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Abstract

A X-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite
labeled graphs and presents a subshift. In Doc. Math. 7 (2002) 1-30, the author constructed a C-algebra
0 £ associated with a X-graph system £ from a graph theoretic view-point. If a X-graph system comes
from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that
there is a bijective correspondence between the lattice of all saturated hereditary subsets of £ and the
lattice of all ideals of the algebra 0 £ , under a certain condition on £ called (II). As a result, the class
of the C*-algebras associated with X-graph systems under condition (II) is closed under quotients by its
ideals.

2000 Mathematics subject classification: primary 46L35; secondary 46L05, 37B10.

1. Introduction

In [7], Cuntz and Krieger presented a class of C*-algebras associated with finite
square matrices with entries in {0, 1}. The C*-algebras are called Cuntz-Krieger
algebras. They are simple if the matrices are irreducible with condition (I). Cuntz-
Krieger observed that the C*-algebras have a close relationship to topological Markov
shifts ([7]). The topological Markov shifts form a subclass of subshifts. For a finite
set E, a subshift (A, a) is a topological dynamical system defined by a closed shift-
invariant subset A of the compact set S z of all bi-infinite sequences of E with shift
transformation a. In [21] (compare [25, 5]), the author generalized the class of the
Cuntz-Krieger algebras to a class of C*-algebras associated with subshifts. He also
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370 Kengo Matsumoto [2]

introduced several topological conjugacy invariants and presentations for subshifts by
using K-theory and algebraic structure of the associated C*-algebras with the subshifts
in [23]. For presentation of subshifts, notions of the A-graph system and symbolic
matrix system have been introduced ([23]). They are generalizations of the A-graph
(labeled graph) and the symbolic matrix for sofic subshifts to general subshifts.

We henceforth denote by 2+ the set of all nonnegative integers. Let E be a finite
set that is called an alphabet. A A-graph system £ = (V, E, k, i) consists of a vertex
set V = \JleI+ Vh an edge set E = U;ez+ Ei.i+u a labeling map k : E -> E and
a surjective map t (= iu+l) : Vt+l -*• Vt for each / e 1+ with a certain compatible
condition, called the local property. Its matrix presentation (M.ll+l, Itj+i), I e Z+ is
called a symbolic matrix system, denoted by (Ai, I). The A.-graph systems give rise
to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams of
the A-graph systems. Conversely, there is a canonical method to construct a A-graph
system from an arbitrary subshift [23]. It is called the canonical k-graph system for
subshift A.

In [24], the author constructed C*-algebras from A-graph systems and studied
their structure. Let £ = (V, E, k, i) be a A.-graph system over alphabet E. Let
{v[,..., v'm(l)) be the set of the vertex Vt. We henceforth assume that a A.-graph sys-
tem £ is left-resolving, that is, there are no distinct edges with the same label and the
same terminal vertex. The C*-algebra O^ is realized as a universal unique C*-algebra
subject to certain operator relations among generating partial isometries Sa, corre-
sponding to the symbols a G E and projections E\ corresponding to the vertices
v\ e V/, i = 1 , . . . , m(l), I e Z+, encoded by the concatenation rule of £ . Irre-
ducibility and aperiodicity for finite directed graphs have been generalized to A.-graph
systems in [24]. If £ satisfies condition (I), a condition generalizing condition (I) for
finite square matrices defined by [7], and is irreducible, then the C*-algebra Oz is
simple. In particular, if £ is aperiodic, then 0 £ is simple and purely infinite ([24],
compare [27]).

In this paper, we investigate ideal structures of the C*-algebras 0 £ . The discussions
are based on a line of Cuntz's paper [6] in which the ideal structure of the Cuntz-Krieger
algebras were studied (compare [13]). We generalize condition (II) for finite directed
graphs, defined in [6], to A-graph systems. By considering saturated hereditary subsets
of £ with respect to arrows of edges, we show the following theorem.

THEOREM A (Proposition 3.5, Theorem 3.6). Suppose that £ satisfies condition (II).
There is a bijective correspondence between the lattice of all saturated hereditary
subsets of £ and the lattice of all ideals of the algebra O&. Furthermore, for any
ideal 1 of Og, the quotient C*-algebra O^/l is isomorphic to the C*-algebra O^x
associated with the k-graph system £^Cz, obtained by removing the corresponding
saturated hereditary subset Cjforl.
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COROLLARY B. In the k-graph systems satisfying condition (II), the class of the
C*-algebras associated with k-graph systems is closed under quotients by ideals.

By Corollary B, it is expected that rich examples of simple purely infinite nuclear
C*-algebras of this class live outside Cuntz-Krieger algebras (compare [24, Theo-
rem 7.7], [16], [26] and [20]). We further study the structure of an ideal of Oz in
Section 4. We prove that an ideal of Oz is stably isomorphic to the C*-subalgebra
of 0 £ associated with the corresponding saturated hereditary subset of V (Theo-
rem 4.3). As a result, the K-theory formulae for ideals of O& are presented in terms
of the corresponding saturated hereditary subsets of V (Theorem 4.5).

If a A.-graph system £ comes from a finite directed graph G, the associated C*-
algebra O& becomes a Cuntz-Krieger algebra OAc for its adjacency matrix Ac with
entries in {0, 1}. The results of this paper, Theorem A, Corollary B, Theorem 4.3,
Theorem 4.5, and Proposition 4.6 are generalizations of Cuntz's result [6, Theorem 2.5]
for Cuntz-Krieger algebras. Other generalizations of Cuntz-Krieger algebras from
this graph point of view have been studied by [2, 10, 12, 15, 17, 18, 30, 34] and [35].
Related discussions for C*-algebras generated by Hilbert C*-bimodules can be found
in [14].

2. Review of the C* -algebras associated with X-graph systems

Recall that a X-graph system £ = (V, E, k, i) over an alphabet £ is a directed
Bratteli diagram with vertex set V = {JleI V, and edge set E = [Jlel Eu+y that
is labeled with symbols in £ by k : E —*• E, and that is supplied with surjective
maps i(= h,i+\) '• Vi+i -> V; for I e Z+. Here, both the vertex sets V;, / € T+

and the edge sets Eu+l, I e 1+ are finite disjoint sets. An edge e in Eu+l has
its source vertex s(e) in V; and its terminal vertex t(e) in V,+1 respectively. Every
vertex in V has a successor and every vertex in Vt for / € N has a predecessor. It is
required that there exists a bijective correspondence, which preserves labels, between
{e e £,,,+, | tie) = v,t(s(e)) = u] and {e e £,_,,, | s(e) = w,f(e) = iiv)} for
all pairs of vertices u e V/_i and v e V;+1. This property of the A.-graph systems is
called the local property. We call an edge e e EiJ+l a k-edge and a connecting finite
sequence of >.-edges a k-path. For u, v € V, if iiv) = u, we say that there exists an
i-edge from v to u. Similarly we use the term i-path. We denote by [v[, v'2,..., v'm(l)}
the vertex set V; of V at level /. A finite labeled graph (G, k) over E with underlying
finite directed graph G = (V, E) and labeling map k : E -> £ yields a X-graph
system £(G,X) by setting V, = V, Eu+X — E for I e 1+ and i = id (compare [24,
Section 7]).

Let us now briefly review the C*-algebra O& associated with the X-graph system £,
which was originally constructed in [24] to be a groupoid C*-algebra of a groupoid
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of a continuous graph obtained by £ (compare [8, 9, 31]). The C*-algebras O £ are
generalization of the C*-algebras associated with subshifts. That is, if the A.-graph
system is the canonical X-graph system for a subshift A, the constructed C*-algebra
coincides with the C*-algebra OK associated with the subshift A in [26] (compare
[5]).

Let £ = (V, E,k, i) be a left-resolving X-graph system over E. We denote
by A the presented subshift A £ by £ . We denote by A* the set of admissible
words in A of length k. We set A* = U*lo A*> where A0 denotes the empty word.
Define the transition matrices A,i+1, /,i(+i of £ by setting for i = 1 ,2 , . . . , m(l),
j = 1 ,2 , ...,m(l + l),a e E ,

. ,. ., [ 1 if s(e) = v\, He) = a, t(e) = wj+1 for some e g £,,,+,,

[0 otherwise,

I 1 if '/,/+i(v'+1) = v\,
*/,/+iO\ j) — \ ' .

10 otherwise.

The C*-algebra Oz is realized as the universal unital C*-algebra generated by partial
isometries Sa, a € E and projections E\, i = 1 ,2 , . . . , m(l), I € 2 + subject to the
following operator relations called (£)

(2.1)

(2.2)

(2.3)

(2.4)

for /3 6 E, i = 1 ,2 , . . . , m(/), / € 1+. It is nuclear ([24, Proposition 5.6]). The
relations (2.1), (2.3) and (2.4) yield the relations

E\ = ^r
j=\

for i = 1 ,2 , . . . , m(l), I € Z+. For a word /i- = fii • • • fit ^ A*, we set 5M =
5^, • • • 5M4. Then the algebra of all finite linear combinations of the elements of the
form S^E'jS*, for \x, v € A*, i = 1 , . . . , m(/), / € 2 + , is a dense *-subalgebra of Oz-
We define three C*-subalgebras Pk, (k < I), T%° and Tz of Oz. The first one,
^ [ , is generated by 5M£'5*, /x, v e A*, / = 1 , . . . , m(l), the second one, J^°, is
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+.generated by T'k, k < I, I € Z+, and the third one, Tc, is generated by T™, k e Z
There exist two embeddings £,,;+i : T'k <-»• T'k

+1, coming from the second relation
of (2.2) and Xk.k+i : T'k <-+ T[X\, coming from (2.5). The latter embeddings induce
an embedding of T™ into T^ that we also denote by Xkik+l, Since the algebra T[ is
finite dimensional, the embeddings iu+i : Tl

k
 t-> Tl

k
+l, I € N yield the AF-algebra

T™, and the embeddings Xkik+1 : J7™ ^-*- J7
k°lv k e N yield the AF-algebra Tc-

For a vertex v\ e Vh set

there exists an edge en/!+1 e £„,„+! for n > 11
such that uj = s(eu+l), r(en,n+1) = 5(en+,,n+2), i ,

the set of all label sequences in £ starting at v\. We say that £ satisfies condition (I)
if for each v\ 6 V, the set T+(v'i) contains at least two distinct sequences. Under
condition (I), the algebra C £ can be realized as the unique C*-algebra subject to the
relations (£). This means that if Sa, a € E, and E\, i = 1 , . . . , m(l), I G Z+, are
another family of nonzero partial isometries and nonzero projections satisfying the
relations (£), then the map Sa -> 5a , £; —> £; extends to an isomorphism from O £

onto the C*-algebra Oz generated by \ , a € E, and £?, i = 1 , . . . , m(Z), / 6 2+
([24, Theorem 4.3]).

Let Ac be the C*-subalgebra of O £ generated by the projections E\, i = 1, 2, . . . ,
m(Z), Z e Z+. Let fi£ the projective limit of the system t u + 1 : VJ+i -> V,, Z e Z+.
We endow £2£ with the projective limit topology so that it is a compact Hausdorff
space. An element of £2£ is called an i-orbit. By the universality of the algebra O £

the algebra Az is isomorphic to the commutative C*-algebra C(£2£) of all complex
valued continuous functions on £2£. As a corollary of [24, Theorem 4.3], if £ satisfies
condition (I), for a nonzero ideal I of O £ , we have 2 n ^4£ ^ {0}.

A A.-graph system £ is said to be irreducible if for a vertex v e V/ and an i-orbit
x = (*/),eZ+ € ^ £ , there exists a A.-path starting at v and terminating at xt+N for some
N € H. Define a positive operator A.£ on Az by A.£(X) = £ a e j ; 5*XSa for Z € Ac-
The operator A.£ on Az induces the embedding J7™ c J~^.\, k 6 N so as to define the
AF-algebra Tc = lim Tf. We say that A.£ is irreducible if there exists no non-trivial
ideal of »4£ invariant under A£. Then £ is irreducible if and only if A£ is irreducible.
If £ is irreducible with condition (I), the C*-algebra O £ is simple ([24, Theorem 4.7],
compare [27]).

3. Hereditary subsets of the vertices and ideals

This section and the next section are the main parts of this paper. In what follows we
assume that a A.-graph system £ = (V, E, X, i) over E is left-resolving and satisfies
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condition (I). We mean by an ideal of a C*-algebra a closed two-sided ideal. Recall
that the vertex set Vt is denoted by {v[,..., vl

m(l)}.
For v't 6 V, and u'+l 6 Vl+U we write v\ > v1*1 tf iu+l(v

l+l) = v\. We also write
v\ > u'+1 if there exists an edge e e £/,f+i such that s(e) — v\, t{e) = u'+I. For
v\ e Vi and vl+k e Vt+k, we write v\ > vlj~k (respectively v\ > vl+k) if there exist
v'+l,..., v'+k~l such that

v\ > <+' > • • • > ^ " ' > «C* (respectively «{ ^ „,'+' | • • ^ w ^ " 1 > ^ ) -

A subset C of V is said to be i-hereditary (respectively X-hereditary) if for v[ € C Pi V;

the condition u' > u^+1 (respectively v\ > v'+1) implies i/+1 e C. It is said to be
hereditary if C is both i-hereditary and X-hereditary. It is said to be i-saturated
(respectively X-saturated) if it contains every vertex uj € C D V, for which v\ > u^+1

(respectively v\ > u^+1) implies Uy+1 G C. If C is both i-saturated and X-saturated, it
is said to be saturated.

DEFINITION. A A-graph system £ ' = (V, £", X', i') over E' is said to be a X-graph
subsystem of £ if it satisfies the following conditions:

0 £ V,' C V,, 0 ?t £,',/+1 C £,.,+„ for / € 2+>

and an edge e € E belongs to E' if and only if the both vertices s(e), t(e) belong
to V. Hence a X-graph subsystem is determined by only its vertex set.

LEMMA 3.1. For a saturated hereditary subset C C V, set

= v\c,
£xc = {e e E | s(e), t(e) € V\C),

Then (Vx c, Exc, X^c, (xc) w a X-graph subsystem over E o /£ .

PROOF. For a vertex u e V,xc, there exists a vertex u> € V,̂ 7, such that i(w) = u,
because C is t-saturated. Similarly, there exist an edge e e £^f+1 and a vertex w' e VĴ f,
such that s(e) = u, t(e) = w', because C is X-saturated. Let u, v be vertices with
u e V;

xc, v e V^2. Putu' = i(v). As C is i-hereditary, we have that v' belongs to V,^.
As C is X-hereditary, if an edge e e £;,j+i satisfies f (e) = u, one sees that s(e) belongs
to V,^ and hence e belongs to E}j+l. Therefore (Vx c, E^c, Xvc, i^c) inherits the local
property of £ . Thus (V^c, E^c, X^c, i^c) becomes a X-graph system. •
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We denote by £ x c the A.-graph system (Vxc, E^c, Xxc, tvc) and call it the A.-graph
subsystem of £ obtained by removing C. Let Ic be the closed ideal of O £ generated
by the projections E\ for v\ e C, that is, Xc = Os.{E\ \ v\ e C}O2 the closure of

\ | v\ e C}OZ.

LEMMA 3.2. The set of all linear combinations of elements of the form

(3.1) S^S*, for v\ e C, /x, v e A*

is dense in Xc.

PROOF. Since the finite linear combinations of elements of the form S^E^S* for
l£l. M 5 P> / = 1. • • •. m(p) is dense in Oz, elements of the form

;, for v\ e C, |£|, |^| < p , |f |, \y\ < q

span the ideal J c . Put T - S^E^S^ElS^E^S* and assume T ^ 0. The equality

holds, where A/;+^|(;, ?j, 7) = 1, if there exists a X-path from v\ to u'-+|111 with label r),
otherwise A/i/+|,|(i, r), j) = 0. The vertex u'-+|l?l belongs to C if A,,,+h|(/, ?j, j ) = 1,
because v\ e C and C is X-hereditary. As T = S^E^S^ElS^S^S^E^S* and we may
assume that / is large enough, T is assumed to be of the form T = S^El

jS*SiE
qS* for

v\ e C. As r j£ 0, the element £,'5J5f is either of the form £{5,,, or £?5; for some
word v. In the former case, we have T = SHSvS*vE\SvE

q
gS*Y. Since S*£,'SW is a finite

linear combination of Elj+M for uj+|v| e C and Z is large enough, T is a finite linear
combinations of elements of the form (3.1), because C is A-hereditary. In the latter

case, we have T = S^ElS^EjS^S^S*. Since S*EjSv is a finite linear combinations of
Eq+M for vqj+M € V9+|W| and / is large enough, we have T = S$E'jS*v. Hence we get
the desired assertion. •

LEMMA 3.3. If E\ belongs to the ideal Tc> the vertex v\ belongs to the set C.

PROOF. For& < /, set
Ek,i = ^2 S^E'jSl

belonging to lc. For an operator T = S^E^S* with v\ e C, it follows that TEkJ =
EkjT = T for large enough it, /. Lemma 3.2 says that {£*,/}*,/ is an approximate unit
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for 2c- Suppose that a vertex v1/ e V does not belong to C. It suffices to show that
the equality

(3.2) \\E^Ekj-E^\\ = l

holds for all large enough k, 1. We fix k < / large enough. We may assume that
EjEk,i 7̂  0 and L + k < I. There exists an admissible word /x of length k such that
S^E'jSnE'j £ 0 and hence S*Ey SM > E\. On the other hand, C is saturated, so we
may find a A.-path n in ELtL+k whose source vertex s(n) is Vj, and an t-path from the
terminal vertex t {it) of it to a vertex vl that does not belong to C. We set y = k(n)
the label of 7r so that S*EjSy > E'p. It then follows that

E) > 5MS;£,L5M5; + Sy^SyS; > S^s; + 5 X £ ^ ; .

Since J2\v\=k,v'ec S"E'jK is orthogonal to SyE'pS*, one obtains that

EjEkii — Ej > SyEpS*

so that (3.2) holds. •

LEMMA 3.4. For an_y nonzero closed ideal I of the C*-algebra 0%, put

77ien Cj is a nonempty saturated hereditary subset of V.

PROOF. Since £ satisfies condition (I), the set Cj is nonempty because of the
uniqueness of the algebra C?£. Take v\ e C%. Suppose that u'+1 satisfies v\ > v1*1.
The inequality E\ > E1*1 assures E'j+i e I. Suppose next v\ > v'j+i. There exists a
symbol a € E such that A,,,+1(«, a, j ) = 1. By (2.4), we have 5*E,'5a > E1*1 so that
£'+1 e I . Hence Cj is hereditary. For v\, suppose that v\ > v'f1 implies u'+1 6 Cj.
This means that 7/,/+i(i, j) = 1 implies E'+1 e I . By the second equality of (2.2),
we see E\ e X. Suppose next that v\ > D'+1 implies i>'+1 6 Cj . This means that
Au+l(i, a, j) = 1 implies £'+ 1 6 1. By (2.4), we have S*£',/5a 6 I for all a e E, so
that E\ - ^ a € E SaS*E\SaS*a belongs to J . Thus I is saturated. •

PROPOSITION 3.5. Let £ = (V, £, A., f) be a k-graph system satisfying condition (I).
L«f C be a saturated hereditary subset ofV. A vertex v\ belongs to C if and only if
E\ belongs to 2C. Hence there exists a bijective correspondence between the set of all
saturated hereditary subsets of V and the set of all ideals in Oz-

PROOF. Let C be a saturated hereditary subset of V. For a vertex v\ € V, we have
vl e C if and only if E\ e l c by Lemma 3.3. For an ideal 1 of Oz, we have E\ e I
if and only if v\ e Cj by definition of Cj . Hence we conclude the assertions. •
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DEFINITION. A A-graph system £ satisfies condition (II) if for every saturated
hereditary subset C c V, the A-graph system £^c satisfies condition (I).

Let A be an n x n square matrix with entries in {0, 1}. Then A satisfies condition
(II) in the sense of Cuntz [6] if and only if the natural A.-graph system £A* constructed
from A satisfies condition (II) in the above sense (compare Section 5).

THEOREM 3.6. Suppose that a k-graph system £ satisfies condition (II). For an
ideal X of On, the quotient C*-algebra Os/X is isomorphic to the C*-algebra O^x
associated with the k-graph system £VCl obtained from £ by removing the saturated
hereditary subset Cifor X.

PROOF. We denote by Sa, E\ the quotient images of Sa, E\ in the quotient C*-algebra
Os/X respectively. Let sa, e\ be the canonical generating partial isometries for a e E
and the projections corresponding to the vertices v\ of V^Cl in O&cj. Since we have
E\ ^ 0 if and only if v[ e VVCl, the relations

hold. By the uniqueness of the algebras O£ and O&cj, subject to the operator
relations, the correspondence Sa «* sa, E\ -o- e\ for a e E, v\ € V^Cx extends to an
isomorphism between Oz/X and O^z- •

COROLLARY 3.7. In the k-graph sytems satisfying condition (II), the class of the
C*-algebras associated with k-graph systems is closed under quotients by its ideals.

We say a closed ideal J of As, to be saturated if A.£(£') € J implies E\ e J. We
are assuming that a A.-graph system £ satisfies condition (I).

LEMMA 3.8. For an ideal X of Os,, set J = 1 ( 1 _4£. Then J is a nonzero
ks.-invariant saturated ideal ofAs-

PROOF. It suffices to show that J is saturated. Suppose that kz(E\) e J. We
see S*aE\Sa belongs to J for each a e E. Hence E\ = £ a € i ; SoS*£,'SaS* belongs
to J. •

LEMMA 3.9. There exists a bijective correspondence between the set ofk% -invariant
closed saturated ideals of As and the set of saturated hereditary subsets of V.

PROOF. Let J be a X£-invariant saturated ideal of As,. Put Cj = {v't e V \ E\ e
J}. As J is ks-invariant, we have JZaej; ^a^'i^a belongs to J for v\ e Cj. Hence
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Au+](i, a, j) = 1 implies £ ' + 1 € J. This means that Cj is ^.-hereditary. Suppose
that Au+X{i,a, j) = 1 implies u'+1 e Cj. It follows that A.£(£j) € J7" and hence
vj € C j , because J is saturated. By the second equality of (2.2), we know that Cj
is t-hereditary and i-saturated.

For a saturated hereditary subset C of V, let I c be the ideal of 0 £ generated by
E\ for v\ e C. Put Jc = Ic ^ As,- By Proposition 3.5, a vertex v\ belongs to C if
and only if E\ belongs to Jc- It is easy to see that Jc is A£-invariant because C is
A-hereditary, and Jc is saturated because C is A-saturated. D

We remark that £ is irreducible if and only if there is no nontrivial Ac-invariant
ideal of As.- The latter property is also equivalent to the condition that there is no
proper hereditary and t-saturated subset of V. Thus we see the following theorem.

THEOREM 3.10. Consider the following six conditions.

(i) 0 £ is simple.
(ii) There is no nontrivial k^-invariant saturated ideal of As-

(iii) There is no proper saturated hereditary subset of V.
(iv) £ is irreducible.
(v) There is no nontrivial k^-invariant ideal of As-

(vi) There is no proper hereditary and i-saturated subset of V.

Conditions (i)—(iii) are equivalent to each other, and also conditions (iv)—(vi) are
equivalent to each other. The latter conditions imply the former conditions.

PROOF. AS nontrivial ideals of Os bijectively correspond to saturated hereditary
subsets of V, the first three conditions are equivalent each other. It suffices to show
that (iv) is equivalent to (vi). Assume that £ is irreducible. Let C be a nonempty
hereditary and i-saturated subset of V. Take a vertex v\ € C. Let UN(vl) be the set of
i-orbits M = (un)nez+ e Sis. such that there exists a A-path of length N from v\ to the
vertex ut+N. Since £ is irreducible, we have fi£ = Uw=o UN(V\). Hence there exist
Ni,N2,...,Nn such that £2£ = \J"j=l UNj(v\), because UN(v\) is open in n £ . We
may assume that 0 < N\ < N2 < • • • < Nn. We put Nn = L. For a vertex w € Vi+L,
find an t-orbit x — (xn)n^z+ 6 Qs. such that x,+L = w. Take Nk such that x e UNk (uj).
Since C is A-hereditary and i-hereditary, we see Xi+Nt € C and hence w € C. This
implies Vt+N c C. Now C is t-saturated, so we conclude that V = C. Therefore we
get the implication from (iv) to (vi).

Suppose that £ is not irreducible. There exists an t-orbit u = («n)nez+ € £2£ and
a vertex v\ such that u does not belong to U~=0C/A,(u'). Let VN(v't) be the set of all
vertices w in V/+w that are terminal vertices of A-edges whose source vertices are v\.
Put V{v\) = U~=0V'v(i;1') and

W{v\) = [w e V | v > w for some vertex v € V(i>')} U V(v't).
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By the local property of the A-graph system, the set W(u') is ^.-hereditary and the
vertices un do not belong to W(v't) for all n e Z+. It is by definition that W(v')
is i-hereditary. Let C be the saturation of W(u(') with respect to >. As Wivj) is
A-hereditary, C is so from the local property of A-graph system. It is obvious that C
is (-hereditary. We obtain a proper hereditary and i-saturated subset C of V. •

4. Structure of ideals

In this section, we prove that an ideal of O £ is stably isomorphic to the C*-
subalgebra of O& associated with the corresponding saturated hereditary subset of V.
As a result, we can present the K-theory formulae for ideals of O& in terms of the
corresponding saturated hereditary subsets of V. The notation is as in the previous
sections. For a saturated hereditary subset C of V, put for v\ € C

. c, ,. fA («;) = J / i € A there exists a A-path n such that X(n) = \x,
i

where s(n) and t(n) are the source vertex and the terminal vertex of n respectively.
We denote by Oz{C) the C*-subalgebra of O £ generated by elements of the form

LEMMA 4.1. The set of all finite linear combinations of elements of the form SM E\ S*,
for /z, v € Ac(v'), v\ € C, is a dense *-subalgebra ofO^(C).

PROOF. For v\, v* e C, fi, v € Ac(u,'), §, r\ e Ac(vkj), suppose that

We may assume |v| > |̂  |. We then have v = £v' for some v', so that

If |i/| + jfe < /, we have that E\S*V,E)SV. = E\. If \v'\ + jk > /, we see that E'iS*v,E)Sv,
is a finite sum of projections £J,U'I+* with v[v'l+k € C. In both cases, SllE'iS*S!:E

ICjS* is
a finite linear combination of S^E^S^ with £,<5eAc(u™), i ^ e C . •

We prove that the ideal 1C of O& is stably isomorphic to the C*-algebra Oz(C)
under some condition. Put P( = Jlivfec E\ for / e N. It belongs to the algebra

and satisfies P, < Pl+\. We see then a sequence of natural embeddings
, c Pl+iOzPl+l C • • • .

PROPOSITION 4.2. O£(C) = l i m , ^ P,O£P,.
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PROOF. We first prove the inclusion relation O£(C) C l i m , ^ P\OZP\- Foru' € C
and ix e Ac(u,'), take a A.-path n such that s(n) e C, t(n) = v\, and X(n) = fi.
We put s(n) = v'jr The projection E1^ satisfies the inequality S^E'^S^ > E[ so that
E'^S^El = SM£|. As £ is left-resolving, we know that S£El

k\ 5ME\ = 0 for it, ^ j x . It
then follows that P^S^E^ = SM£,'. Symmetrically we have that £,'S*P;2 = E\S*V for
some Z2- Hence we see that PtxS^E\S*vPi2 = S^E'S*. Thus we have proved that for
v\ € C and fx, v e Ac(uJ), there exists M e N such that PmSllE

l
iS*Pm = SM£,'S* for

all m > M. This implies the inclusion relation OZ(C) c limbec P/O^Pi.

For D' e V, fi, v 6 A*, and v'}\,v'j2 e C, we next prove that the element
£y[5M£''5*£'^ belongs to the algebra Oz(C). We may assume that / is large enough
because of the second relation of (2.2). Assume SlE^S^E'^E'lS,, ^ 0 SO that
S^E^Sn > E\. Hence there exists a A-path whose source is u'j and terminal is
connected to v\ by an t-path. By the local property of the A.-graph system, we may
find a A-path n in E such that A.(7r) = /x, t(n) = v\ and an t-path that connects
between s{n) and v'j^. Since v'^ belongs to C and C is hereditary, we see that v\ € C
and ix belongs to Ac(u ' ) . Symmetrically one sees that v belongs to Ac(u ') from the
inequality S*El*2Sv > E\. Hence we have E\S^.E\S*vE

ll = S^E^S* and it belongs to
the algebra Oz(C). Thus we have l i m , ^ P,O£P; C OZ{C). D

THEOREM 4.3. The ideal Xc is stably isomorphic to the algebra O£(C).

PROOF. LetX, = O £ P , fo r / e N. Then X, has a Hilbert left 0£P,£>£ -module and
a Hilbert right P,O£Prmodule structure in a natural way. Its left O^PiOz-valued
inner product and right P,O£Prvalued inner product are given by

(aP,, bP,)L = aP,b*, (aPh bP,)R = P,a*bPh

for a, b e 0% respectively. Hence the norms on Xi coming from their respect inner
products coincide with the norm on the C*-algebra Oz- As P; < P(+1, we have a
natural embedding Xt <̂-> Xt+i. Let Xc be the closure of | J ~ , X; in the norm of
0 £ , that is regarded as the inductive limit of the inclusions Xt " ^ Xl+U I € N.
The ideal Tc and the algebra Oz(C) are the inductive limits lim/_oo(I?£P/0£ and
lim/^oo PiOs,Pi respectively. We then see that the subspace Xc of 0 £ has an induced
left Jc-valued inner product and right 0£(C)-valued inner product such as

<£, V)L = W e Tc, (?, r])R = ft, e OZ{C),

for ^, Tj e X c respectively. It also has a natural left Ic-module and right Oz{C)-
module structures respectively. It is easy to see that both the linear spans of (£, t])L,
for £, r) e Xc, and (£, r))R, for ^, rj € X c , are dense in Jc and C£(C) respectively.
Hence Xc is a full Hilbert leftXc-module, and a full Hilbert right 0£(C)-module such
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that <£, r])Li; = t-(r), £ ) R , for £, r), £ 6 Xc. This means that Xc is an lc - O£(C)
imprimitivity bimodule, so that I c and 0£(C) are Morita equivalent ([32]). By [4],
they are stably isomorphic to each other. •

By using the above result, we next compute the K-theory of the ideal Xc. The
subalgebra 0£(C) is invariant globally under the gauge action a £ on 0 £ . We
still denote by a £ the restriction of a £ to O£(C). We denote by J"£(C) the C*-
subalgebra of O£(C) generated by S^E^S*, fi, v e Ac(v'i), \/i\ = |v|, v\ 6 C. That
is, Fz(C) = FzDlc. It is direct to see that the fixed point algebra Oz(C)az of
O£(C) under a£ is the algebra JT£(C). A similar discussion to [22] (compare [24])
assures that the crossed product C £ ( O ^a £ T is stably isomorphic to Ts.{C). We can
show the following result.

LEMMA 4.4 (compare [24, Lemma 7.5], [22, Lemma 4.3]).

(i) ATo(0£(C)) = K0(O2(C) xa £ T)/(id - ^)K0(O£(C) xa £ T).
(ii) K^OiiC)) = Ker(id - oj ;1) on K0(Oz{C) xa £ T),

where <*£ is the dual action o/a£.

Let Pk(C) be the C*-subalgebra of ^ £ (C) generated by S^E^S*, (i, v e Ac(u,'),
\fi\ = \v\ = k,v'i 6 Cn V, and T?{C) the C*-subalgebra of .F£(C) generated by
^ ( C ) , A: < / € N. Hence we see that

^°-n oz(C).

The embeddings of t,,/+1 : T[ ^ F'k
+l and kktk+l : ^"~ <̂-> ^ j of the original

AF-algebra Tz, are inherited in the algebras Fk(C), ^°°(C), Tz(C), so that TZ(C)
is an AF-algebra. Let mc{l) be the cardinal number of the vertex set C fl V;. We put
CDV) = (iipUj,. . . , MLC(/)}- Define the following matrices:

f a, ?(e) = «'+1 for some e e £,,;+1

10 otherwise,

0 otherwise,

for/ = 1, 2, . . . , mc(l), j = 1, 2 , . . . , mc(/ + 1). Let
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As I(C)'l+u+2A(C)'u+l = A(Cyi+u+2I(C)'ll+l, the matrix / ( C ) | + u + 2 induces a ho-
momorphism from Zmc(/+1)/D(C),,,+1Zmc(') to Zmc( '+2)/D(C),+M+2Zmc</+1) that is de-
noted by / (C) ; + 1 (+2. Thanks to Theorem 4.3, we can present the K-theory formulae
for ideals of 0 £ .

THEOREM 4.5. Let £ be a k-graph system satisfying condition (II). Let X be an
ideal ofOz and C its corresponding saturated hereditary subset of the vertex set of£.
Then we have

KX(X) = lim {KerD(C)u + 1 in Zmc(/

i

Although the C*-algebra O& is not necessarily denned by a A.-graph system, in the
case when C has a bounded upper bound, it is given by a A.-graph system. Let

Vl
c = C U {v e V | there exists u0 e C such that im(u0) = v for some m e N}.

A saturated hereditary subset C of V is said to have a bounded upper bound if the
cardinality of the set V^C is finite. It is equivalent to the condition that there exists
L e N such that Vn n Vc = Vn D C for all n > L. We will assume that C has a
bounded upper bound. Take L e N as above. Define for / e 1+

vt
c = c n vl+L,

= {ee El+LJ+L+i | s(e) e V,c, t(e) e v£,},

Since V^ fl Vl+L = CC\ V,+L, one sees that i(u) € V,cforM 6 V£,. It is straightforward
to see that (Vt

c, EfJ+l, k
c, i,c

;+1)(6z+ yields a A.-graph system, denoted by £ c - We note
that C has a bounded upper bound if and only if there exists L € N such that Pi — PL

for all / > L.

PROPOSITION 4.6. Let £ be a k-graph system satisfying condition (II). If a saturated
hereditary subset C ofV has a bounded upper bound, the algebra 0% (C) is isomorphic
to the C*-algebra O £ c associated with the k-graph system £ c . Hence the ideal Tc is
stably isomorphic to the C*-algebra 0 £ c .

PROOF. Take L e N such that V B n ^ = V , n C for all n > L. As P, = PL for all
I > L, one has O £ (C) = PLOs,PL by Proposition 4.2. Let £(L) = (V(L), E(L\
k(L\ i(L)) be the L-shift A.-graph system of £ defined by

vl — *l+L,
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for I € Z+. By [28, Proposition 2.3], the algebra 0 £ coincides with the the algebra
Os.iL). It is direct to see that PLOSHDPL is isomorphic to 0 £ c . Hence 0 £ ( C ) is
isomorphic to 0 £ c . •

5. Examples

Let G = (V, E) be a finite directed graph with finite vertex set V and finite edge
set E. Let Q — (G, A) be a labeled graph over an alphabet E defined by G and a
labeling map A : E —>• E. Suppose that it is left-resolving and predecessor-separated
(see [19]). Let AG be the adjacency matrix of G that is defined by

,, [ l if t(e) =s(e),

10 otherwise,

for e, f e E. The matrix Ac defines a shift of finite type by regarding the edge
set E as its alphabet. Since the matrix AG has entries in {0, 1}, we have the Cuntz-
Krieger algebra OAc defined by AG ([7] compare [18, 33]). By putting V,5 = V,
Efl+{ = E for / 6 Z+, and Xs = A, iP = id, we have a A-graph system £g —
(Vs, Es, ks, is). The C*-algebra OZg is isomorphic to the Cuntz-Krieger algebra
OAc ([24, Proposition 7.1]).

Let us consider the following labeled graph. The vertex set V is {v\, v2, v3}. The
edges labeled a are from v2 to v3 and from u3 to v2 and a self-loop at v{. The edges
labeled ft are self-loops at v} and at u3. The edge labeled y is from i»i to v2. The
resulting labeled graph is denoted by Q. The A-graph system £,g is left-resolving and
satisfies condition (II). In £ e , let C be the vertex set corresponding to {v2, v3}. It
is saturated hereditary. The A-graph subsystem £gC of £,g obtained by removing C
consists of one £-orbit of the vertex [vi] with two self-loops labeled a and /J. Hence
we have

2 l 0 v
o o i
o I iJ

Li oj

The second example is the canonical A-graph system for the Dyck shift D2, that is
not a sofic subshift. The subshift comes from automata theory and language theory
(compare [1, 11]). Its alphabet T, consists of two kinds of four brackets: ( ,) , and
[, ]. The forbidden words consist of words that do not obey the standard bracket rules.
Let £°2 be the canonical A-graph system for D2. In [29], the K-groups of the symbolic
matrix system for £° 2 have been computed. They are the K-groups for the associated
C*-algebra 0 £ D 2 , so that we see K0(O£o2) S Z00, and K^O^) S 0, where Z00 is
the countable infinite sum of the group Z. The C*-algebra O^^ has a proper ideal.
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The A-graph system £° 2 satisfies condition (II). Let £c/l(D2) be the A-graph subsystem
of £,°2, called the Cantor horizon A-graph system of D2 (see [16] for details). Then
£CHD2) j s a p e r i o d j c and a minimal irreducible component of £° 2 . Hence the associated
algebra O^CH^ is a simple purely infinite C*-algebra realized as a quotient of 0£D2 by
an ideal corresponding to a saturated hereditary subset of £° 2 . In [16], its K-groups
have been computed to be Ko(0&cW) = 1/21 © C(C, Z), and Kx{Ozc«^) ^ 0,
where C(C, Z) denotes the abelian group of all Z-valued continuous functions on a
Cantor discontinuum £. As £c;i(D2) is predecessor-separated, the algebra O^CH^ is
generated by only the four partial isometries Sa, a = ( ,) , [,] corresponding to the
brackets ( ,) , [, ]. Hence C^™^) is finitely generated, but its AT0-group is not finitely
generated. This means that the algebra C^™^) is simple and purely infinite, but not
semi-projective (compare [3]). Full details and its generalizations are seen in [16]
and [20].
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