PLANAR COVERINGS OF CLOSED
RIEMANN SURFACES

JIRO TAMURA

To Professor Kivosur NosHiro on the occasion of his 60th birthday

Several years ago, K. Oikawa, my colleague, investigated the properties of
Schottky coverings of closed Riemann surfaces, leaving an interesting problem
as open [3]:

Does exist a Schottky covering between the basic surface and a given

planar covering?

A principal aim of this paper is to give an affirmative answer to the above
problem.

In spite of the purely topological character of the problem, we must use
some analytic means, namely the properties of Fuchsian group as a group of
cover transformations of the universal covering of the closed surface. These
are discussed in §3. On the other hand, in §2 will be treated a combinatorial
topological problem. Results in both paragraphs will be used in §4 to prove
the main theorem 2.

The author must pay his regard to Oikawa, the proposer of the problem,
and express his warmest thanks for his friends in Universidad Central de

Venezuela.

§ 1. Introduction

Let W be a closed Riemann surface of genus g>1 and F be the fundamental
group of W.

We shall consider a covering W of W, which is normal in the sense of
Ahlfors-Sario [1], namely, unverzweigt and unbegrenzt fortsetzbar in Weyl’s sense
[4], and possessing a normal subgroup G C F as its fundamental group. In this
way, a normal subgroup G of F and a normal covering W of W correspond
one-to-one; we shall represent the relation as follows:
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W=W(G), G=GW).

If another covering W, of W is at the same time a covering of W, W is
called stronger than W, and is denoted by

Wi=W.
This relation is equivalent to
GW) CG).

The strongest covering is the universal covering, which may be considered as

the upper half plane:
U={z=x+1iy; y>0).

We shall use the letters to represent the projections as follows:
w = p(2) is the projection from U onto W;
@ = P(z) is that from U onto W;
w=n(i) is that from W onto W.

The totality of cover transformations of U w.r.t. W forms a Fuchsian group
0, isomorphic to F. We shall denote by I" the normal subgroup of @ corresponding
to GCF ; I' is the group of cover transformations of U w.rt. W=W(G).

When W is a domain in the complex plane, W is called a planar covering;
in this case, let us call the corresponding groups G and I' also ‘‘planar”.

Let A be a subset of F or #. We shall denote the smallest normal subgroup
containing A by the symbol [A].

A base of F

(aly bh e e ey ag, bg)
is canonical when they have only one relation
a1b,ai'bit: ¢+ cagbgaz'bz' =1 (1 is the identity).

Following Ahlfors-Sario, the Schottky covering of W is defined as a covering
W =W (G), where

G=l[ay...,al

for some canonical base of F'; in this case, we shall call G and I" also of Schottky.
A Schottky covering is planar [1], [3]. Moreover, Oikawa proved the
following exactly [3]:
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TueoreM. A Schottky covering has mo planar coverings which are strictly
weaker than itself.

We shall prove that every planar covering is a covering of some Schottky
covering.
Then we shall be able to characterize a Schottky covering as a minimal

normal planar covering, free from bases.

§2. A theorem on Schottky Covering
Let

Cly Coy e v vy Ch
be a sequence of Jordan curves on the closed surface W such that:
(A) As elements of the fundamental group F,
ci%lco=1,¢,...,Ci-1] (i=1,2,...,4);
(B) As point sets in W,
ciNcj=¢ if i=xj.
We shall prove the following :
Lemma 1. If a set of Jordan curves {ci} satisfies the conditions (A), (B), then
Lo, o ooy end

is contained in some Schoitky group.

Proof. The curve ¢; may be a non-dividing cycle or a dividing cycle; then,
cutting along ¢, we obtain a bordered surface W' in the former case, or two
bordered surfaces W* and W? in the latter case.

The curve c; is contained in one of W', W’ W° say W'; cutting along
¢ we obtain a surface W' or two surfaces W'? and W'®

Continuing this process successively, we obtain at last a finite number of
bordered surfaces

le VV‘-”~ - ey WV-

Every curve ¢; is divided into two “banks” ¢! and ¢}. When ¢! and ¢!

belong to a same surface W,, we rewrite

' " -1.
Ci=¢6, C; =6
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when ¢} and ¢}’ belong to different surfaces W, and W, respectively, we rewrite
cl=d;, ¢! =di’.
Now suppose W; contains the borders
-1 -1,
€1, €1 5,...,6, 6 ; dly--' ’dq;

in which the indices and the directions are suitably changed. Then we can
get a canonical polygon P; of W: whose boundary is of the form [1]:

OP, = aibya; b« + -a,bra;' b}

X fie fi'ger'gi s - < frer f5' 805 85
X hldlh;l' ° ’hqdq ;l-

For simplicity we shall write the above product as follows:

Haba™ b7 11 fef *ge g™« I1 hdh ™.

by

bl- t bz—l

b,
FIG. 1

We can change freely the order of the terms fef™, ge ‘g™, hdh™', which
correspond to the borders of Wi, using the elementary deformations. Also can
we take the same point of W; as the final point of g; and f; for each 7; namely

gifi'is a cycle on W.
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Now put
arsi=fiei fi', brri=gifi i=1,...,p),
then ‘
riibreiariibrii=fieifi' giei gt
Hence the boundary of P, can be written as follows:
oPi=Ilaba™ "6 T1 hdh™*,
and it is evident
Lei, ... ,ep, di,...,dJd<lay, ..., arep, diy. .. ,dgl
In the same way, every W, can be represented by the canonical polygon

P, whose boundary is similar as oP,.

Now we suppose
d,CaP,, di'CoP;,.

Let us denote

8 ¢
oP = Majbjal' 6"« L hjd by
i=1 =1

and suppose that di' is the last border d! without loss of generality. Identifying
d, on oP; and d; on oP;, we obtain a new polygon P,+ P, whose boundary is
of the form
P+ Py) =Tlaba ' b7 by Tl a'b'a' '™
x ITh'd '™ hyhi's T1 hdh™".

hil hi

' d' '™

o'y a™'p'™"

7y hi?
FI1G. 2

We shall transform a, b, %, and d by &' and write
a@=hi'ahy, b=hi'bhy, h=hi'hh, d = hi'dh.

In the similar way, let us transform a’, &', 4, d' by 4;. Then we obtain the
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following form (with suitable change of notations) :
P+ P) =Tlaba™ 6711 hdh™,

in which the common border d, is not contained. However, as easily seen, d;
can be generated by a and d contained in 9(P;+ P;). Hence

[e, dcoP.; e, dcoP:1cC[a, dca(P1+Pz)fl
Continuing this process successively, we can get at last a polygon
P=P + P+ - +Py,
whose boundary is of the form
P=T1laba™'b".

Hence, P is nothing but a canonical polygon of W itself. Moreover we can
verify inductively

Lesy oo, enlcla; acoP],
the right side of which is a Schottky covering group. q.ed.

Let us ncic thai the condition (A) is not used in the above proof. However,
under this co: *itinn we can see that every bordered surface W, (pasted along e;)
has a positive genus g,; In fact, if the boundary 9P, contains no terms of

the form aba™'b’, then we can obtain a relation between {c¢;}, which contradicts
(A).

Since each «f {¢} and {d} does not exceed g+ * - +gy=g, we conclude
h<L2g.

Consequently, there is no infinite sequence {c.} of Jordan curves satisfying
(A) and (B).

Hence, when the infinite sequence {c,} satisfies (B) only, we can select a
suitable finite subsequence {d;}/-; which satisfies (A), (B) and

[dx, e, dpl= [(Cn}]

Then we have the following:

TreoreM 1. Let {c,} be a sequence of Jordan curves in the closed surface W
such that
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ciNci=¢ (ixj).

Then there exists a Schottky group comntaining [{cs}].

§ 3. Fuchsian groups of closed Riemann surfaces

Let U be the upper half plane
{z=x4+"ly ; y>0}

and @ be the group of all linear transformations which leave U invariant.

We shall introduce in U the Poincaré metric

ds = 19zl
y

which defines a non-Euclidean geometry in U; we use the words of elementary
geometry in the sense of non-Euclid: for example, a ‘‘straight line” / is a
inner arc of a circle orthogonal to oU. Let us denote a ‘“‘directed segment”
from z to z, by sz, z.), and the “‘distanse” between z; and z by p(z), z.).

® is the group of “motions” of plane U, leaving the distance p invariant.

DeriniTiON 1. Let ¢ be an arbitrary transformation of . We shall define

the norm |l¢] of ¢ as follows:
lell = infrev p(2, €(2)).
We can prove easily some properties of “norm” as follows:

ProrosiTioNn 1.

lovs™ "t = 1l
Sor all ¢, s & ®, namely the norm ||¢| is invariant by the inner transformation.
Proof. llo¢a™!|=inf p(z, app™(2)) =inf p(s™(2), 957 '(2)) = inf o(z, ¢(2) = || ¢ ]l

Prorosition 2. (i) If ¢ =@ is elliptic or parabolic, l|¢ll=0. (i) If = ® is
hyperbolic, ‘
lell=|log KI,

where K is the multiplier of ¢'.

1) See, for example, Ford [2].
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Proof. (i) If ¢ is elliptic, one of the fix points a is in U. Hence
lell = o(a, ¢(a)) =0.

If ¢ is parabolic we can consider without loss of generality, the only fix point
of ¢ is © (Prop. 1). Then

¢(z) =z+c¢ (ceR).

Uniting z, =y, and ¢(z) by a Euclidean segment C, we get

lell< e (30, 30+ ¢) ’<‘Sc

Yo (]

Let yo— + o, then we obtain [|¢] = 0.
(ii) Let ¢ be hyperbolic. In this case two fix points of ¢ are on x-axis,

which may be supposed 0 and o without loss of generality. Hence
¢(2) = Kz,
where K is the multiplier of ¢ (K>0, K=1). Putting
z=2x+ iy = re®,
we shall estimate Poincaré metric:

_ldz) _ Jdr*+r'det _ |dr|
ds = = > .
y rsinf — r

Suppose C is a segment from z to Kz,

1}

_( ddzl o ((7adr
oz 9(2) = AEL= |79 | pog 1,
where the equality holds if and only if df =0, sin 8 =0; namely, z is on the
imaginary axis.

DeriniTION 2. Let ¢ € @ be hyperbolic. The “straight line” determined by
‘two fix points of ¢ is called the axis of ¢.

By the proof of prop. 2, the followings are evident:
ProrosiTiON 3. For any hyperbolic transformation ¢ € @,
el =p(z, ¢(2))

if and only if z belongs to the axis of ¢.
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ProrosiTION 4. Let @ be a hyperbolic transformation with axis . Then oo™

is also hyperbolic whose axis is a(l).
Now let us return to the closed Riemann surface W and its universal
covering U.

The group @ of cover transformations of U w.r.t. W is a special sort of
Fuchsian groups, which is characterized by the following conditions :

1°) @ is free from elliptic transformations;
2°) ® has a compact fundamental region 4%.

We shall call ¢ the Fuchsian group of W, for brevity.

ProrosITION 5. For the Fuchsian group @ of a given closed surface W, exists

a positive number r such that
2% 2, p(21, 2) <r implies 2y %2, (D).
The proof is simple by the compactness of the fundamental region 4.

ProrosiTiON 6. FEvery transformation of @ is hyperbolic except ¢ = 1 (identity),

and the set of norms

{tel s ¢ 0}

s discrete in R.

Proof. For any ¢=1 of 0
lel=r>0

by Prop. 5. Hence, @ has no parabolic transformations.

If we take a point z on the axis of ¢,
lell=olz, ¢(2)).

Then exists a suitable ¢ @ such that ¢(z) = z, belongs to the fixed fundamental
region 4. Put

1

Po=a¥a ",

and z, is a point on the axis of ¢,. Let us denote by @, the collection of all

¢, whose axis pass through 4. Then

2) Some authors define the fundamental region as a open one. However we consider
it as a closed region for convenience,
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{lell; veo) = {lol @0 E Go}.
" On the other hand, for any positive number R, the compact set
{z; p(z, ) <R}

is covered by a finite number of congruent figures ¢(4). Hence the number of

real values |¢o|<R is finite. qed.
Let /;, I» be axis of ¢1, < @ respectively; there may be three cases as

follows :
1°Y LNk =¢;
2°) hnh={z};
3°) h=bh.

The last case occurs if and only if ¢; and ¢, have common fix points. Hence

we can verify easily:

ProrosITION 7. Let 1' be a subgroup of 0. The totality of ¢ &I, possessing
a given fixed axis I, forms a free cyclic group generated by a suitable voerl.

§4. Planar coverings of closed Riemann surfaces

Let us use the same notations as in former paragraphs, and suppose W is
a normal planar covering of a closed surface ¥, { is also a universal covering
of W and the group I' of cover transformations of U w.rt. W is a normal
subgroup of @ ; I" is isomorphic to the fundamental group G of V.

Let C be any curve (closed or not) in U, whose terminal points are z, z,.
Consider the projection of C on W and W:

¢c=p(C) on W;
T=5(C) onW.

Evidently, c is closed if and only if

=z (D);
¢ is closed if and only if

=2z ).

Now let us put 7, = 1 € /" and take a transformation 71 which has the minimum
norm in I'—=[yd. If [y, rJ*T, we shall take 7» which has the minimum
norm in I"— [y, 1.
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Continuing such processes, we obtain a finite or infinite sequence of trans-
formations

Ty 725« o o 3 Tny e o o

Let us denote the totality of indices of y» by N={1,2,...,n,...}. Using
Prop. 6 it is easily seen that rs has the following properties:

D [rn; neNI=T.
an If ¢, el <llral, then
el 1y v s Tamil
We shall take a point z on the axis /4, of rs, and set
Cn=5s(z, 18(2)), 2& In;

cn=p(Ca);
Cn= E(Cn)

Let us remark that every ¢, is invariant not only as a homotopy class of
F but also as a point set in W, when the inicial point z€ /, is changed; the
same is true for ¢,.

We shall prove first

(I1)  €n is a Jordan curve in W.

Proof. If €, is not of Jordan in W, &. can be divided into two closed curves
¢ and & on W. Hence there exist three points z, z, z; on the axis I, of 7,

in this order, such that
sz, 2)) =6,
sz, 2z3)) ="
Namely there exist two transformations ¢ and ¢ in I', such that
elz) =2z, $(&) =2,
and

lel<ola, 2) <oz, 23) =7l
Noll<o(ze, 23) <plai, 23) =llyall

According to (ID

90’ ¢e [TO’ LI I Tﬂ—l].
hence
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m=¢9<lre, ..., a1,
which is a contradiction. q.ed.
(IV) Every curve ¢ in W whose projection is =(¢) = cn, is of Jordan in W.
The proof is immediate from (III) and the normality of the covering W.

(V) Let I, I, be the axis of vm, rn respectively, and 1= a(lp), I' = t(ls), where o,
te®. Then INl=¢ or I=1"Y

Proof. [ and !' are the axis of ¥ = orma™" and 7' = ryar”! respectively (Prop.
4), and llrl=llrml, Il =lrall
Suppose that / and /' intersect at z,.

21 ! 2 2

FI1G. 3

Let us take (temporarily) arbitrary inicial points z1 €/, zj€” and put
z2=r(21), 22=7'(21). Since

t=p(s(z, 22)), & = P (s(z, z))

are both Jordan curves on W (IV), ¢ and ¢’ must have another common point
@1 than @, = P (20), because of the planar character of W. Then we can select
25, 2 as inicial points such that

P(2) =B (2) =3 (2) =5 (2) = iy,
20 € s(z1, ) Ns(z], 23).

It is clear that z, does not coincide with these terminal points z,, z, zi, zj,

since Wox w,;. Without loss of generality, we can suppose

p(21, 20)<p(20, 22),

p(z,', Zo)Sp(Zo, Z;)»

8 If =V, m=n by Prop. 7, .
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and

o(2l, 20 <plz1, 20)<p(z0, 25).
Then using the elementary geometry of non-Euclid, we get

o(z1, z1) <o(z1, 20) + p(z0, 21)
- <p(20, 2) + p(20, 2)

= p(2, Zz)-
Hence there exists a transformation ¢ € I' such that

SD(Z;) =2,
lell<o(z, 21) <plz, 22) =7l =lrml.

By the similar way we get a ¢ & I" such that
$(2) =2z, gl <llrmll.
Using (II), we conclude
¢, 9€lre, ... rm-1],
which implies
tm=0ra=a" g0 Nocr, ..., rm-1],
which is a contradiction. q.e.d.

The projection ¢, of C» on W is not necessarily of Jordan. However, in
the subgroup of @ consisting of all the transformations with axis /., there
exists a generator 8, (Prop. 7). Let

2& ln, Dn=s(z2, 6,(2)), dn=p(Dy).
It is evident that
ca=dx*  for suitable kn.
(VD dn is a Jordan curve in W.

Proof. Suppose that d, is not of Jordan in W, then by the same discussion
as in the proof of (III), we can find three points z, 2, z3 on [, in this order,
such that

©(21) =22, ¢(22) =23, On=¢¢

for suitable ¢, ¢ €@. Put
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I=1ls, I'=¢(la),

thén /' is the axis of &' = ¢5,¢™" (Prop. 4). If /'=/, namely ¢(ls) =, ¢ has
the common fix points with 6,, which means that the axis of ¢ is /,; however,
this is impossible since
lell<olz, z) <[8al,

Hence 01’ intersects / at z., which contradicts (V). q.e.d.

Thus we obtain the sequence of Jordan curves

{dn ; neN }s

each d, of which is the projection of /, as a point set in W, and generates c»
as a homotopy class of F.

Moreover,

dmndn=¢ if m#n,“

namely, {d. ; n € N} satisfies the condition (B) in §2.

Therefore, by Theorem 1, we get

TueOREM 2. If W is a normal planar covering of a closed Riemann surface
W, there exists a Schottky covering S such that

W=S> W.

§ 5. Additional remarks

Theorem 2 is applicable not only to the closed Riemann surface, but to
every orientable finite surface, because the latter is always homeomorphic to
some of the formers.

Moreover, we shall remark that the normality of the covering is essencial ;
we can make an example W such that

(i) W is a regular planar covering in the sense of Ahlfors-Sario ;

(ii) there are no Schottky coverings S<W.

However, we shall not treat the problem here.

4 See the footnote 3),
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