AN INFORMAL ARITHMETICAL APPROACH TO
COMPUTABILITY AND COMPUTATION, III

*
Z.A. Melzak

(received April 14, 1966)

17. It is assumed that the reader is acquainted with the
first two parts of the present paper, [1] and [2], in which there
was developed informally the theory of a certain class of hypo-
thetical computing devices, the Q-machines. In the present part
of the paper we develop a way of describing Q-programs and
Q- computations; then, following the theorem in [2], we obtain
some further connections between the arithmetical nature of a
number x and the computational schemas for generating se-
quences of rational numbers converging to x; and finally, by
means of the usual device of Goedel numbering we begin to ex-
amine some properties of programs which operate on programs.

0
18. Consider first a simple program P of QZ . Any

p
such program can be prefaced by the sequence (A0 Ai) !
P2 Pn
A A ... (A_A
(A 4)) (AjA)

the location Ai for i=1,...,n. It may be assumed therefore

which results in placing p, counters in
i

that all locations are initially empty. Let P consistof ¢ com-
mands Ii’ e, Ic’ exclusive of the command 'stop' which will be

designated by IO . We suppose that Ii = Aj Ak; further, I1 is

the initial command, and the halting command IO is written as

AO AO . The location numbers j and k are functions of i so

that I = A A , 1=0,1,...,¢, =S5(0)=0. If
at I Fi) 2s0) i=0 ¢, and F(0) = S(0)

*

Present address: Courant Institute of Mathematical Sciences,
N.Y., U.S.A.

Canad. Math. Bull. Vol. 9, no. 5, 1966

593

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

Max (F(1), S(1), ..., F(c), S(c)) = L
then no location beyond AL is used in P. However, by a suit-

able re-enumeration of locations it may be assumed that L< 2c.
Once the number c¢ and the functions F(i) and S(i) are given,
the commands of P are known. To show how these commands
are linked together into the program P we introduce two further
functions Y(i) and N(i): Y(i), resp. N(i), is the number of the
command at the end of the 'y' arrow, resp. the 'n' arrow,
leading from the i-th command Ii. Y(i) and N(i) are defined

for 1< i< c and satisfy the inequalities 0 < Y(i)< c,
0< N(i)< c.

The four functions Y(i), N(i), F(i) and S(i) describe P
completely. Previously imposed conditions require only that
F(i) # S(i) except for the special convention F(0) = S(0) = 0,
and that Y(i) and N(i) be not both equal to i. We require
further that an arrow is to lead to every command, except pos-
sibly the first one, so that for every i, i # 1, there is j such
that Y(j) =i or N(j)=1i.

0
To simplify further description we convert Q2 into a

synchronous machine. That is, the commands are supposed to
be executed only at times t =1, 2, ...; the first command I1

is executed instantaneously at the time t = 1, the next one in-
stantaneously at the time t =2 and so on, and nothing happens

in between those times. Let ¢{t) be the number of the command
carried out at the time t, so that ¢(1) = 1. Let also fk(t) be

the contents of the k-th location at the time t - 1/2, or, what
is the same thing, just before the execution of the t-th successive

command I(p(£ We have now the initial and boundary conditions

(1) fk(1) =0 for k > 1, fO(t) = for all t, (1) = 1.

Further, 0< ¢(t)< c¢ for all t for which ¢ is defined. If T

is the earliest time such that ¢(T) = 0 the program terminates
at that time and the computation stops, ¢(t) is then not defined
for any t> T . If the program is not terminating then ¢(t) is
defined for all t and we have ¢(t) > 1. A simple example of

such a program is
A A
O 0 1.n ,
y N

00

594

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

|
-
55
—~
[,
"
(@]

here all the requirements are satisfied and ¢ =)

S(1) =1, Y(1) =1, N(1) =0, £ (t)=t-1, £ (t) =0 for k> 2,
1 k

and ¢(t) =1 for all t.

The functions ¢(t), fi(t)’ ey fL(t) are called the state

functions of the program and our next object is to derive the

equations satisfied by them; these will be called the state equa-

tions. At the time t the program executes the command

I = A A . Therefore the next command I

e (t) Fle(t)) " Sle(t)) p(t+1)

to be executed will be either I or I depending on
¥ (o(t)) N(p(t)) “TPEREHe

whether the contents f (t) of the location A , just

F(e(t)) Flo(t))
prior to the time t, is positive or 0. This gives us the state
equation for oft):

(@) p(t+1) = Y(p(t) sgn fp (o (0 Np() [1- sgn iy 0 ()]

ot

Next, observe that fj(t-i-i) can be different from fj(t)
only if the command I(p(t) carried out at the time t involves
the location Aj , or equivalently, if either F(g(t)) = j or
S{e(t)) = j. In the first case 1 =A A. and so f (t+1) =

(o(t)) = o(t) 8 J()
fj(t) -1 if fj(t) >0 and fj(t+1) = fj(t) if fj(t) =0. To sum up,

(3) fj(t+1) = fj(t) - sgn fj(t) if Fle(t)) =3.

Similarly

(4) fJ.(t+1) = fj(t) +sgnf if S(e(t)) = .

Fp(t)) (Y

Combininb (3) and (4) leads to the state equation for fj(t):
(5) £(e41) = £(0) - [1 - sen[Flp(t) - j[] sgn £ (1)

+[1 - sgn|S(e(t)) - j|] sgn £ (t) .

Flo(t))

State equations (2) and (5) together with the initial and
boundary conditions (1) describe completely the whole course of
the computation of P. The reader acquainted with such matters
may recognize the similarity of the state equations (2) and (5) to

565

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

the sequential Boolean equations of circuit-synthesis.

0 .
Consider next the case of a QZ program P which may
be subscripted. There are again ¢ commands 11, ey IC to-
gether with the stop IO, and the same conventions will apply to

I1 and IO as before. The command Ii is now not necessarily

simple and we have Ii = A A .. where the symbols x(i) and

x(i) " y(i)
yv(i) are either numbers or numbered locations. To distinguish
between those possibilities we introduce two further functions
a(i) and b(i), 0<i< c, as follows: a(i) = 0 if x(i) is a num-
ber and a(i) =1 if x{i) is a numbered location; b(i) is simi-
larly defined with respect to y(i). The functions F(i) and S(i)
are as before, but with the above proviso. There are now four
possibilities for a command:

L = Api Asq) if a(i) =0 and b(i) = 0,
I = AAF(i) Asih) if a(i)=1 and b(i) = 0,
(6) L = AF(i)AAS(i) if a(i) =0 and b(i) = 1,
I = AAF(i) AAS(i) if a(i) =1 and b(i) = 1.

The special convention regarding the stop I requires that

0
a(0) = b(0) =0 and, as before, F(0) = S(0) = 0. The functions
Y (i), N(i), ¢(t) and fj(t) are exactly as before. Observing (6)

and proceeding as in the derivation of (2) we get the following
state equation for ¢(t):

(7) ot +1) = Y(o(t)) {[1 - a(e(t))] sgn fF(q)(t))

+ a(p(t)) sgn f (t) }
fr(p(e)) P

+ N(o(t)) {[1- ale(t))][1 - sgn{ (t)]

F(e(t))

+alp(t)) [1 - sgn £] .
(e)

596

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

The state equation for f), is now rather lengthy because of
the number of ways in which the location Aj may be involved in

the command 1 . We have
o(t)

(8) fj(t+1) = fj(t) +[1 - a(e(t))] { sgn fF(q;(t))(t)

-sgn fj(t) [1- sganUp(t)) - J”}

+ a(p(t) sgn f (t) sgn |f (t) - j|

e (ot F(o(t))
-{[1-blo(tN]sen [Slelt)) - j | +ble(t) sgn g () S}
- {[1-a(e(t))]sgn £ (t) +a(e(t)) sgn £, ()} .

As a check we verify that (7) and (8) reduce to (2) and (5) when a
and b are set equal to 0. State equations similar to (2) and (5) for
the case of simple programs, and to (7) and (8) for the case of sub-
scripted programs, can be written down in the same way as above
for any Q-machine in terms of its transfer functions. With such

0 0
machines as Q3 or QS which cannot start with empty locations it
is necessary to replace the first equation in (1) by a suitable set of
initial conditions describing the initial contents.

19. In this section we prove some results connecting the
arithmetical nature of a number x and the type of program which
computes it. We limit ourselves to real numbers x which are Q_

5

computable in the following way: x is the limit of a sequence
, n=0,1,..., of rati 1 bers, d 0
pn/qn n 1 of rational numbers, p and q_ (qn # 0)

are integers which can be computed by a non-terminating cyclic
. =0 . . s
simple Q5 program without internal loops: initial contents:

s 0, O,

por qO: ro: ooy 0:

P: e
[—)Ii IZ Ic-l

in which each command is either a pure addition or a pure multi-
plication. The above program is improper since there is no 'stop’.
Negative integers are handled in the manner described in section

597

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

16 of [2]. One cannot speak here of final contents, but itis as-
sumed that the contents after n cycles are pn, qn, rn, R

s , 0, O,
n

To put it briefly, we are interested in numbers computable
iteratively by means of a fixed number of additions and multipli-
cations per iteration stage. Letthe c commands consist of a
additions and m = c - a multiplications; we call such a program
one of the type (a, m).

THEOREM 1. Let x1 and x2 be two irrational numbers

computable by the programs of the type (ai, mi) and (az, mz)
respectively, and let m, and m,, have their lowest possible

values. If mi#m2 then :-;1 x2 and x /x_ are irrational.

For if X, /XZ’ say, is a rational number p/q and

x, = lim pn/qn , then x, = lim (p pn)/(q qn). Therefore, if X,
is computable by a program of the type (A, mz), %, is compu-
table by a program of the type (B, mz), where B< A+p +q.

The theorem in section 16 of [2] implies at once

THEOREM 2. An irrational number computable by a pro-
gram of the type (a, 0) is algebraic. If x is a real irrational
algebraic number which exceeds in absolute value all of its con-
jugates, and if A, B, C, D are any rational integers, then the
number (Ax + B)/(Cx + D) is computable by a program of the
type (a, 0).

This raises the question whether there exists a fixed bound
M, such that every algebraic number is computable by a program
of the type (a, m), with m< M.

A program of the type we are considering here will be said
to be of span k if the number of sequences P4, ... appear-
n

ing in it is k. Since we are clearly interested only in irrational
numbers the span of any program is at least 2: there are at least
two sequences present, one for the numerators and one for the
denominators of the approximating sequence.

THEOREM 3. An irrational number b 1is algebraic if
and only if it is computable by a program of span 2.

598

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

To prove it in one direction it suffices to show that the
Newton method can be programmed as a program of span 2. Let
F(x) = 0 be an irreducible equation of which b is a root. Then
an open interval J can be found such that if Py / 9 is in J and

(9) pn+1 / qn+1 - pn/q‘n) F(pn/qn)/F'(pn/qn)

then p /q <converges to b, Define recursively
n n

d !
pn+1 - qn [pn F (pn/ qn) B qn F(pn/qn)]

(20) d+1

Q+q - 9y F'(pn / qn) ’

where Py and q, are any given integers subject to the condition
pO / qO ¢ J, and d is the degree of the polynomial F . It follows
from (10) that (9) holds; further,

P = P(pn’ qn) ’ C111+'1 - Q(pn' q'n)

n+1

where P and Q are fixed polynomials with integer coefficients.
Therefore Py and 9,4 2Te obtainable from P and q, by

one cycle of a program of span 2.

Suppose next that the real irrational number b can be com-
puted by a program of span 2. One has then b = lim P /q where
n

=) 1) =H) .
pn+1 G(pn qn) qn+1 (pn qn)

Since each command executes an addition or a multiplication,
G and H are polynomials with integer coefficients. Therefore

N M
= H(p , = Z Ap ;
G(pn. qn) jfo Pj(pn, qn), (pn qn) 5 QJ(pn qn)

here P. and Qj are homogeneous polynomials, with integer

coefficients, of degree j. Hence

599

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

(11)

N . M
-(N-j) -(M-j)
=
[j=0 a P.lp /q . 1)/ jfo q_ Qlp /q, D].

- It may be assumed that ¢> 0 and n0 can be found, such that

IPN(pn/qn, 1] >e, IQM(pn/qn,i)IZe for n> g,

for otherwise the limit b = lim p /q satisfies the polynomial
n n

equation PN(x, 1) =0 or QM(X, 1) = 0 and hence must be algeb-

raic. Since b is irrational q, tends to infinity with n; it

follows now that N =M and by (14) b 1is a root of the equation

]
1

PN(x, 1)/ QN(X’ 1).

Therefore b is algebraic and the proof is complete.

It may be added that if the algebraic number b 1is of degree
n and height H (= maximum of the absolute values of the co-
efficients in the minimal polynomial) and if b is computed by a
program of the type (a, m) then it is possible to give upper
bounds on the minimal values of a and m in terms of n and
H. Theorem 3 is best possible of its kind since a program of
span 3 can already compute a transcendental number. Itis
known [3, pp. 34-35] that the number

is transcendental. Let P,

"
-
e}
o
1
[\
H
1]
~n

-2
Pott ! Qg =P/, F2 '

and consider the following program:

initial contents: po, qo, ro, 0, O,

600

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

—03304
33600
44630
02304
01305
11600
22610
55610
44620

e

n
2
contents after n cycles: p , q, r , 0, 0, ... where r =2
n n n n

Here we use the abbreviation 03304 for AO A3 A3 Ao A4 . The

above program computes £ and is of span 3. In similar fashion
it is easy to supply programs of span 4 for m and e.

0
We show next the existence of a large class of Q_ compu-
2

table numbers. Let P(x, y, ...) be a polynomial with integer
coefficients in any finite number of variables; a function of the
type

n .n 2" 3" 2"

f(n) =P(n, 27, 37, ..., 2 , 2 ,...,3 ,...)

will be called a hyperexponential polynomial, in analogy to poly-
nomials and exponential polynomials.

THEOREM 4. Let f1(n) and fz(n) be two hyperexpo-
nential polynomials. Suppose that fz(n) #0 for n=0, 1,

and that the series

0
£ = 0‘2 f,(n) /£, (n)

0
converges. Then § is Q5 computable,

Instead of sequences pn, q_n, ... we shall now use se-

quences p. » i=14,...,8s, n=0,1,... . Let p30=p3n=1,

Pgo ™% Pynps “Pyn TPy
by means of a finite number of additions and multiplications we
can generate all the necessary powers of n entering into fi(n)

that =n. Si =n,
so tha Pyp =1 Since Pyp =1

601

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

and fz(n). Powers like 2" can be generated by letting

n

1, so that p6n=2

Pentt ~ Pén Psn
30
Iterated powers like 4 can be generated by letting

= =2, =
Pso = Psp Peo

Pgg = 4

n

3
= o that =4 . Itis now a mere matter of
Py nt1 ~Pon ° Pon

=0
detail to show that for some finite s a suitable Q5 program

computes § .

A natural question arises here of exhibiting numbers which
=0 . .
are computable but not Q5 computable. In this connection we

notice that only double exponentials occur in the hyperexponential
polynomials of Theorem 4, and we are led to conjecture that in
general the occurence of triple exponentials will prevent a num-

ber from being QS computable. In particular, we conjecture

that the number

is not Q5 computable.

Define the span of a real irrational 62 computable num-
ber to be the smallest span of a program which computes it.
From Theorem 3 it follows that all algebraic numbers are of
span 2 and all C_lg computable transcendental numbers are of

span > 3. This raises several further questions. Do there
exist transcendental numbers of arbitrarily high span ? Of any
given span s for s> 3? Are the spans of m and e 3 or 4°?
What is the span of Euler's constant y ? If the spanof b is s

and f(x) is some such function as e” or log x, what is the span
of f(b)? Are two numbers of different spans necessarily alge-
braically independent? The answers to these, and other similar
questions, do not appear to be easy. It is possible that some of
them might throw a certain amount of light on the nature and pro-
perties of the transcendental numbers. A partial information on
the last question is provided by the following.

602

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

THEOREM 5. Let a.1 and a2 be two real irrational

Q(5) computable numbers of spans s1 and s2 ‘respectively. If

[s, - SZI > 2 then 2, and a, are algebraiéally independent.

1

Suppose that S, > S, + 2 and that a, and a, are alge-

braically dependent. Therefore 2, is a root of a polynamial

equation P(x) = 0 where

Z

(12) P(x) = P (a)xj ;
o I

1]

here P. are polynomials with integer coefficients. We can now
J

use the Newton method to find aZ: if uO and VO are suitable

integers and

/v

un+1 n+i - un / Vn i P(un /Vn) / P'(un / Vn)

then u.n/vn tends to the limit az . However, the number a1

and consequently the coefficients of the polynomial P have also
to be determined approximatively. By the hypothesis, there is
a program of span S, with the sequences Py -+ T

n

such that pn/ q,~a, - We therefore let

lJ'n+1 /Vn+1 - U'n/vn)
(13) N . N -
] . j-
I il e U

A simple continuity argument shows that if Uy and vy are

appropriate and if P, / 9 is close enough to a.‘1 , then the iter-

ative Newton scheme (13) leads to u /Vn - a.‘2 . Let d, = degree
n J

Pj , d=max dj , then (13) may be written as
J
un-H /Vn+1 N un / Vn i
603

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

N

d j N-j . d j-1 N-j#1
fo q, Pj(Pn/qn) w v/ j=1J 9, Pj(pn/qn) woovy .
Therefore we define
N .
_ . d j-1 N-j+1
“at1 " n j?i I, Pj(pn/qn) "a Vn
N .
d N-j
-v Z q P.UAp /q) u'] v J s
n . n j n n n n
j=0
N . .
_ . d j-1 N-j#+
Vatt - 'n jz-i I 4, Pj(pn/qn) "n Vn

which is of the form
=P =
Y+ (pn’ E U'n’ Vn)’ Vot Q(pn’ 4 Uy Vn)

where P and Q are fixed polynomials with integer coefficients.

We now adjoin the two sequences u and v tothe s, sequences
n n

=0
P»9, ..., r_ and we find that the limit a_=limu /v_ is Q
n n n 2 n n 5
computable by a program of span s1 +2. Therefore s_< s, +2
which is a contradiction. This completes the proof.

COROLLARY. I a is 52 computable and is of span

51, and if a, and a2 are algebraically dependent, then a_ is

also Q5 computable (and of span < s, +2).

In the preceding we have associated the type (a, m) and
=0
the span s with Q5 programs; another such number which can

be so associated is the total number w of locations used through-
out the program; this will be called the weight of the program.

=0
The weight of a Q5 computable number is the smallest weight of

a program which computes it. We have now
THEOREM 6. Every algebraic number is of weight < 7.

604

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

To prove it we merely check that the Newton procedure can
-0
be programmed as a Q5 program in such a way that only the

first seven locations need ever be occupied.

With respect to the weight of a number we can ask now
some questions similar to those for its span. In addition, we
have the following analogue of Theorem 5:

THEOREM 7. Let a,1 and az be two real irrational

Q5 computable numbers of weights W, and W, respectively.

If lvv1 - WZI > 7 then a, and a2 are algebraically independent.

The proof is similar to that of Theorem 5 and will be
omitted.

20. Up to now the Q-machines were operating on numbers,
computing thereby new numbers. In this section we shall be in-
terested in some questions where a Q-machine operates reflexly:
here a program is to operate on a class of programs. Examples
of such questions are a) the halting problem: is there a program
which decides whether any given program terminates? b) the
boundedness problem: is there a program which computes the
total number of locations used in any given program? c) the
occupation problem: is there a program which decides whether
any given program will use some arbitrary prescribed location?
d) the simplification problem: is there a program which decides
whether the computation of any given program can be carried out
by a simple program? Unlike the first problem, the last three
are trivial for the special case of simple programs.

0
We limit ourselves to QZ programs in which all locations

are initially empty. The programs which are to act on such
programs are necessarily subscripted and must have some input:
the initial contents will be a single number describing the program

D 0 .
which is to be acted upon. Let P be any Q2 program of size ¢,
that is, with ¢ commands, exclusive of the stop IO . P is com-

pletely known once we are given the six functions F(i), S(i), Y(i),
N(i), a(i), b(i), 1€ i< c. By re-enumerating the locations if
needed, it may be assumed that 0 < F(i) < 2¢ and 0 < S(i) £ 2c.
We have also 0< Y(i)< c and 0< N(i)< c; a(i) and b(i) as-
sume only the values 0 or 1. It follows that aside from re-

605

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

enumerations the number N(c) of programs of size c satisfies

N(c) < [2(2¢c + 1)(c + 1)]2C.

Further, let p. be the j-th consecutive odd prime starting
J

with 3, and put

F(i) S(i) Y(i) N(i) _a(i) _b(i)

[}
C
(14) GP) =2 T Pe Peiyy Poivz Pois3 Poita Poies -

i=1

G(P) is called the (Goedel) number of P and it determines P
uniquely. By means of this device we shall be able to transform
questions about programs into questions about numbers. Re-
calling the bounds on the various exponents in (14) we find that
except for the re-enumeration of locations the number of a pro-
gram of size c does not exceed

c (6bcH2)c

(15) M(c) =2 Py 15

Let g(n) be a function defined for n> 0 and assuming non-
negative integer values. We shall say that g is computable if
there is a terminating program P with the initial contents

n, 0, 0, ... and the final contents g(n), 0, 0, Let

gi(n) =0 if n is not a number of a program and gi(n) =1 if n

is such a number. The question 'is gi(n) computable?' is now
the precise form of the question 'can Q2 recognize those in-

tegers which are numbers of programs?' . The answer is yes:

THEOREM 8. gi(n) is computable.

We suppose that there are eight rows of locations A-H.
The initial contents of A1 is n and all other locations are

empty. The row B serves as the arithmetical space; a suitable
subroutine using prime numbers 'decodes' n according to (14)
(with G(P) replaced by n) and stores the values of F(1), ...,
F(c) in Ci’ RN CC . Similarly, the values of the function S(i)

are stored in D1, .. .,DC, and so on. Once the values of the

six functions F(i) - b(i) are stored in the tabular form as lo-
cation contents of the rows C-H itis a simple matter to pro-
gram the 'check' whether the conventions referring to these
functions are satisfied, and to arrange for the corresponding

606

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

output 0 or 1 in A1.

A

We shall call a program P universal if it does the follow-
ing: the initial contents of A1 is n, the final contents of A1 is

gi(n) and if gi(n) =1, so that n is the number of a program P,

then P duplicates the computation of P and results in the same

final contents (of AZ, A3, ...)as P would have done (for the con-

tents of Ai’AZ' ...). We require ﬁ to be terminating if P is

A
terminating. The existence of P bears some similarity to the
existence of a universal Turing machine.

THEOREM 9. There exists a universal program B,

We start as before, except that we have now nine rows of
locations A-I. We compute first gi(n) LI gi(n) = 0 the pro-

gram stops {except for possible 'erasing’). If gi(n) =1 we

suppose that the six functions F(i) - b(i) are stored in the rows
C-H as before. The row 1 serves for storing the contents
fi(t) (these are the state functions defined in section 18). In
other words, the row I simulates with its locations Ii’ IZ, .

the usual row Ai' AZ’ Using the state equations (7) and (8)

we now proceed to duplicate the computation of the program
whose number is n. To assure that the state functions ¢(t) and
f.(t) can be computed without complications, we arrange for an

index which keeps at all times track of the location Ii with the

largest i, which is non-empty. The details are left to the reader.

Define gz(n) as follows: gz(n) =0 if n is the number of
a terminating program, and gz(n) =1 otherwise. The halting
problem is now reduced to the question whether gz(n) is com-
putable. From the theory of Turing machines it is known that
the answer is no; here we shall produce an independent proof.
Let f(c) be the largest number which can be computed by a
terminating program of size c¢. That is, there is a terminating
program of size ¢ which starts with all locations empty and
leads to the final contents f{(c) in some location; moreover, f(c)
is the largest number with that property. Since aside from re-
enumerations there is only a finite number of programs of size c,
as shown before, there is also a finite number of terminating

607

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

programs of size c¢, and therefore f(c) is uniquely defined and
finite for each c. Since clearly f(c +1)> 1 +1{(c), f(c) is
strictly increasing.

LEMMA 1. f(c) is not computable.

Suppose that this is false. Then there is a terminating
program P with the initial contents ¢, 0, 0, ... and final
contents f{c), 0, 0, Let the size of P be g. Define

f_i(c) = min { k: f(k) > ¢} ; it follows that there is a program
PO of size f_1(c) which starts with all locations empty and leads

to the final contents > ¢ in, say, A1. Now juxtapose PO and

P; we obtain then a program of size g + f-1(c) which leads to
the final contents > f(c), therefore

(16) f(c) < £(g + £ (c)).

However, it is easy to show that f(c) grows faster than ¢ {or

-1
indeed faster than any computable function of ¢) so that f “(c) =
o(c) for large c, and this contradicts (16).

THEOREM 10. gz(n) is not computable.

We prove this by showing that the computability of gz(n)

implies the computability of f(c), thus contradicting Lemma 1.

Suppose then that there is a terminating program Phalt with

the initial contents n, 0, 0, ... and final contents gz(n), 0,0,....

We can now compute f(c) as follows. As remarked before, the
number of a program of size ¢ is < M(c) except for possible
re-enumeration of locations; here M(c) is given by (15). Let n

vary over the set C of integers from 2° to M(c) which are

divisible by 2 and by no higher power of 2. For each n we
decide first whether it is the number of a program (i.e.,
whether gi(n) = 1), by Theorem 8 this can be done. If n is not

the number of a program we pass on to the next value n+1, if n

is the number of a program P, we apply Phalt to find out

whethef\ P is terminating. If itis, we use the universal pro-
gram P of Theorem 9 to simulate P, and we check at each

stage of the simulation what is the largest number appearing in
the locations. In this way we get the largest number appearing

608

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

as the result of the computation of P . After n has ranged
over the finite set C, we compare these largest numbers and we
choose the largest of them. The latter is precisely f(c); thus
we have computed f(c), and the proof is complete.

REFERENCES

1. Z.A. Melzak, Canad. Math. Bull., vol. 4, no. 3, Sept.
1961, pages 279-293.

2. Z.A. Melzak, Canad. Math. Bull., vol. 7, no. 2, April
1964, pages 183-200.

3. T. Schneider, Einfuehrung in die transzendenten Zahlen,
Springer, 1957.

University of British Columbia

609

https://doi.org/10.4153/CMB-1966-073-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-073-6

