = S;E}S;E|S,S;S; EZS} and we may
assume that [ is large enough, T is assumed to be of the form T = S; E! S, S, EZS; for
v} € C. As T # 0, the element E|S; S, is either of the form E.S,, or E!S} for some
word v. In the former case, we have T = S; S, S} E|S,EZS. Since S;E|S, is a finite
linear combination of E;H"' for v?'“' € C and [ is large enough, T is a finite linear
combinations of elements of the form (3.1), because C is A-hereditary. In the latter
case, we have T = S, E'S? E?S,S7S;. Since STE1S, is a finite linear combinations of
E?™ for vI*" € V,,,, and | is large enough, we have T = S, E!S?,. Hence we get
the desired assertion. a

LEMMA 3.3. If E! belongs to the ideal L, the vertex v! belongs to the set C.

PROOF. Fork <1, set
—_ ! ox
Eu= Y  S.ES:
. j
|u|=k,v§EC

belonging to Zc. For an operator T = S; E|S; with v/ € C, it follows that TE;, =
E,;,T =T for large enough k, [. Lemma 3.2 says that { £} ;},, is an approximate unit
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for Zc. Suppose that a vertex vt € V does not belong to C. It suffices to show that
the equality

(3.2) WEYEw — ES|l =1

holds for all large enough &, I. We fix k < [ large enough. We may assume that
EYEy; #0and L + k < I. There exists an admissible word u of length k such that
S:E7S,E # 0 and hence S;E}S, > E!. On the other hand, C is saturated, so we
may find a A-path 7 in E ;,;, whose source vertex s(7) is vf, and an t-path from the
terminal vertex ¢ (;r) of 7 to a vertex vi, that does not belong to C. We set y = A(w)
the label of 7 so that S} E S, > E}. It then follows that

E; > S,S'E}S,S, + §,S;E}S,S; > S,E;S. + S,E,S;.
Since 37,y v .ec SvE}S; is orthogonal to S, E|, S}, one obtains that
Ej'Ek‘l - Eﬁ' > S},E;S;
so that (3.2) holds. O

LEMMA 3.4. For any nonzero closed ideal I of the C*-algebra Oy, put
Cr={veV|E eI}
Then Cz is a nonempty saturated hereditary subset of V.

PROOF. Since £ satisfies condition (I), the set C7 is nonempty because of the
uniqueness of the algebra Og. Take v! € Cz. Suppose that v'+1 satisfies v! ; v'+l
The inequality E! > E'*' assures E’+1 e 7. Suppose next v' > vi*!. There exists a
symbol & € X such that A, a, ]) = 1. By (2.4), we have S*E’Sa > E;*' so that
E'*' ¢ T. Hence C7 is hereditary. For v/, suppose that v} > v%*' implies v’+l € Cq.
ThlS means that I;,;,,(i, j) = 1 1mp11es E’Jrl e Z. By the second equahty of (2.2),
we see E! € Z. Suppose next that v/ > vi*! implies v/*' € Cz. This means that
A, @, j) = 1implies Ef*' € 7. By (2. 4) we have S;EfSa eI foralla € T, so
that E! =3 - SuSiE! SaS; belongs to Z. Thus Z is saturated. O

PROPOSITION 3.5. Let £ = (V, E, A, t) be a A-graph system satisfying condition (]).
Let C be a saturated hereditary subset of V. A vertex v} belongs to C if and only if
E! belongs to I.. Hence there exists a bijective correspondence between the set of all
saturated hereditary subsets of V and the set of all ideals in Og.

PROOF. Let C be a saturated hereditary subset of V. For a vertex v/ € V, we have
v! € C if and only if E! € Z by Lemma 3.3. For an ideal 7 of Og, we have E! € 7
if and only if v/ € Cz by definition of Cz. Hence we conclude the assertions. ]
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DEFINITION. A A-graph system £ satisfies condition (II) if for every saturated
hereditary subset C C V, the A-graph system £\C satisfies condition (I).

Let A be an n x n square matrix with entries in {0, 1}. Then A satisfies condition
(I) in the sense of Cuntz [6] if and only if the natural A-graph system £+ constructed
from A satisfies condition (II) in the above sense (compare Section 5).

THEOREM 3.6. Suppose that a A-graph system £ satisfies condition (II). For an
ideal T of Og, the quotient C*-algebra Og /T is isomorphic to the C*-algebra Og\cr
associated with the A-graph system £\T obtained from £ by removing the saturated
hereditary subset C1 for T.

PROOF. We denote by S,, E,’ the quotient images of S,, E! in the quotient C*-algebra
O¢ /T respectively. Let s,, ' be the canonical generating partial isometries fora € X
and the projections corresponding to the vertices v' of V7 in Og\c;. Since we have
E! # 0if and only if v/ € V\Z, the relations

hold. By the uniqueness of the algebras Og and Og\c;, subject to the operator
relations, the correspondence S, < s,, Ei < ¢! fora € X, v/ € V\T extends to an
isomorphism between Og /7 and Ogcz . O

COROLLARY 3.7. In the A-graph sytems satisfying condition (I1), the class of the
C*-algebras associated with A-graph systems is closed under quotients by its ideals.

We say a closed ideal J of Ag to be saturated if Ag(E') € J implies E} € J. We
are assuming that a A-graph system £ satisfies condition (I).

LEMMA 3.8. For an ideal T of Og, set J = T 0 Ag. Then J is a nonzero
Ag-invariant saturated ideal of Ag.

PROOF. It suffices to show that 7 is saturated. Suppose that Ag(E!) € J. We
see S*E'S, belongs to J for each @ € £. Hence E! = ), .+ Sy S:E! S, S belongs
to J. a

LEMMA 3.9. There exists a bijective correspondence between the set of A ¢ -invariant
closed saturated ideals of Ag and the set of saturated hereditary subsets of V.

PROOF. Let J be a Ag-invariant saturated ideal of Ag. PutC; = {v} € V | E! €
J). As J is Ag-invariant, we have 3, s StE'S, belongs to J for v/ € C7. Hence
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A (@, a, j) = 1 implies Eﬂ-“ € J. This means that C 7 is A-hereditary. Suppose
that Ay, , j) = 1 implies v/ € Cz. It follows that A¢(E!) € J and hence
vl € Cg, because J is saturated. By the second equality of (2.2), we know that C 7
is t-hereditary and ¢-saturated.

For a saturated hereditary subset C of V, let I be the ideal of O¢ generated by
E! for v} € C. Put Jc = Ic N Ag. By Proposition 3.5, a vertex v! belongs to C if
and only if E! belongs to Jc. It is easy to see that Jc is Ag-invariant because C is

A-hereditary, and Jc is saturated because C is A-saturated. O

We remark that £ is irreducible if and only if there is no nontrivial A¢-invariant
ideal of Ag. The latter property is also equivalent to the condition that there is no
proper hereditary and ¢-saturated subset of V. Thus we see the following theorem.

THEOREM 3.10. Consider the following six conditions.
(1) Og is simple.
(i1) There is no nontrivial Ag-invariant saturated ideal of As.
(iii) There is no proper saturated hereditary subset of V.
(iv) £ isirreducible.
(v) There is no nontrivial Ag-invariant ideal of Ag.
(vi) There is no proper hereditary and t-saturated subset of V.

Conditions (i)-(iii) are equivalent to each other, and also conditions (iv)—(vi) are
equivalent to each other. The latter conditions imply the former conditions.

PROOF. As nontrivial ideals of O¢ bijectively correspond to saturated hereditary
subsets of V, the first three conditions are equivalent each other. It suffices to show
that (iv) is equivalent to (vi). Assume that £ is irreducible. Let C be a nonempty
hereditary and (-saturated subset of V. Take a vertex v} € C. Let U N(vf ) be the set of
1-orbits 4 = (u,).cz, € Q2¢ such that there exists a A-path of length N from v{ to the
vertex u;,y. Since £ is irreducible, we have Q¢ = (J5_, Un(v}). Hence there exist
N{, N3, ..., N, such that Q¢ = U;'.=1 Uy, (v}), because Uy (v!) is open in Qg. We
may assume that 0 < Ny < N, <.-- < N,. Weput N, = L. For a vertex w € V),
find an t-orbit x = (x,)xcz, € Qg such that x;,; = w. Take N, suchthatx UNk(vf).
Since C is A-hereditary and (-hereditary, we see x;, 5, € C and hence w € C. This
implies V;,y C C. Now C is t-saturated, so we conclude that V = C. Therefore we
get the implication from (iv) to (vi).

Suppose that £ is not irreducible. There exists an t-orbit u = (#,),cz, € S2¢ and
a vertex v} such that u does not belong to US_ Uy (v'). Let V" (v}) be the set of all
vertices w in V4 that are terminal vertices of A-edges whose source vertices are v!.
Put V(v}) = US_,V¥(v)) and

W) ={we V|v>uw for some vertex v e V(v)}U V).
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By the local property of the A-graph system, the set W (v') is A-hereditary and the
vertices u, do not belong to W(v!) for all n € Z,. It is by definition that W (v')
is t-hereditary. Let C be the saturation of W (v) with respect to é As W(vf) is
A-hereditary, C is so from the local property of A-graph system. It is obvious that C
is t-hereditary. We obtain a proper hereditary and ¢-saturated subset C of V. g

4. Structure of ideals

In this section, we prove that an ideal of Oy is stably isomorphic to the C*-
subalgebra of O associated with the corresponding saturated hereditary subset of V.
As a result, we can present the K-theory formulae for ideals of Og¢ in terms of the
corresponding saturated hereditary subsets of V. The notation is as in the previous
sections. For a saturated hereditary subset C of V, put for v/ € C

Ac(vf) = {p, € A

there exists a A-path m such that A(7) = u,
s(m) € C,t(m) = ! ’

where s(;r) and ¢ (;r) are the source vertex and the terminal vertex of m respectively.
We denote by O¢(C) the C*-subalgebra of O¢ generated by elements of the form
S,E!S* for u,v e AC(v), v} € C.

LEMMA 4.1. The set of all finite linear combinations of elements of the form S, E' S%,
for u,v € AC(v), v! € C, is a dense x-subalgebra of Og(C).
'PROOF. For vj, v} € C, u, v € A°(v)), £, n € A°(v}), suppose that
S.E;S}S¢E;S; #0.
We may assume |v| > |£|. We then have v = £V’ for some V', so that

S.E;S;S:E}Sy = S,E/S,E}S,S}

nv'*

If [v'| + k < I, we have that E{S}, E}S, = E|. If |v'| + k > I, we see that E{S, E} S,
is a finite sum of projections E, "** with v}""** € C. In both cases, S, E!S:S; ES; is
a finite linear combination of S; Ej' Sy with £, 8 € A€ (v]"), vy € C. O

We prove that the ideal Z of Oy is stably isomorphic to the C*-algebra O¢(C)
under some condition. Put P, = Y, , - E{ for I € N. It belongs to the algebra

O¢(C) and satisfies P, < P,;. We see then a sequence of natural embeddings
POgP, C Py OgPryy C oo

PROPOSITION 4.2. Q¢ (C) = lim;_, o P,OcP,.
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PROOF. WEe first prove the inclusion relation Og(C) C lim;,o PO P.. Forv! € C
and pu € A(v)), take a A-path 7 such that s(r) € C, t(x) = v/, and A(7) = pu.
We put s(7) = vi‘l The projection Ej‘l satisfies the inequality S, Ei‘l S, > E! so that
EYS,E! = S,E!. As £ s left-resolving, we know that S E;' S, E! = Ofor k; # ji. It
then follows that P, S, E! = S, E!. Symmetrically we have that E!S*P,, = E'S* for
some l,. Hence we see that P, S, E!S* P, = S,E!S. Thus we have proved that for
vl € C and pu, v € AC(v}), there exists M € N such that P,,S,E!S} P, = S,E.S? for
all m > M. This implies the inclusion relation Og(C) C lim;_, o, P,Og P,.

For v/ € V, u,v € A* and v;'l, vZ € C, we next prove that the element
Ei‘l S.E!S: EZ belongs to the algebra O¢(C). We may assume that [ is large enough
because of the second relation of (2.2). Assume StE' S,E!S:E:S, # 0 so that
S“;Eﬂ‘l S, > E!. Hence there exists a A-path whose source is vi‘l and terminal is
connected to v! by an t-path. By the local property of the A-graph system, we may
find a A-path 7 in E such that A(w) = u, t(x) = v' and an t-path that connects
between s(;r) and vj.‘l. Since vj-‘l belongs to C and C is hereditary, we see that v! € C
and u belongs to A€(v!). Symmetrically one sees that v belongs to A€ (v!) from the
inequality S:E?S, > E!. Hence we have E S, E!S:E: = S,E'S? and it belongs to

the algebra O¢ (C). Thus we have lim,_,, P,Og P, C Og(C). O
THEOREM 4.3. The ideal I is stably isomorphic to the algebra Oz (C).

PROOF. Let X; = O¢ P, forl € N. Then X; has a Hilbert left Og P;O¢-module and
a Hilbert right P,O¢ P,-module structure in a natural way. Its left Og P,O¢-valued
inner product and right P;Og¢ P;-valued inner product are given by

(aP,bP), =aPb*, (aP,bP)gr= Pa'bPp,

for a, b € Og respectively. Hence the norms on X; coming from their respect inner
products coincide with the norm on the C*-algebra Os. As P, < P, we have a
natural embedding X, — X,;;. Let X¢ be the closure of Uf:l X, in the norm of
QOg, that is regarded as the inductive limit of the inclusions X; — X,;,,, ! € N.
The ideal Z. and the algebra O¢(C) are the inductive limits lim;, o, Og P,O¢ and
lim;_, o, POg P, respectively. We then see that the subspace X of Og¢ has an induced
left Z-valued inner product and right O (C)-valued inner product such as

€m=kn'ele, (Eme=§ne 0:(0),

for £, n € Xc respectively. It also has a natural left Z--module and right O¢(C)-
module structures respectively. It is easy to see that both the linear spans of (£, n),,
for £,n € X, and (&, n), for &, n € Xc, are dense in Z¢ and Og¢(C) respectively.
Hence X is a full Hilbert left Z--module, and a full Hilbert right O¢ (C)-module such

https://doi.org/10.1017/51446788700014373 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014373

[13] C*-algebras associated with presentations of subshifts 381

that (&, n).& = E(n, g, for £, n,¢ € Xc. This means that X¢ is an Zp — Og(C)
imprimitivity bimodule, so that Z. and O¢(C) are Morita equivalent ([32]). By [4],
they are stably isomorphic to each other. O

By using the above result, we next compute the K-theory of the ideal Z-. The
subalgebra O¢(C) is invariant globally under the gauge action g on Og. We
still denote by a¢ the restriction of ag to O (C). We denote by Fo(C) the C*-
subalgebra of O¢(C) generated by S, E;S*, i, v € AS(v)), || = |v|, v} € C. That
is, Fo(C) = Fg NZc. It is direct to see that the fixed point algebra Qg (C)*s of
O¢(C) under ay is the algebra F¢(C). A similar discussion to [22] (compare [24])
assures that the crossed product Og(C) X, T is stably isomorphic to ¢ (C). We can

show the following result.

LEMMA 4.4 (compare [24, Lemma 7.5], [22, Lemma 4.3]).
(i) Ko(Og(0)) = Ko(O2(C) Xop T)/(d — &g N Ko(Og(C) Mg, T).
(i) Ki(Og(C)) = Ker(id — @g;") on Ko(Og(C) X4, T),

where @y is the dual action of ag.

Let F}(C) be the C*-subalgebra of F¢(C) generated by S, E'S*, u,v € AC(v),

lul = |v] = k, v} € C NV, and F°(C) the C*-subalgebra of Fg(C) generated by
Fi(C), k <1 € N. Hence we see that

FC)y=FNOg(C), FF(C)=FrNO(C).

The embeddings of ¢4 : Fy = Fi™' and Ageyr @ F° <> F2, of the original

AF-algebra Fyg, are inherited in the algebras F; (C), F°(C), Fe(C), so that F¢(C)
is an AF-algebra. Let m« () be the cardinal number of the vertex set C N V;. We put
CNV,={u},u, ..., u,_,). Define the following matrices:

1 if s(e) =ul,A(e) =a, t(e) = u'"" for some e € E,
A, J) = © =u, M) =a 1le) = i
0 otherwise,

: I+1y _ 1
1 if t1.1+1(uj ) =u

0 otherwise,

I(C) G, j) = {

A, j) =) ACh G, o, ),

aeX

fori=1,2,....,mc), j=1,2,...,mc(l +1). Let

D)t = 1Oy, = ACY, 1 IO - T7<0H) | [ €7,
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As 1(C)141142AO) 11y = A(O)}41,,,1 (O); ., the matrix I(C)},, ., induces a ho-
momorphism from Z"<*V /D (C); 14,Z™<® to 27¢*+2 | D(C); 411422 Y that is de-
noted by FC_‘S; +11+2- Thanks to Theorem 4.3, we can present the K-theory formulae
for ideals of Og.

THEOREM 4.5. Let £ be a A-graph system satisfying condition (II). Let T be an
ideal of O¢ and C its corresponding saturated hereditary subset of the vertex set of £.
Then we have

Ko(@) 2 lim {2747/ D(C; 1, 7", T 110
i
Ki(T) = lim {KerD(C)y41 in Z™P; 1(C)} ., } -

~l

Although the C*-algebra Og is not necessarily defined by a A-graph system, in the
case when C has a bounded upper bound, it is given by a A-graph system. Let

Ve =CU{v e V| there exists ug € C such that (" (ug) = v for some m € N}.

A saturated hereditary subset C of V is said to have a bounded upper bound if the
cardinality of the set V/\C is finite. It is equivalent to the condition that there exists
L e Nsuchthat V, NV, = V,NC forall n > L. We will assume that C has a
bounded upper bound. Take L € N as above. Define forl € Z,

V,C =CnN Vier,
Ef, ={e€Euriririlse) e VE, t(e) e Vi

c _ c
A" =Xge, Yy = ‘|V1:+1'

Since ViNV, = Cﬂ Vi1, one sees that t(u) € V,C foru e V. 1+1 It is straightforward
to see that (V¢, E , 11 AC, tf, +1)iez, yields a A-graph system, denoted by £¢. We note
that C has a bounded upper bound if and only if there exists L € N such that P, = P,
foralll > L.

PROPOSITION 4.6. Let £ be a A-graph system satisfying condition (11). If a saturated
hereditary subset C of V has a bounded upper bound, the algebra O (C) is isomorphic
to the C*-algebra Og_ associated with the A-graph system £.. Hence the ideal L. is
stably isomorphic to the C*-algebra Oyg,.

PROOF. Take L € Nsuchthat V, N V. =V,NC foralln > L. As P, = P, forall
I > L, one has Og(C) = P,OgP, by Proposition 4.2. Let L& = (VD EWD,
A Dy be the L-shift A-graph system of £ defined by

(L) L) L (L)
V¥ =Viu, Ejn = Enpps, AP =Xeo, 40 = trriein
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for! € Z,. By [28, Proposition 2.3], the algebra O¢ coincides with the the algebra
Ogw. It is direct to see that PyOgw P, is isomorphic to Og.. Hence Og(C) is
isomorphic to Og,. O

5. Examples

Let G = (V, E) be a finite directed graph with finite vertex set V and finite edge
set E. Let G = (G, A) be a labeled graph over an alphabet £ defined by G and a
labeling map A : E — X. Suppose that it is left-resolving and predecessor-separated
(see [19]). Let A be the adjacency matrix of G that is defined by

1 ift(e) =s(e),

Agle, =
ale. f) 0 otherwise,

for ¢, f € E. The matrix A; defines a shift of finite type by regarding the edge
set E as its alphabet. Since the matrix A; has entries in {0, 1}, we have the Cuntz-
Krieger algebra O,, defined by Ag ([7] compare [18, 33]). By putting V,g =V,
E,‘{}H = Eforl € Z,, and A9 = A,9 = id, we have a A-graph system £g =
(V9, E9,19,19). The C*-algebra Oy, is isomorphic to the Cuntz-Krieger algebra
O, ([24, Proposition 7.1]).

Let us consider the following labeled graph. The vertex set V is {v;, v,, v3}. The
edges labeled ¢ are from v, to v; and from v; to v, and a self-loop at v;. The edges
labeled B are self-loops at v, and at v;. The edge labeled y is from v, to v,. The
resulting labeled graph is denoted by G. The A-graph system £ is left-resolving and
satisfies condition (II). In £g, let C be the vertex set corresponding to {v,, v3}. It
is saturated hereditary. The A-graph subsystem E\gc of £¢ obtained by removing C
consists of one ¢-orbit of the vertex {v,} with two self-loops labeled « and 8. Hence
we have

OEQE [(2)(1)(1)]’ OQQ/ICEOSgEOZ, IC®}CEO“(1)]®K:
011

The second example is the canonical A-graph system for the Dyck shift D,, that is
not a sofic subshift. The subshift comes from automata theory and language theory
(compare [1, 11]). Its alphabet ¥ consists of two kinds of four brackets: (,), and
[, 1. The forbidden words consist of words that do not obey the standard bracket rules.
Let £2- be the canonical A-graph system for D,. In [29], the K-groups of the symbolic
matrix system for £°2 have been computed. They are the K-groups for the associated
C*-algebra Ogo,, so that we see Ko(Ogo,) = Z%, and K;(Ogn,) = 0, where Z* is
the countable infinite sum of the group Z. The C*-algebra Ogo, has a proper ideal.
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The A-graph system L2 satisfies condition (II). Let £#P2 be the A-graph subsystem
of £P2, called the Cantor horizon A-graph system of D, (see [16] for details). Then
LMD s aperiodic and a minimal irreducible component of £°2. Hence the associated
algebra Ogenny is a simple purely infinite C*-algebra realized as a quotient of Ogp; by
an ideal corresponding to a saturated hereditary subset of £22. In [16], its K-groups
have been computed to be Ko(Ogaron) = Z/2Z & C(€, Z), and K (Ogeron) = 0,
where C(C, Z) denotes the abelian group of all Z-valued continuous functions on a
Cantor discontinuum €. As £*(P) ig predecessor-separated, the algebra Ogcuo, is
generated by only the four partial isometries Sy, @ = (,), [, ] corresponding to the
brackets (, ), [,]. Hence Ogcnoy is finitely generated, but its K¢-group is not finitely
generated. This means that the algebra Ogcnoy is simple and purely infinite, but not
semi-projective (compare [3]). Full details and its generalizations are seen in [16]
and [20].
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