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Abstract

Let P(n) denote the largest prime factor of an integer n > 2. In this paper, we study the distribution
of the sequence {f(P(n)) : n > 1} over the set of congruence classes modulo an integer b > 2, where
f is a strongly g-additive integer-valued function (that is, f(ag’ + b) = f(a) + f(b), with (a, b, j) € N3,
0 < b < g/). We also show that the sequence {aP(n) : n > 1, f(P(n)) = a (mod b)} is uniformly distributed
modulo 1 if and only if @ € R\Q.
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1. Introduction

For a positive integer n, let P(n) be the largest prime factor of n, with the usual
convention that P(1) = 1. The distribution of the largest prime factor in congruence
classes has been previously considered by Ivic [6] and Oon [13] for a fixed modulus k.
Using a similar approach to that of Ivic [6], Banks et al. [1] obtained new bounds that
are nontrivial for a wide range of values of the modulus k. In particular, if k is not too
large relative to x, they derived the expected asymptotic formula

Bin < x: P(n) = [ (mod k)} ~ ——

@(k)
with an explicit error term that is independent of /. Moreover, by bounding the
exponential sum }),., e(aP(n)) for a fixed irrational real number a, they deduced
that the sequence {@P(n) : n > 1} is uniformly distributed modulo 1. This result is
reminiscent of the classical theorem of Vinogradov [15] that, for a fixed irrational real

number a, the sequence {ap : p prime} is uniformly distributed modulo 1.

The main goal of this paper is to give asymptotic expansions for the cardinality of

A(x,a,b) ={n < x: f(P(n)) =a (mod b)},
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where f is a strongly g-additive function, b > 2 and a € Z. In addition, we prove the
uniform distribution modulo 1 of @P(n) when f(P(n)) = a (mod b). In Section 2, we
define the basic notions which are standard in this area (see, for example, [1, 10])
and give some preliminary results. In Section 3, we give an asymptotic formula for
the number of elements of A(x, a, b) and we prove that the sequence {aP(n) : n > 1,
f(P(n)) = a (mod b)} is uniformly distributed modulo 1.

Throughout this paper, p always denotes a prime number and ¢ denotes the Euler
function. For any real x, we define e(x) = ¢?™*. The notations (a, b) and [a, b] refer
respectively to the greatest common divisor and the least common multiple of @ and b.
We denote by |&| the number of elements of a set & We recall that the notation U < V
is equivalent to the statement that U = O(V) for positive functions U and V and the
implied constants in the symbols ‘O’ and ‘<’ are absolute. We also use the symbol
‘0’ with its usual meaning, that is, the statement U = o(V) is equivalent to U/V — 0.

2. Preliminaries

2.1. Digital functions and strongly g-additive functions. Let g > 2 be an integer.
Then we can represent every positive integer n in a unique way as

n= Z njqf and n;€{0,...,q—1}
0<j<v
This is the g-ary representation of n with g the base and {0, . .., g — 1} the set of digits.
A function f : N — R given by f(n) = Yo<<q @xlnl, with

ny=H0<j<v:mj=k}| and ap,...,a4 1 €R,

is called a digital function. A function f: N — R is called strongly g-additive if
f(aq' + b) = f(a) + f(b), where (a,b,i) € N> and 0 < b < ¢'. In particular, f(0) =0
and

fy= > fap= > fnl.
0<j<v 1<k<gq
A simple example of a strongly g-additive function is the sum of digits function,
s = > nj= > Kinlk.

0<j<v 1<k<q

Strongly g-additive functions, particularly their asymptotic distribution, have been
extensively discussed in the literature (see, for example, [2, 3, 10-12]).
Let ¥ be the set of digital functions f = }o<t, @l - |« such that the real sequence

ap, . ..,a4-1 is not an arithmetic progression modulo 1 whose common difference r is
an integer multiple of 1/(g — 1) (thatis, r(g — 1) ¢ Z) and let 7, be the set of functions
J'= Xo<k<q @l - I such that the sequence a,...,a,-1 is an arithmetic progression

modulo 1. It is easily seen that s,(-) € .
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For f(n) = Yo<k<q axlnlc € F U Fo, we define real numbers 4,(f) by
c1,4min Z la; —a;— G- HiP* if f & Fo,
() =

IeR 0<j<i<q (21)
c24ll(g = (a1 = ao)lI? if fefone,

where ||y|| denotes the distance from the real number y to the nearest integer, and
c14 and ¢, 4 are constants depending only on g (defined in [10, page 27]). It was
established in [10] that A,(f) > 0 and the theorems of Hadamard—de La Vallée Poussin
and Vinogradov (see [4, 5, 15]) were extended to the case of prime numbers satisfying
a digital constraint. The method is based on the following estimate of exponential
sums.

TueoreMm 2.1 [10, Théoremes 1 and 2]. Suppose that g > 2 and f € ¥ U Fo. Then, for
allx>2and B e R,

2 Ame(f(n) + ) < 51D (log ),

where A,(f) is defined in (2.1) and the implied constant depends only on q.

We can see a generalised version of Theorem 2.1 in [12].
Let 7. be the set of strongly g-additive functions f such that

=) al-lk with a,....aq01€Z and ged(a,...,a1)=1.
1<k<q

Let f € 7—'; and let d =ds;, > 1 be the greatest divisor of (b,q — 1) such that
(f(1),d) =1 and, for all integers n,

f(n) = f(1)s,(n) = f(1)n mod d. 2.2)

By using the result of Martin et al. (see [10, Proposition 5]), we see that for all
jeJo={0<j<b: jisnotamultiple of b/d},

D e(l—]) f(p) + rp) < N'"ma(log NY?, 2.3)
PN
where the implied constant depends only on q.

Let m(x; [, m) denote the number of primes less than or equal to x which are
congruent to / (mod m) for some real x > 0 and positive coprime integers /, m. Using
elementary means and the above result, Martin et al. [10] proved the following
theorem.

Tueorem 2.2 [10, Théoreme 4]. Let g, b>2, f € F" and d = dyp 4 be the integer

defined in (2.2). Let ¢ = f*(1) be the multiplicative inverse of f(1) modulo d. Then,
foreveryaelZ,

Oorl if (a,d)> 1,

{ip <x:f(p)=a(modb)ll =1d

ET((X; ac,d) + O((log x)’x'77ma)  otherwise,

where the implied constant depends only on q.
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2.2. Auxiliary estimates. As usual, we say that a positive integer n is y-smooth if
P(n) <y. Let
W(x,y) = |{n < x : nis y-smooth}|.

The following estimate is a simplified version of [14, Theorem 1 of Ch. IIL.5].
Lemma 2.3. Let u = log x/logy, where x >y > 0. If u > 1, then
U(x,y) < xexp(—u/2). 2.4

In what follows, we denote by P the set of all prime numbers and by P[w, x] the set
of primes p such thatw < p < x. Given x >y > 0 and m > 1, we put

L, = max{y» P(m)}, P = PlLi, x/m].

Lemma 2.4 [1, Lemma 3]. Let x >y > 0. For any arithmetical functions h and g
satisfying max{|h(k)|, |g(k)|} < 1 for all positive integers k,

D P = D> h(p)gmp) + OW(x,)).

n<x m<x/y pePm

3. Main results

Tueorem 3.1. Let q,b > 2 be integers, x a real number, f € F and d = dyp4 the
integer defined in (2.2). Then, for every a € Z, there exists a constant Ko > 0 such that
for any K < Ky,

dx
— 4+ O(xexp(=Klog'? x)) if(a,d) =1,
A, a,b)] = | be(d) P s /
O(xexp(—K log” 3 %) otherwise.

Proor. For every positive integer k, we consider the functions g(k) = 1 and

hk) = {1 if f(k) E a (mod b),
0 otherwise.

For any real parameters x, y to be chosen later, with 0 < y < x, Lemma 2.4 gives

A, a,b)l = > hPm)Pm) = > > h(p)gmp) + OW(x,y))
n<x m<x/y peP,
= > N(ma,b)+ 0W(x,), 3.1)
ms<x/y
where N(m,a,b) =|{p € P, : f(p) = a (mod b)}|. In view of Theorem 2.2, if (a,d) > 1,
Z N(m,a,b) =0.
m<x/y

In the other case, for any m with mL,, < x,

N@m,a,b) = n¢(x/m) — ms(Ly) + O(1),
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where 7¢(x) = X<y f(p)=a (mod ») 1> and the sum is empty otherwise. In this case, since
(a,d) = 1, Theorem 2.2 shows that there exists a constant of,;, > 0 such that

d
7(x) = Sl ac,d) + O(x'~7r (log x)*). (3.2)
We observe that the error term in (3.2) is an increasing function of x. Thus,
d 3 1—0’_,’#‘]7
N(m, a,b) = —(n(f; ac, d) — 1(Ly; ac, d)) . 0((log f) (f) ) (3.3)
b\ \m m/) \m

For any integers u, v such that («, v) = 1, the following estimate holds (see [8]):

w(x;u,v) = %Li(x) + O(xexp(—c+/log x)), 3.4

where ¢ is a positive constant. We note that an improved version of (3.4) can be found
in [9]. So, (3.3) becomes

N =580t offos 3] 2) )

<02 exp(-e1 e 1))

Then
\A(x, a, b) > (Li(2) - Lictw) + 0w + R + Ro)
X, a =T~ - m -x9 )
O bty 24\ plny)+ R+ Ry
where
x\3( x\1=0rab X X
Ri= Seen) () Rem 3 el e )
m<x/y m<x[y

The same arguments as applied in (3.1) with A(k) = 1 lead to the identity

xj= 1= (Ll(%) - Li(Lm)) + OW(x,) + Ry).
n<x m<x/y

Hence,
dx

|A(x, a, b)| = bo(d)

+ O (x,y) + R; + Ry). (3.5)
By elementary estimates,

R; = O(x(log x)*y™7#») R, = O(xlog x exp(—c;+/log y)).

From Lemma 2.3, we have ¥(x, y) = O(xexp(—log x/(21logy))). For positive real
numbers x, y, we define the functions 6; with 1 <i < 3 as follows:

01(x,y) = (log x)*y~7ras,

0>(x,y) = log xexp(—cy +/logy),
63(x, y) = exp(—log x/(2log y)).
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For a fixed real number x, sufficiently large, we obtain

6loglog x + 4/(6loglog x)* + 80'fqblogx)

01(33) = 63,3 for y = yo = exp o
UR

0y(x,y) = 63(x,y) fory=y = exp(Clogz/3 X+ 0(10g xlog log x)),
with C = (4c;)7%/3, where the constant c; is defined in (3.4). Since 63(x,y) is an
increasing function on y,
61(x, yo) = 03(x, y0) < 63(x, y1) = 62(x, y1).
So, by choosing y = y;, we have proved that the error term in (3.5) is
O(xlog xexp(—Ky log'”? x)),
where Ky = 1/(2C) is a positive constant. The proof is completed. O

Next, we will prove the uniform distribution modulo 1 of {aP(n) : n € A} with
A = Ala, b) = {n € N\{0}, f(P(n)) = a (mod b)}. We note that it is shown in [10]
that the sequence {ap : p prime, f(p) = a (mod b)} is uniformly distributed modulo 1
if and only if « is irrational.

THeorReM 3.2. Let q,b > 2 be integers, f € 7’;, d =dyyp , the integer defined in (2.2),
a € Z such that gcd(a,d) =1 and a € R. Then the sequence {aP(n):n e A} is
uniformly distributed modulo 1 if and only if @ € R\Q.

Proor. If « is rational, then the sequence {@P(n) : n € A} contains only a finite number
of terms modulo 1 and consequently is not uniformly distributed modulo 1.

Now, let @ € R\Q. By Weyl’s criterion (see [7, Theorem 5.6]), it suffices to prove
that for every h € Z*,

1

oy D cahPa)=o(l) asx .

neA(x,a,b)
To estimate the sum, we apply Lemma 2.4 to the functions g(k) = 1 and
e(ahk) if f(k) = a (mod b),
o = [€@0if )= a (mod b)
0 otherwise.

ForO<y<x,

D, elahPm)= > > h(p)g(mp)+ OW(x,y))

neA(x,a,b) m<x/y pePm

- Z Z e(ahp) + OW(x, y)). (3.6)
m<xly  pePu
f(p)=a (mod b)

By the orthogonality formula,
b=

S etehp) = Z o 2(7p) - + ahp). 37)
p€7)m =0 €Pom
f(p)=a (mod b)
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We split the summation (3.7) over j into two parts according as j € J; and j € Jp,
where J; ={0 < j < b : jis amultiple of b/d} and J, ={0,...,b — 1}\J;. We write

Si=2 2 3 S L) -a + anp)

mSX/y jEJI Pepm
Estimation of S 1. For all j € J|, we can write j = ub/d with 0 < u < d. From (2.2),
j 1
Z e(lf(p) + a/hp) = Z e(p(uf( ) + a/h)).
b d
p=x p<x

Since « is irrational, so is (u/d)f(1) + ah. Thanks to [15], ((u/d)f(1) + ah)p),ep is
uniformly distributed modulo 1. We deduce from Weyl’s criterion that

Z e(p(uT(l) + ah)) =o(m(x)) asx — oo,
p<x

which gives, as x — oo,

3 SIS oo 5 A2 Ao

msx/y jeJi pePp msx/y
Estimation of S ,. For all j € J,, we have from (2.3) that

e Y f(p) + ahp| < x' 71 (log x)°.
2 )

p=x
The same arguments as in the proof of Theorem 3.1 give
S, = O(xy "4 (log x)*). (3.9)

Assembling (3.6)—(3.9) and (2.4) yields

Z e(ahP(n))

neA(x,a,b)

1 1
< x(y_‘f»f=q~b(log x)* + % + ex ( 0gx ))

_Zlogy

Now, from Theorem 3.1,

dx
[A(x,a,b)] ~ —— asx—
be(d)

and, by choosing y = exp((log x)*/), we complete the proof. O

CoroLLARY 3.3. For f € F, the sequence (af(P(n))),en is uniformly distributed
modulo 1 if and only if @ € R\Q.
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Proor. If « is rational, then the sequence (« f(P(n))),en contains only a finite number
of terms modulo 1 and is not uniformly distributed modulo 1. Conversely, by Weyl’s
criterion (see [7, Theorem 5.6]), it suffices to prove that for every h € Z*,

% Z e(ahf(P(n))) = o(1) as x — co.

By Lemma 2.4, as in (3.6), we write
D e@hfPen = 3 (Y elahfp))+ 0w ).
nsx m<x/y pePp,

Now, we use [10, Théoréme 3], which asserts that for every irrational @ and f € ¥, the
sequence (@ f(p))pep is uniformly distributed modulo 1. So,

D elahf(p) = o(x(x)) as x — oo. (3.10)
psx
Applying (3.10) in (3.11) and using (2.4),
1 1
3 elanfPm) < x (M +ex (— og X )) G.11)
pre logy 2logy
By choosing y = exp((log x)*/%), we complete the proof. O
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