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( r ece ived A p r i l 14, 1966) 

17 . It is a s s u m e d that the r e a d e r is acqua in ted wi th the 
f i r s t two p a r t s of the p r e s e n t p a p e r , [ l ] and [2], in which t h e r e 
was developed i n f o r m a l l y the t h e o r y of a c e r t a i n c l a s s of hypo­
t h e t i c a l comput ing d e v i c e s , the Q - m a c h i n e s . In the p r e s e n t p a r t 
of the p a p e r we develop a way of d e s c r i b i n g Q - p r o g r a m s and 
Q - c o m p u t a t i o n s ; then, following the t h e o r e m in [2J, we obta in 
s o m e f u r t h e r connec t ions be tween the a r i t h m e t i c a l n a t u r e of a 
n u m b e r x and the c o m p u t a t i o n a l s c h é m a s for g e n e r a t i n g s e ­
q u e n c e s of r a t i o n a l n u m b e r s converg ing to x ; and f inal ly , by 
m e a n s of the u s u a l dev ice of Goede l n u m b e r i n g we beg in to ex­
a m i n e s o m e p r o p e r t i e s of p r o g r a m s which o p e r a t e on p r o g r a m s . 

0 
18 . Cons ide r f i r s t a s i m p l e p r o g r a m P of Q . Any 

p l 
such p r o g r a m can be p r e f a c e d by the s equence (A A ) 

P2 Pn 
(A^ A ) . . . (A A ) which r e s u l t s in p lac ing p c o u n t e r s in 
v 0 2 0 n r * r1 
the loca t ion A, for i = 1, . . . , n . It m a y be a s s u m e d t h e r e f o r e 

l 
tha t a l l l oca t ions a r e in i t i a l ly e m p t y . Le t P c o n s i s t of c c o m ­
mand s I , . . . , I , exc lu s ive of the c o m m a n d ' s top 1 which wil l be 

1 c 

de s igna t ed by I . We suppose tha t I. = A. A. ; f u r t h e r , I is 

the i n i t i a l c o m m a n d , and the hal t ing c o m m a n d I is w r i t t e n as 

A A . The loca t ion n u m b e r s j and k a r e funct ions of i so 

tha t I. = A A , i = 0, 1, . . . , c, and F(0) = S(0) = 0 . If 

P r e s e n t a d d r e s s : Couran t Ins t i tu te of M a t h e m a t i c a l S c i e n c e s , 
N . Y . , U . S . A . 
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M a x ( F ( l ) , S(l) F(c), S(c)) = L 

then no location beyond A is used in P . However, by a suit-
L 

able r e -enumera t ion of locations it may be assumed that L< 2c . 
Once the number c and the functions F(i) and S(i) a re given, 
the commands of P a re known. To show how these commands 
a r e linked together into the p rogram P we introduce two further 
functions Y(i) and N(i) : Y(i), r e s p . N(i) , is the number of the 
command at the end of the 'y ' ar row, r e s p . the 'n' arrow, 
leading from the i - th command I. . Y(i) and N(i) a re defined 
for 1 <. i <. c and satisfy the inequalities 0 <_ Y(i) £ c , 
0 < N(i) < c . 

The four functions Y(i), N(i), F(i) and S(i) descr ibe P 
completely. Previously imposed conditions requi re only that 
F(i) 4- S(i) except for the special convention F(0) = S(0) = 0 , 
and that Y(i) and N(i) be not both equal to i . We requi re 
further that an a r row is to lead to every command, except pos­
sibly the f i rs t one, so that for every i , i f 1 , there is j such 
that Y(j) = i or N(j) = i . 

To simplify further descript ion we convert Q into a 

synchronous machine . That is , the commands a re supposed to 
be executed only at t imes t = 1, 2, . . . ; the f i rs t command I 

1 
is executed instantaneously at the time t = 1 , the next one in­
stantaneously at the time t = 2 and so on, and nothing happens 
in between those t imes . Let <p(t) be the number of the command 
car r ied out at the time t , so that <p{l) = 1 . Let also f, ( t ) be 

k 
the contents of the k- th location at the time t - 1/2, or, what 
is the same thing, just before the execution of the t- th successive 
command I . We have now the init ial and boundary conditions 

<p(t) 
(1) ffc(l) = 0 for k > 1, f (t) = co for all t, <p{±) = 1. 

Fu r the r , 0 < <p(t) < c for all t for which <p i s defined. If T 

is the ea r l i e s t time such that cp{T) - 0 the p rog ram te rmina tes 
at that t ime and the computation stops, cp(t) is then not defined 
for any t > T . If the p rog ram is not terminating then <p(t) is 
defined for all t and we have cp{t) > 1 . A simple example of 
such a p rog ram is 

/-»A A 

0 0 
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h e r e a l l the r e q u i r e m e n t s a r e sa t i s f i ed and c = 1, F ( l ) = 0, 
S(l) = 1, Y( l ) = 1, N(i ; 
and (p(t) = 1 for a l l t 
S(l) = 1, Y( l ) = 1, N( l ) = 0, f (t) = t - 1, fk(t) = 0 for k > 2, 

The funct ions <p(t), f . ( t ) , . . . , fT (t) a r e ca l led the s t a t e 

funct ions of the p r o g r a m and our nex t object is to d e r i v e the 
equa t ions sa t i s f i ed by them; t he se wil l be ca l led the s t a t e equa ­
t i o n s . At the t i m e t the p r o g r a m e x e c u t e s the c o m m a n d 
I . = A _ , , xv A„ , , vv . T h e r e f o r e the nex t c o m m a n d I , 
cp(t) F(<p(t)) S(<p(t)) ? ( t + l ) 

to be executed wil l be e i t h e r I „, . ,. or I T/ . ,. depending on 
Y[<p(t)) N(<p(t)) * to 

w h e t h e r the c o n t e n t s f . . ,, (t) of the loca t ion A ^ . , .. , j u s t 
F(<p(t)) F W t ) ) 

p r i o r to the t i m e t , i s pos i t i ve or 0 . Th is g ives us the s t a t e 
equa t ion for <p(t) : 

(2) cp(t + l) = Y M t ) ) s g n f ( t ) + N W t ) ) [ l - s g n f F ( ^ ( t ) ) ( t ) ] ' 

Next, o b s e r v e that f.(t + l ) can be d i f fe ren t f r o m f.(t) 
J J 

only if the c o m m a n d I , . c a r r i e d out a t the t ime t i nvo lves 
<p(t) 

the loca t ion A. , or equ iva len t ly , if e i t h e r F(<p(t)) - j or 

S(<p(t)) = j . In the f i r s t c a s e I = A. A. and so f.(t + l ) = 
<p(w j i j 

f.(t) - 1 if f.(t) > 0 and f.(t + l ) = f.{t) if f.(t) = 0 . To s u m up, 
J J J J J 

(3) f.(t + l ) = f.(t) - s g n f . ( t ) if F W t ) ) = j . 

S i m i l a r l y 

(4) f.(t + l ) = f . ( t ) + s g n f (t) if S M t ) ) = j . 
J J * \<P\t)) 

Combininb (3) and (4) l eads to the s t a t e equa t ion for f .(t): 
J 

(5) £ (t+1) = f (t) - [1 - s g n J F M t ) ) - j j ] sgnf . ( t ) . 

+ [1 - s g n | S M t ) ) - j | ] s g n f F (t) . 

State equa t ions (2) and (5) toge the r with the in i t i a l and 
b o u n d a r y condi t ions (1) d e s c r i b e c o m p l e t e l y the whole c o u r s e of 
the c o m p u t a t i o n of P . The r e a d e r acqua in ted with such m a t t e r s 
m a y r e c o g n i z e the s i m i l a r i t y of the s t a t e equa t ions (2) and (5) to 
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the sequential Boolean equations of circuit-synthesis. 

C o n s i d e r nex t the c a s e of a Q p r o g r a m P which m a y 

be s u b s c r i p t e d . T h e r e a r e a g a i n c c o m m a n d s I . . . . , I t o -r 1 c 
g e t h e r wi th the s top I , and the s a m e conven t ions wi l l apply to 

I and I a s b e f o r e . The c o m m a n d I. i s now not n e c e s s a r i l y 
1 0 l y 

s i m p l e and we have I. = A , . X A ... w h e r e the s y m b o l s x(i) and 
i x(i) y(i) 

y(i) a r e e i t h e r n u m b e r s o r n u m b e r e d l o c a t i o n s . To d i s t i n g u i s h 
b e t w e e n those p o s s i b i l i t i e s we i n t r o d u c e two f u r t h e r funct ions 
a(i) and b(i) , 0 <̂  i < c , a s fo l lows : a(i) = 0 if x(i) is a n u m ­
b e r and a(i) = 1 if x(i) i s a n u m b e r e d loca t ion ; b(i) i s s i m i ­
l a r l y defined wi th r e s p e c t to y(i) . The func t ions F( i ) and S(i) 
a r e a s b e f o r e , bu t wi th the above p r o v i s o . T h e r e a r e now four 
p o s s i b i l i t i e s for a c o m m a n d : 

i F ( i ) S(i) 

(6) 

\ = ^ A a
 A

s ( i ) if a(i) - 1 and b(i) = 0, 

I. = A ^ . . . AA if a(i) = 0 and b(i) = 1, 
l F ( i ) A 

K ' S(i) 
I. = A A if a(i) = 1 and b(i) = 1. 

F ( i ) S(i) 

The s p e c i a l conven t ion r e g a r d i n g the s top I r e q u i r e s tha t 

a(0) = b(0) = 0 and, a s b e f o r e , F(0) = S(0) = 0 . The func t ions 
Y(i), N(i), cp(t) and f.(t) a r e exac t l y as b e f o r e . O b s e r v i n g (6) 

and p r o c e e d i n g a s in the d e r i v a t i o n of (2) we ge t the fol lowing 
s t a t e equa t ion for <p(t) : 

(7) ?{t +1) = Y M t ) ) {[1 - a M t ) ) ] sgn f j , ( ( t ) ) (t) 

+ a M t ) ) s g n f (t) } 
F W t ) ) l t ) 

+ N(ç>(t)) {[1 - a(ç>(t))][l - sgn fF( ( t ) ) ( t ) ] 

+ aMt)) [1 - sgnf (t)]} . 

F M t ) ) l t ) 
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The state equation for f. is now ra ther lengthy because of 

the number of ways in which the location A. may be involved in 

the command I . x . We have 

(8) f.(t + l) = f (t) +[1 - aMt) ) ] { s g n f F W t ) ) ( t ) 

- sgnf . ( t ) [1 - sgn(FMt) ) - j | ]} 

F(<p(t)) 

- { [ l - b M t ) ) ] s g n | S M t ) ) - j | + b M t ) ) s g n | f ( t ) - j | ) 

• {[1 - aMt)) ] sgn f (t) +a(?(t)) sgn f (t)} . 
F M t ) ) f F(^( t ) ) ( t ) 

As a check we verify that (7) and (8) reduce to (2) and (5) when a 
and b are set equal to 0 . State equations s imilar to (2) and (5) for 
the case of simple p rograms , and to (7) and (8) for the case of sub­
scripted p rograms , can be written down in the same way as above 
for any Q-machine in t e rms of its transfer functions. With such 

0 0 
machines as Q or Q which cannot s t a r t with empty locations it 
is necessa ry to replace the f i rs t equation in (1) by a suitable set of 
initial conditions describing the initial contents. 

19. In this section we prove some resul ts connecting the 
ar i thmet ica l nature of a number x and the type of p rogram which 

-0 
computes i t . We limit ourselves to rea l numbers x which are Q,_ 

computable in the following way: x is the limit of a sequence 
p /q , n = 0, 1, . . . , of rational numbers , p and q (q ^ 0) 

n n n il n 
a re integers which can be computed by a non-terminating cyclic 

- 0 
simple Q program without internal loops: initial contents: 

p0- v
 ro v °- °- ••• 

P: r h h 
in which each command is either a pure addition or a pure mult i­
plication. The above program is improper since there is no 's top' 
Negative integers a re handled in the manner described in section 
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16 of [2 ] . One canno t s p e a k h e r e of f ina l c o n t e n t s , but i t i s a s ­
s u m e d tha t the con t en t s af ter n c y c l e s a r e p , q , r , . . . , 

n n n 
s , 0, 0, . . . . 

n 

To put i t b r i e f ly , we a r e i n t e r e s t e d in n u m b e r s c o m p u t a b l e 
i t e r a t i v e l y by m e a n s of a fixed n u m b e r of add i t ions and m u l t i p l i ­
c a t i o n s p e r i t e r a t i o n s t a g e . Le t the c c o m m a n d s c o n s i s t of a 
add i t i ons and m = c - a m u l t i p l i c a t i o n s ; we ca l l s u c h a p r o g r a m 
one of the type (a, m ) . 

T H E O R E M 1. L e t x and x^ be two i r r a t i o n a l n u m b e r s 
1 2 

c o m p u t a b l e by the p r o g r a m s of the type (a , m ) and (a , m ) 

r e s p e c t i v e l y , and le t m and rri have the i r l o w e s t p o s s i b l e r 1 2 
v a l u e s . If m ^ m then x x and x / x a r e i r r a t i o n a l . 

1 2 1 2 1 2 

F o r if x / x , say , i s a r a t i o n a l n u m b e r p / q and 
1 2 

x = l i m p / q , t hen x = l i m (p p ) / (q q ) . T h e r e f o r e , if x 
2 n n 1 n n c 

i s c o m p u t a b l e by a p r o g r a m of the type (A, m ), x i s c o m p u ­

t ab le by a p r o g r a m of the type (B, m ), w h e r e B<^ A + p + q . 

The t h e o r e m in s e c t i o n 16 of [2] i m p l i e s at once 

T H E O R E M 2 . An i r r a t i o n a l n u m b e r c o m p u t a b l e by a p r o ­
g r a m of the type (a, 0) i s a l g e b r a i c . If x i s a r e a l i r r a t i o n a l 
a l g e b r a i c n u m b e r which e x c e e d s in a b s o l u t e va lue a l l of i t s con­
j u g a t e s , and if A, B , C, D a r e any r a t i o n a l i n t e g e r s , then the 
n u m b e r (Ax + B) / (Cx + D) i s c o m p u t a b l e by a p r o g r a m of the 
type (a, 0) . 

Th i s r a i s e s the q u e s t i o n w h e t h e r t h e r e e x i s t s a fixed bound 
M , s u c h tha t e v e r y a l g e b r a i c n u m b e r is c o m p u t a b l e by a p r o g r a m 
of the type (a, m ) , wi th m <_ M . 

A p r o g r a m of the type we a r e c o n s i d e r i n g h e r e wi l l be said 
to be of span k if the n u m b e r of s e q u e n c e s p , q , . . . a p p e a r -

n n 
ing in it i s k . S ince we a r e c l e a r l y i n t e r e s t e d only in i r r a t i o n a l 
n u m b e r s the span of any p r o g r a m i s a t l e a s t 2: t h e r e a r e at l e a s t 
two s e q u e n c e s p r e s e n t , one for the n u m e r a t o r s and one for the 
d e n o m i n a t o r s of the a p p r o x i m a t i n g s e q u e n c e . 

T H E O R E M 3. An i r r a t i o n a l n u m b e r b i s a l g e b r a i c if 
and only if it i s c o m p u t a b l e by a p r o g r a m of span 2. 
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To p r o v e i t in one d i r e c t i o n i t suff ices to show tha t the 
Newton m e t h o d can be p r o g r a m m e d as a p r o g r a m of span 2 . Le t 
F(x) = 0 be an i r r e d u c i b l e equa t ion of which b is a r o o t . Then 
an open i n t e r v a l J can be found such tha t if p / q is in J and 

(9) P , , / 0 , , , = P / q „ - F (p / q ) /F«(p / q J 
n+1 n+1 n n n n n n 

then p / q c o n v e r g e s to b . Define r e c u r s i v e l y 
n n 

P n + l = q n [ P n F ' ( P n / q n ) - q n F ( P n / q n ) ] 

U0) *«*„ , , 

w h e r e p and q a r e any g iven i n t e g e r s sub jec t to the cond i t ion 

p / q € J , and d is the d e g r e e of the p o l y n o m i a l F . It fol lows 

f r o m (10) tha t (9) ho ld s ; f u r t h e r , 

p , = P(p , q ) , q ,A = Q(p , q ) n+1 n n n+1 n n 

w h e r e P and Q a r e fixed p o l y n o m i a l s with i n t e g e r coe f f i c i en t s . 
T h e r e f o r e p , and q , a r e ob ta inab le f r o m p and q by 

^n+1 ^n+1 ^n ^n 
one cyc l e of a p r o g r a m of span 2 . 

Suppose next that the r e a l i r r a t i o n a l n u m b e r b can be c o m ­
puted by a p r o g r a m of span 2 . One has then b = l im p / q w h e r e 

^n n 

P , = G(p » q ) • q , . = H(p , q ). n+1 n n T I + 1 n n 

Since e a c h c o m m a n d e x e c u t e s an addi t ion or a m u l t i p l i c a t i o n , 
G and H a r e p o l y n o m i a l s with i n t e g e r coe f f i c i en t s . T h e r e f o r e 

N M 
G(p , q ) = S P . (p , q ), H(p , q ) = S Q.(p , q ) ; 

n ^ j r n ^n r n n j n n 

h e r e P . and Q. a r e homogeneous p o l y n o m i a l s , with i n t e g e r 

coef f i c ien t s , of d e g r e e j . Hence 
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(11) 

N-M 
Pn+l/qn+l = *n 

r<N-iU,„ /„ , w Î? . -(M-J) [ 2 < î ^ J 'P . (P /q ,D / 2 q " ^ Q.(p /q ,1)]. 
j=o n J n n j=o n J n ^ 

It may be assumed that € > 0 and n can be found, such that 

l P N ( P n / V 1 ) i ^ C ' l V P n / V 1 ) | ^ € ^ ^ V 

for otherwise the limit b = Km p / q satisfies the polynomial 
n n 

equation P^tx, 1) = 0 or QM(x, 1) = 0 and hence must be algeb­

raic. Since b is irrational q tends to infinity with n; it 

follows now that N = M and by (11) b is a root of the equation 

x= PN(x, l)/QN(x, 1) . 

Therefore b is algebraic and the proof is complete. 

It may be added that if the algebraic number b is of degree 
n and height H ( = maximum of the absolute values of the co­
efficients in the minimal polynomial) and if b is computed by a 
program of the type (a, m) then it is possible to give upper 
bounds on the minimal values of a and m in terms of n and 
H. Theorem 3 is best possible of its kind since a program of 
span 3 can already compute a transcendental number. It is 
known [3, pp. 34- 35] that the number 

QO n 

i = z 2 

0 

is transcendental. Let p = 1, q = 2, r =2, 

- 2 n + 1 

p , , / q , , - p /q +2 n+1 TI+1 n n 

and consider the following program: 

initial contents: p , q , r , 0, 0, . . . 
0 0 0 
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»03304 
33600 
44630 
02304 
01305 
11600 
22610 
55610 
44620 

contents after n cycles: p n n 
0, 0, where r = 2 

n 

Here we use the abbreviation 03304 for A^ A^ A^A^ A . The 
0 3 3 0 4 

above p rogram computes £ and is of span 3. In s imilar fashion 
it is easy to supply p rograms of span 4 for IT and e . 

-0 
We show next the existence of a large class of Q,. compu­

table numbers . Let P(x, y, . . .) be a polynomial with integer 
coefficients in any finite number of var iables ; a function of the 
type 

f(n) = P(n, 2 n , 3 n , . , 2 , 3 

will be called a hyperexponential polynomial, in analogy to poly­
nomials and exponential polynomials. 

THEOREM 4. Let f (n) and f (n) be two hyperexpo­

nential polynomials. Suppose that f (n) î 0 for n = 0, 1, . . . 

and that the se r i e s 

g = 2 f (n) / f (n) 
0 1 2 

converges . Then £ is Q computable. 
5 

Instead of sequences p , q , . . . we shall now use se­

quences p. , i = 1, . . . , s, n = 0, 1, L e t P 3 0 = P 3 n = 1 ' 
0, p = p + p^ so that p i = n. 

M n+1 M n *3n Mn 
Since p n , M0 ' M n+1 M n ' r 3n Mn " ' -r4n 

by means of a finite number of additions and multiplications we 
can generate all the necessary power s of n entering into f (n) 

1 
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and f (n) . Powers like 2 can be generated by letting 

n = D = 2, p = 1. p = p , p„ , so that p , = 2 
P50 P 5n ' P60 *6 n+1 *6n F5n F6n 

Iterated powers like 4 can be generated by letting p = 4 , 

3 3 n 

p = p so that p = 4 . It is now a m e r e mat te r of 
F 9 n+1 ^9n ^9n _Q 

detail to show that for some finite s a suitable Q p rogram 

computes £ . 
A natural question a r i s e s here of exhibiting numbers which 

- 0 
a re computable but not Q computable. In this connection we 

notice that only double exponentials occur in the hyper exponential 
polynomials of Theorem 4, and we are led to conjecture that in 
general the occurence of tr iple exponentials will prevent a num­
ber from being Q computable. In par t icu la r , we conjecture 

that the number 

*1 = 

00 - 2 2 

2 2 

- 0 
is not Q computable. 

5 
- 0 

Define the span of a r ea l i r ra t iona l Q computable num-
5 

ber to be the smal les t span of a p rogram which computes i t . 
F r o m Theorem 3 it follows that all algebraic numbers are of 

- 0 
span 2 and all Q computable t ranscendental numbers are of 

5 
span :> 3 . This r a i s e s severa l further quest ions. Do there 
exist t ranscendental numbers of a rb i t ra r i ly high span ? Of any 
given span s for s >̂  3 ? Are the spans of TT and e 3 or 4? 
What is the span of Eu l e r ' s constant y ? If the span of b is s 

and f(x) is some such function as e or log x , what is the span 
of f(b) ? Are two numbers of different spans necessar i ly alge­
braical ly independent? The answers to these, and other s imilar 
questions, do not appear to be easy. It is possible that some of 
them might throw a cer ta in amount of light on the nature and p r o ­
per t i e s of the t ranscendental numbers . A par t ia l information on 
the last question is provided by the following. 
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THEOREM 5. Let at and a^ be two real irrational 
1 2 

Q computable numbers of spans s and s respectively. If 
5 1 Z 

| s - s | > 2 then a and a are algebraically independent. 

Suppose that s_ > s +2 and that a and a. are alge-
2 1 1 2 

tlly dependent. Th 

equation P(x) = 0 where 

braically dependent. Therefore a is a root of a polynomial 

N 
(12) P(x) = 2 P.(a )x J ; 

j=0 J i 

here P. are polynomials with integer coefficients. We can now 

use the Newton method to find a : if u and v are suitable 

integers and 

n+1 n+1 n n n n n n 

then u /v tends to the limit a_ . However, the number a 
n n 2 1 

and consequently the coefficients of the polynomial P have also 
to be determined approximatively. By the hypothesis, there is 
a program of span s A with the sequences p , q , . . . , r 

1 n n n 
such that p / q -*• a . We therefore let 

n n 1 

u , . / v = u / v -
n+1 n+1 n n 

(13) N . N 

S P.(p /q )(u /v )J / 2 j P-(P / q H V V * 
j r n ^ n n n . . j n n i n n 

j=0 J J=l 
A simple continuity argument shows that if u and v are 

^ to 0 0 
appropriate and if p / q is close enough to a , then the iter-

0 0 1 
ative Newton scheme (13) leads to u / v -*• a . Let d = degree 

n n 2 j 
P. , d = max d. , then (13) may be written as 

J j J 

n+1 n+1 n n 
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Z q* P.(p / q ) Uj VN-J/ Z j q* P.(p /O ) J " 1 v N " J + 1 

Therefore we define 

N 
^ • d ^ / / v j ~ l N-j+1 

Un+l = U n . S
4
 J \ VfiJ^ Un Vn 

J=l 

N ' N ' 
- v 2 q P.(p /q ) uJ v " J , 

n . n n j n n n n 

N 
^ . d ^ / / x j - 1 N-j+1 

v = v 2 j q P.(p /q ) uJ v J 

n+1 n . A n i n n n n 
which is of the form 

u , = P(p , q , u , v ), v = Q(p , q , u , v ) 
n+1 n n n n n+1 n n̂ n n 

where P and Q a re fixed polynomials with integer coefficients. 
We now adjoin the two sequences u and v to the st sequences 

n 1 q _ 0 

p , q , . . . , r and we find that the l imit a^ = lim u / v is Q r 

n n n 2 n n 5 
computable by a p rog ram of span s + 2 . Therefore s < s + 2 

1 2 "~ 1 
which is a contradiction. This completes the proof. 

COROLLARY. If a is Q computable and is of span 
s , and if a and a a re algebraical ly dependent, then a is 

1 _0 * 2 2 

also Q computable (and of span < s + 2 ). 
5 1 

In the preceding we have associated the type (a, m) and 
- 0 

the span s with Q p r o g r a m s ; another such number which can 
5 

be so associated is the total number w of locations used through­
out the program; this will be called the weight of the p rog ram. 

The weight of a Q computable number is the smal les t weight of 

a p rog ram which computes i t . We have now 

THEOREM 6. Every algebraic number is of weight <: 7. 
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To prove it we mere ly check that the Newton procedure can 
- 0 

be programmed as a Q program in such a way that only the 
5 

f i rs t seven locations need ever be occupied. 

With respect to the weight of a number we can ask now 
some questions s imilar to those for its span. In addition, we 
have the following analogue of Theorem 5: 

THEOREM 7. Let a , and a^ be two rea l i r ra t ional 
- o 1 2 

Q computable numbers of weights w and w respect ively . 
If |w - w I > 7 then a, and a a re algebraically independent. 1 1 2 1 Z 

The proof is s imilar to that of Theorem 5 and will be 
omitted. 

20. Up to now the Q-machines were operating on numbers , 
computing thereby new numbers . In this section we shall be in­
terested in some questions where a Q-machine operates reflexly: 
here a p rogram is to operate on a class of p r o g r a m s . Examples 
of such questions are a) the halting problem: is there a p rog ram 
which decides whether any given program te rmina tes? b) the 
boundedness problem: is there a p rogram which computes the 
total number of locations used in any given p rogram? c) the 
occupation problem: is there a program which decides whether 
any given p rogram will use some a rb i t r a ry prescr ibed location? 
d) the simplification problem: is there a p rogram which decides 
whether the computation of any given program can be carr ied out 
by a simple p rog ram? Unlike the f i rs t problem, the last three 
a re t r ivial for the special case of simple p rog rams . 

0 
We limit ourselves to Q p rograms in which all locations 

are initially empty. The programs which are to act on such 
p rograms are necessar i ly subscripted and must have some input: 
the initial contents will be a single number describing the p rogram 

which is to be acted upon. Let P be any Q program of size c, 
that is , with c commands, exclusive of the stop I . P is com­
pletely known once we are given the six functions F(i), S(i), Y(i), 
N(i), a(i), b(i), 1 <_ i <_ c . By re-enumerat ing the locations if 
needed, it may be assumed that 0 <C F(i) < 2c and 0 <_ S(i) < 2c . 
We have also 0 £ Y(i) < c and 0 < N(i) < c ; a(i) and b(i) a s ­
sume only the values 0 or 1 . It follows that aside from r e -
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enumerat ions the number N(c) of p rog rams of size c satisfies 

N(c)< [2(2c + l)(c +1)] C . 

Fu r the r , let p be the j - t h consecutive odd p r ime start ing 
j 

with 3, and put 

c C F(i) S(i) Y(i) N(i) a(i) b(i) 
(14) G ( P ) = 2 n P 6 i

U P 6 1 + 1
 P 6i + 2 P 6i + 3 P 6i + 4 P 6i + 5 • 

i=l 

G(P) is called the (Goedel) number of P and it de te rmines P 
uniquely. By means of this device we shall be able to t ransform 
questions about p rograms into questions about number s . Re­
calling the bounds on the var ious exponents in (14) we find that 
except for the re -enumera t ion of locations the number of a p ro ­
g ram of size c does not exceed 

/ ,-v * r / x ^ c (6c+2)c 
(15) M ( c ) = 2 P ^ c + 5 ' . 

Let g(n) be a function defined for n > 0 and assuming non-
negative integer va lues . We shall say that g is computable if 
there is a terminating p rog ram P with the initial contents 
n, 0, 0, . . . and the final contents g(n), 0, 0, . . . . Let 
g (n) = 0 if n is not a number of a p rog ram and g (n) = 1 if n 

1 1 
is such a number . The question ' i s g.(n) computable? 1 is now 

0 
the p rec i se form of the question 'can Q recognize those in­
tegers which are numbers of p r o g r a m s ? 1 . The answer is yes : 

THEOREM 8. g ( n ) is computable. 

We suppose that there are eight rows of locations A-H . 
The initial contents of A is n and all other locations a re 

1 
empty. The row B se rves as the ar i thmet ica l space; a suitable 
subroutine using pr ime numbers 'decodes ' n according to (14) 
(with G(P) replaced by n) and s tores the values of F ( l ) , . . . , 
F(c) in C , . . . , C . Similarly, the values of the function S(i) 1 c 
a r e stored in D. . . .,D , and so on. Once the values of the 

1 c 
six functions F(i) - b(i) are stored in the tabular form as lo­
cation contents of the rows C-H it is a simple ma t t e r to p ro ­
g ram the 'check' whether the conventions re fe r r ing to these 
functions a re satisfied, and to a r range for the corresponding 
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output 0 or 1 in A . 
1 

We shall call a p rogram P universal if it does the follow­
ing: the initial contents of A is n , the final contents of A is 

1 1 
g (n) and if g (n) = 1 , so that n is the number of a p rogram P , 
then P duplicates the computation of P and resul t s in the same 

final contents (of A , A , . . . ) as P would have done (for the con­

tents of A , A , . . . ). We require P to be terminating if P is 
-A 

terminat ing. The existence of P bears some s imilar i ty to the 
existence of a universal Turing machine. 

THEOREM 9. There exists a universal p rogram P . 

We s t a r t as before, except that we have now nine rows of 

locations A-I . We compute f irst g.(n) . If g (n) = 0 the pro­

gram stops (except for possible 'eras ing 1 ) . If g (n) = 1 we 

suppose that the six functions F(i) - b(i) a re stored in the rows 
C-H as before. The row I serves for storing the contents 
f.(t) (these are the state functions defined in section 18). In 

l 

other words, the row I simulates with its locations I ,1 , . . . 
1 2 

the usual row A , A , . . . . Using the state equations (7) and (8) 
we now proceed to duplicate the computation of the p rogram 
whose number is n . To assure that the state functions cp(t) and 
f .(t) can be computed without complications, we ar range for an 

index which keeps at all t imes track of the location I. with the 
l 

la rges t i , which is non-empty. The details are left to the r eade r . 

Define g (n) as follows: g?(n) = 0 if n is the number of 
a terminating program, and g (n) = 1 otherwise. The halting 
problem is now reduced to the question whether g_(n) is com­
putable. F r o m the theory of Turing machines it is known that 
the answer is no; here we shall produce an independent proof. 
Let f(c) be the largest number which can be computed by a 
terminating program of size c . That is , there is a terminating 
program of size c which s tar ts with all locations empty and 
leads to the final contents f(c) in some location; moreover , f(c) 
is the larges t number with that proper ty . Since aside from r e -
enumerations there is only a finite number of p rograms of size c, 
as shown before, there is also a finite number of terminating 
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p r o g r a m s of s i z e c, and t h e r e f o r e f(c) i s un ique ly defined and 
f in i te for e a c h c . Since c l e a r l y f(c + 1) > 1 + f(c), f(c) i s 
s t r i c t l y i n c r e a s i n g . 

L E M M A 1. f(c) i s not c o m p u t a b l e . 

Suppose tha t th i s is f a l s e . T h e n t h e r e is a t e r m i n a t i n g 
p r o g r a m P with the i n i t i a l con ten t s c, 0, 0, . . . and f inal 
con t en t s f(c), 0, 0, . . . . L e t the s i z e of P be g . Define 
- 1 

f (c) = m i n { k: f(k) >_ c } ; i t fo l lows tha t t h e r e i s a p r o g r a m 
- 1 

P of s i z e f (c) which s t a r t s wi th a l l l oca t i ons e m p t y and l e a d s 

to the f ina l con ten t s > c in, say , A . Now j u x t a p o s e P and 
- 1 

P ; we ob ta in then a p r o g r a m of s i z e g + f (c) which l e a d s to 
the f ina l con ten t s >. f(c), t h e r e f o r e 

(16) f ( c ) < f ( g + f " 4 ( c ) ) . 

H o w e v e r , i t i s e a s y to show tha t f(c) g r o w s f a s t e r than c (or 
, -1 

indeed f a s t e r than any c o m p u t a b l e funct ion of c) so tha t f (c) = 
o(c) for l a r g e c , and th i s c o n t r a d i c t s (16). 

T H E O R E M 10. g ? (n) i s no t c o m p u t a b l e . 

We p r o v e th i s by showing tha t the c o m p u t a b i l i t y of g (n) 

i m p l i e s the c o m p u t a b i l i t y of f(c) , thus c o n t r a d i c t i n g L e m m a 1. 
Suppose t hen tha t t h e r e i s a t e r m i n a t i n g p r o g r a m P wi th 

na i L 
the i n i t i a l con t en t s n, 0, 0, . . . and f ina l con t en t s g 9 (n ) , 0, 0, . . . 

We can now c o m p u t e f(c) as f o l l ows . As r e m a r k e d b e f o r e , the 
n u m b e r of a p r o g r a m of s i z e c i s < M(c) excep t for p o s s i b l e 
r e - e n u m e r a t i o n of l o c a t i o n s ; h e r e M(c) is g iven by (15) . Le t n 

c 
v a r y ove r the s e t C of i n t e g e r s f r o m 2 to M(c) which a r e 

c 
d i v i s i b l e by 2 and by no h i g h e r p o w e r of 2 . F o r e a c h n we 
d e c i d e f i r s t w h e t h e r i t i s the n u m b e r of a p r o g r a m ( i . e . , 
w h e t h e r g (n) = 1), by T h e o r e m 8 th i s can be d o n e . If n is not 

the n u m b e r of a p r o g r a m we p a s s on to the nex t va lue n+1 , if n 
i s the n u m b e r of a p r o g r a m P , we apply P to find out 

ha l t 
w h e t h e r P is t e r m i n a t i n g . If i t i s , we u s e the u n i v e r s a l p r o ­
g r a m P of T h e o r e m 9 to s i m u l a t e P , and we check at e a c h 
s t a g e of the s i m u l a t i o n what i s the l a r g e s t n u m b e r a p p e a r i n g in 
the l o c a t i o n s . In th i s way we ge t the l a r g e s t n u m b e r a p p e a r i n g 
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as the resu l t of the computation of P . After n has ranged 
over the finite set C, we compare these larges t numbers and we 
choose the largest of them. The latter is prec ise ly f(c) ; thus 
we have computed f(c), and the proof is complete. 
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