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Abstract

Let P(n) denote the largest prime factor of an integer n ≥ 2. In this paper, we study the distribution
of the sequence { f (P(n)) : n ≥ 1} over the set of congruence classes modulo an integer b ≥ 2, where
f is a strongly q-additive integer-valued function (that is, f (aq j + b) = f (a) + f (b), with (a, b, j) ∈ N3,
0 ≤ b < q j). We also show that the sequence {αP(n) : n ≥ 1, f (P(n)) ≡ a (mod b)} is uniformly distributed
modulo 1 if and only if α ∈ R\Q.
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1. Introduction

For a positive integer n, let P(n) be the largest prime factor of n, with the usual
convention that P(1) = 1. The distribution of the largest prime factor in congruence
classes has been previously considered by Ivic̀ [6] and Oon [13] for a fixed modulus k.
Using a similar approach to that of Ivic̀ [6], Banks et al. [1] obtained new bounds that
are nontrivial for a wide range of values of the modulus k. In particular, if k is not too
large relative to x, they derived the expected asymptotic formula

]{n ≤ x : P(n) ≡ l (mod k)} ∼
x

ϕ(k)

with an explicit error term that is independent of l. Moreover, by bounding the
exponential sum

∑
n≤x e(αP(n)) for a fixed irrational real number α, they deduced

that the sequence {αP(n) : n ≥ 1} is uniformly distributed modulo 1. This result is
reminiscent of the classical theorem of Vinogradov [15] that, for a fixed irrational real
number α, the sequence {αp : p prime} is uniformly distributed modulo 1.

The main goal of this paper is to give asymptotic expansions for the cardinality of

A(x, a, b) = {n ≤ x : f (P(n)) ≡ a (mod b)},
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where f is a strongly q-additive function, b ≥ 2 and a ∈ Z. In addition, we prove the
uniform distribution modulo 1 of αP(n) when f (P(n)) ≡ a (mod b). In Section 2, we
define the basic notions which are standard in this area (see, for example, [1, 10])
and give some preliminary results. In Section 3, we give an asymptotic formula for
the number of elements of A(x, a, b) and we prove that the sequence {αP(n) : n ≥ 1,
f (P(n)) ≡ a (mod b)} is uniformly distributed modulo 1.

Throughout this paper, p always denotes a prime number and ϕ denotes the Euler
function. For any real x, we define e(x) = e2πix. The notations (a, b) and [a, b] refer
respectively to the greatest common divisor and the least common multiple of a and b.
We denote by |E| the number of elements of a set E. We recall that the notation U � V
is equivalent to the statement that U = O(V) for positive functions U and V and the
implied constants in the symbols ‘O’ and ‘�’ are absolute. We also use the symbol
‘o’ with its usual meaning, that is, the statement U = o(V) is equivalent to U/V → 0.

2. Preliminaries

2.1. Digital functions and strongly q-additive functions. Let q ≥ 2 be an integer.
Then we can represent every positive integer n in a unique way as

n =
∑

0≤ j≤ν

n jq j and n j ∈ {0, . . . , q − 1}.

This is the q-ary representation of n with q the base and {0, . . . , q − 1} the set of digits.
A function f : N→ R given by f (n) =

∑
0≤k<q αk|n|k, with

|n|k = |{0 ≤ j ≤ ν : n j = k}| and α0, . . . , αq−1 ∈ R,

is called a digital function. A function f : N→ R is called strongly q-additive if
f (aqi + b) = f (a) + f (b), where (a, b, i) ∈ N3 and 0 ≤ b < qi. In particular, f (0) = 0
and

f (n) =
∑

0≤ j≤ν

f (n j) =
∑

1≤k<q

f (k)|n|k.

A simple example of a strongly q-additive function is the sum of digits function,

sq(n) =
∑

0≤ j≤ν

n j =
∑

1≤k<q

k|n|k.

Strongly q-additive functions, particularly their asymptotic distribution, have been
extensively discussed in the literature (see, for example, [2, 3, 10–12]).

Let F be the set of digital functions f =
∑

0≤k<q ak| · |k such that the real sequence
a0, . . . , aq−1 is not an arithmetic progression modulo 1 whose common difference r is
an integer multiple of 1/(q − 1) (that is, r(q − 1) < Z) and let F0 be the set of functions
f =

∑
0≤k<q ak| · |k such that the sequence a0, . . . , aq−1 is an arithmetic progression

modulo 1. It is easily seen that sq(·) ∈ F0.
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For f (n) =
∑

0≤k<q ak|n|k ∈ F ∪ F0, we define real numbers λq( f ) by

λq( f ) =

c1,q min
t∈R

∑
0≤ j<i<q

||ai − a j − (i − j)t||2 if f < F0,

c2,q||(q − 1)(a1 − a0)||2 if f ∈ F0 ∩ F ,
(2.1)

where ||y|| denotes the distance from the real number y to the nearest integer, and
c1,q and c2,q are constants depending only on q (defined in [10, page 27]). It was
established in [10] that λq( f ) > 0 and the theorems of Hadamard–de La Vallée Poussin
and Vinogradov (see [4, 5, 15]) were extended to the case of prime numbers satisfying
a digital constraint. The method is based on the following estimate of exponential
sums.

Theorem 2.1 [10, Théorèmes 1 and 2]. Suppose that q ≥ 2 and f ∈ F ∪ F0. Then, for
all x ≥ 2 and β ∈ R, ∑

n≤x

Λ(n)e( f (n) + βn)� x1−λq( f )(log x)4,

where λq( f ) is defined in (2.1) and the implied constant depends only on q.

We can see a generalised version of Theorem 2.1 in [12].
Let F +

q be the set of strongly q-additive functions f such that

f =
∑

1≤k<q

ak| · |k with a1, . . . , aq−1 ∈ Z and gcd(a1, . . . , aq−1) = 1.

Let f ∈ F +
q and let d = d f ,b,q ≥ 1 be the greatest divisor of (b, q − 1) such that

( f (1), d) = 1 and, for all integers n,

f (n) ≡ f (1)sq(n) ≡ f (1)n mod d. (2.2)

By using the result of Martin et al. (see [10, Proposition 5]), we see that for all
j ∈ J2 = {0 ≤ j < b : j is not a multiple of b/d},∑

p≤N

e
( j
b

f (p) + rp
)
� N1−σ f ,b,q (log N)3, (2.3)

where the implied constant depends only on q.
Let π(x; l,m) denote the number of primes less than or equal to x which are

congruent to l (mod m) for some real x > 0 and positive coprime integers l,m. Using
elementary means and the above result, Martin et al. [10] proved the following
theorem.

Theorem 2.2 [10, Théorème 4]. Let q, b ≥ 2, f ∈ F + and d = d f ,b,q be the integer
defined in (2.2). Let c = f ∗(1) be the multiplicative inverse of f (1) modulo d. Then,
for every a ∈ Z,

|{p ≤ x : f (p) ≡ a (mod b)}| =


0 or 1 if (a, d) > 1,
d
b
π(x; ac, d) + O((log x)3x1−σ f ,b,q ) otherwise,

where the implied constant depends only on q.
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2.2. Auxiliary estimates. As usual, we say that a positive integer n is y-smooth if
P(n) ≤ y. Let

ψ(x, y) = |{n ≤ x : n is y-smooth}|.

The following estimate is a simplified version of [14, Theorem 1 of Ch. III.5].

Lemma 2.3. Let u = log x/log y, where x ≥ y > 0. If u ≥ 1, then

ψ(x, y)� x exp(−u/2). (2.4)

In what follows, we denote by P the set of all prime numbers and by P[w, x] the set
of primes p such that w ≤ p ≤ x. Given x ≥ y > 0 and m ≥ 1, we put

Lm = max{y, P(m)}, Pm = P[Lm, x/m].

Lemma 2.4 [1, Lemma 3]. Let x ≥ y > 0. For any arithmetical functions h and g
satisfying max{|h(k)|, |g(k)|} ≤ 1 for all positive integers k,∑

n≤x

h(P(n))g(n) =
∑

m≤x/y

∑
p∈Pm

h(p)g(mp) + O(ψ(x, y)).

3. Main results

Theorem 3.1. Let q, b ≥ 2 be integers, x a real number, f ∈ F +
q and d = d f ,b,q the

integer defined in (2.2). Then, for every a ∈ Z, there exists a constant K0 > 0 such that
for any K < K0,

|A(x, a, b)| =


dx

bϕ(d)
+ O(x exp(−K log1/3 x)) if (a, d) = 1,

O(x exp(−K log1/3 x)) otherwise.

Proof. For every positive integer k, we consider the functions g(k) = 1 and

h(k) =

{
1 if f (k) ≡ a (mod b),
0 otherwise.

For any real parameters x, y to be chosen later, with 0 < y < x, Lemma 2.4 gives

|A(x, a, b)| =
∑
n≤x

h(P(n))g(P(n)) =
∑

m≤x/y

∑
p∈Pm

h(p)g(mp) + O(ψ(x, y))

=
∑

m≤x/y

N(m, a, b) + O(ψ(x, y)), (3.1)

whereN(m,a,b) = |{p ∈ Pm : f (p) ≡ a (mod b)}|. In view of Theorem 2.2, if (a,d) > 1,∑
m≤x/y

N(m, a, b) = 0.

In the other case, for any m with mLm ≤ x,

N(m, a, b) = π f (x/m) − π f (Lm) + O(1),
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where π f (x) =
∑

p≤x, f (p)≡a (mod b) 1, and the sum is empty otherwise. In this case, since
(a, d) = 1, Theorem 2.2 shows that there exists a constant σ f ,q,b > 0 such that

π f (x) =
d
b
π(x; ac, d) + O(x1−σ f ,q,b (log x)3). (3.2)

We observe that the error term in (3.2) is an increasing function of x. Thus,

N(m, a, b) =
d
b

(
π
( x
m

; ac, d
)
− π(Lm; ac, d)

)
+ O

((
log

x
m

)3( x
m

)1−σ f ,q,b)
. (3.3)

For any integers u, v such that (u, v) = 1, the following estimate holds (see [8]):

π(x; u, v) =
1
ϕ(v)

Li(x) + O
(
x exp

(
−c1

√
log x

))
, (3.4)

where c1 is a positive constant. We note that an improved version of (3.4) can be found
in [9]. So, (3.3) becomes

N(m, a, b) =
d

bϕ(d)

(
Li

( x
m

)
− Li(Lm)

)
+ O

((
log

x
m

)3( x
m

)1−σ f ,q,b)
+ O

( x
m

exp
(
−c1

√
log

x
m

))
.

Then

|A(x, a, b)| =
d

bϕ(d)

∑
m≤x/y

(
Li

( x
m

)
− Li(Lm)

)
+ O(ψ(x, y) + R1 + R2),

where

R1 =
∑

m≤x/y

(
log

x
m

)3( x
m

)1−σ f ,q,b

, R2 =
∑

m≤x/y

x
m

exp
(
−c1

√
log

x
m

)
.

The same arguments as applied in (3.1) with h(k) = 1 lead to the identity

bxc =
∑
n≤x

1 =
∑

m≤x/y

(
Li

( x
m

)
− Li(Lm)

)
+ O(ψ(x, y) + R2).

Hence,

|A(x, a, b)| =
dx

bϕ(d)
+ O(ψ(x, y) + R1 + R2). (3.5)

By elementary estimates,

R1 = O(x(log x)3y−σ f ,q,b ), R2 = O
(
x log x exp

(
−c1

√
log y

))
.

From Lemma 2.3, we have ψ(x, y) = O(x exp(−log x/(2 log y))). For positive real
numbers x, y, we define the functions θi with 1 ≤ i ≤ 3 as follows:

θ1(x, y) = (log x)3y−σ f ,q,b ,

θ2(x, y) = log x exp
(
−c1

√
log y

)
,

θ3(x, y) = exp(− log x/(2 log y)).
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For a fixed real number x, sufficiently large, we obtain

θ1(x, y) = θ3(x, y) for y = y0 = exp
(6 log log x +

√
(6 log log x)2 + 8σ f ,q,b log x

4σ f ,q,b

)
,

θ2(x, y) = θ3(x, y) for y = y1 = exp(C log2/3 x + O(log1/3 x log log x)),

with C = (4c1)−2/3, where the constant c1 is defined in (3.4). Since θ3(x, y) is an
increasing function on y,

θ1(x, y0) = θ3(x, y0) ≤ θ3(x, y1) = θ2(x, y1).

So, by choosing y = y1, we have proved that the error term in (3.5) is

O(x log x exp(−K0 log1/3 x)),

where K0 = 1/(2C) is a positive constant. The proof is completed. �

Next, we will prove the uniform distribution modulo 1 of {αP(n) : n ∈ A} with
A = A(a, b) = {n ∈ N\{0}, f (P(n)) ≡ a (mod b)}. We note that it is shown in [10]
that the sequence {αp : p prime, f (p) ≡ a (mod b)} is uniformly distributed modulo 1
if and only if α is irrational.

Theorem 3.2. Let q, b ≥ 2 be integers, f ∈ F +
q , d = d f ,b,q the integer defined in (2.2),

a ∈ Z such that gcd(a, d) = 1 and α ∈ R. Then the sequence {αP(n) : n ∈ A} is
uniformly distributed modulo 1 if and only if α ∈ R\Q.

Proof. If α is rational, then the sequence {αP(n) : n ∈ A} contains only a finite number
of terms modulo 1 and consequently is not uniformly distributed modulo 1.

Now, let α ∈ R\Q. By Weyl’s criterion (see [7, Theorem 5.6]), it suffices to prove
that for every h ∈ Z∗,

1
|A(x, a, b)|

∑
n∈A(x,a,b)

e(αhP(n)) = o(1) as x→∞.

To estimate the sum, we apply Lemma 2.4 to the functions g(k) = 1 and

h(k) =

{
e(αhk) if f (k) ≡ a (mod b),
0 otherwise.

For 0 < y < x, ∑
n∈A(x,a,b)

e(αhP(n)) =
∑

m≤x/y

∑
p∈Pm

h(p)g(mp) + O(ψ(x, y))

=
∑

m≤x/y

∑
p∈Pm

f (p)≡a (mod b)

e(αhp) + O(ψ(x, y)). (3.6)

By the orthogonality formula,∑
p∈Pm

f (p)≡a (mod b)

e(αhp) =
1
b

b−1∑
j=0

∑
p∈Pm

e
( j
b

( f (p) − a) + αhp
)
. (3.7)
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We split the summation (3.7) over j into two parts according as j ∈ J1 and j ∈ J2,
where J1 = {0 ≤ j < b : j is a multiple of b/d} and J2 = {0, . . . , b − 1}\J1. We write

S i =
1
b

∑
m≤x/y

∑
j∈Ji

∑
p∈Pm

e
( j
b

( f (p) − a) + αhp
)
.

Estimation of S 1. For all j ∈ J1, we can write j = ub/d with 0 ≤ u < d. From (2.2),∑
p≤x

e
( j
b

f (p) + αhp
)

=
∑
p≤x

e
(
p
(u f (1)

d
+ αh

))
.

Since α is irrational, so is (u/d) f (1) + αh. Thanks to [15], (((u/d) f (1) + αh)p)p∈P is
uniformly distributed modulo 1. We deduce from Weyl’s criterion that∑

p≤x

e
(
p
(u f (1)

d
+ αh

))
= o(π(x)) as x→∞,

which gives, as x→∞,

1
b

∑
m≤x/y

∑
j∈J1

∣∣∣∣∣∑
p∈Pm

e
( j
b

f (p) + αhp
)∣∣∣∣∣ = o

( ∑
m≤x/y

π
( x
m

))
= o

( x log(x/y)
log y

)
. (3.8)

Estimation of S 2. For all j ∈ J2, we have from (2.3) that∑
p≤x

e
( j
b

f (p) + αhp
)
� x1−σ f ,q,b (log x)3.

The same arguments as in the proof of Theorem 3.1 give

S 2 = O(xy−σ f ,q,b (log x)3). (3.9)

Assembling (3.6)–(3.9) and (2.4) yields∣∣∣∣∣ ∑
n∈A(x,a,b)

e(αhP(n))
∣∣∣∣∣� x

(
y−σ f ,q,b (log x)3 +

log(x/y)
log y

+ exp
(
−

log x
2 log y

))
.

Now, from Theorem 3.1,

|A(x, a, b)| ∼
dx

bϕ(d)
as x→∞

and, by choosing y = exp((log x)2/3), we complete the proof. �

Corollary 3.3. For f ∈ F , the sequence (α f (P(n)))n∈N is uniformly distributed
modulo 1 if and only if α ∈ R\Q.
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Proof. If α is rational, then the sequence (α f (P(n)))n∈N contains only a finite number
of terms modulo 1 and is not uniformly distributed modulo 1. Conversely, by Weyl’s
criterion (see [7, Theorem 5.6]), it suffices to prove that for every h ∈ Z∗,

1
x

∑
n≤x

e(αh f (P(n))) = o(1) as x→∞.

By Lemma 2.4, as in (3.6), we write∑
n≤x

e(αh f (P(n))) =
∑

m≤x/y

(∑
p∈Pm

e
(
αh f (p)

))
+ O(ψ(x, y)).

Now, we use [10, Théorème 3], which asserts that for every irrational α and f ∈ F , the
sequence (α f (p))p∈P is uniformly distributed modulo 1. So,∑

p≤x

e(αh f (p)) = o(π(x)) as x→∞. (3.10)

Applying (3.10) in (3.11) and using (2.4),∑
n≤x

e(αh f (P(n)))� x
( log(x/y)

log y
+ exp

(
−

log x
2 log y

))
. (3.11)

By choosing y = exp((log x)2/3), we complete the proof. �
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