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Abstract

Chlamydia trachomatis (CT) infection has been a major public health threat globally.
Monitoring and prediction of CT epidemic status and trends are important for programme
planning, allocating resources and assessing impact; however, such activities are limited in
China. In this study, we aimed to apply a seasonal autoregressive integrated moving average
(SARIMA) model to predict the incidence of CT infection in Shenzhen city, China. The
monthly incidence of CT between January 2008 and June 2019 in Shenzhen was used to fit
and validate the SARIMA model. A seasonal fluctuation and a slightly increasing pattern
of a long-term trend were revealed in the time series of CT incidence. The monthly CT inci-
dence ranged from 4.80/100 000 to 21.56/100 000. The mean absolute percentage error value
of the optimal model was 8.08%. The SARIMA model could be applied to effectively predict
the short-term CT incidence in Shenzhen and provide support for the development of inter-
ventions for disease control and prevention.

Introduction

Chlamydia trachomatis (CT) is one of the most prevalent sexually transmitted diseases world-
wide. According to the updated estimates from the World Health Organization, there were
127.2 million new CT cases among people aged 15–49 years in 2016 [1]. Infection of CT, if
not treated properly and promptly, can result in serious sequelae, such as pelvic inflammatory
disease, ectopic pregnancy, tubal infertility and chronic pelvic pain in women and non-
gonococcal urethritis, epididymitis and infertility in men [2–5]. Additionally, evidence sug-
gests that CT infections contribute to the transmission of HIV and human
papillomavirus-associated cervical carcinoma development [6, 7]. It is estimated that the life-
time direct medical costs for chlamydia alone were ∼$516.7 million in the United States, which
is a great burden to individuals and society [8]. Therefore, monitoring and prediction of epi-
demic status and trends of CT infections are critical for precision planning of CT control pro-
gramme, appropriate allocation of available resources and accurate evaluation of
implementation outcomes.

Presently, numerous useful mathematical and statistical methods together with their corre-
sponding technologies (e.g. software tools) have been developed and widely applied in diseases
forecasting. Among them, time series analysis is one of the quantitative methods which can
effectively predict the future incidence of communicable diseases and epidemiological trends
using previously observed data and time variables [9, 10]. This analysis deals with time-
dependent variables with an advantage of being not necessary to consider the influence of
intricate factors [11, 12]. As a kind of time series analysis [13], the seasonal autoregressive inte-
grated moving average (SARIMA) model has been increasingly favoured and successfully used
in the prediction of communicable diseases, such as dengue [14], tuberculosis [15], mumps
[12] and others [10, 16, 17]. The SARIMA model has good performance in short-term predic-
tion and is easy to implement [18]. Additionally, the SARIMA model decomposes time series
into trend, seasonal and residual components, which can improve prediction accuracy.

Shenzhen is a modern city with a large population density and floating population. The
reported incidence of CT infection in Shenzhen was 171.23/100 000 in 2014, which was the
highest in the entire province and much higher than the national level [19, 20]. Obviously,
CT infection remains a major public health issue in Shenzhen, and the prevention and control
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of CT infection faces difficulties and challenges. In order to have a
better understanding of the magnitude of future CT burden in the
general population and have early detection of CT outbreaks,
advanced prediction of CT epidemic in Shenzhen is needed. In
this study, based on surveillance data from January 2008 to
June 2019, we designed a SARIMA model to forecast the temporal
trends of CT incidence in Shenzhen, China.

Methods

Data collection

CT was included in the surveillance system since 2008, the data on
CT was available from then on. Cases with a diagnosis of CT at
health facilities in surveillance sites in China should be reported
to the Chinese National Disease Surveillance Reporting and
Management System for Disease Control and Prevention within
24 h by hospital physicians. The observed monthly cases of CT
infection in the study period were extracted from the Chinese
National Disease Surveillance Reporting and Management
System and the population data was collected from Shenzhen
Statistics Bureau. In this study, we obtained the incidence time
series of CT from January 2008 to June 2019. According to
national guidelines [21], CT is defined as a clinically compatible
case characterised by the positivity of cell culture, antigen detec-
tion, microscopy or nucleic acid amplification test.

Construction of the SARIMA model

The model fitting process was divided into two parts: a training
period for constructing SARIMA models and a hold-out period
for validation. Corresponded to the analytical phase, the data
on CT incidence was divided into a training dataset from
January 2008 to June 2018 and a hold-out dataset from July
2018 to June 2019. The application of SARIMA based on the
Box and Jenkins was approached [18].

The equation of the seasonal autoregressive integrated moving
average SARIMA model:

yt = (uq B( ) × uQ Bs( )×t)/(up B( ) × uP Bs( )
× 1− B( )d× 1− B( )D) (1)

where θq(B) and θQ(B
s) are the moving average (MA) operator

and seasonal MA operator, respectively; θp(B) and θP(B
s) are

the autoregressive operator (AR) and seasonal AR operator,
respectively. B and yt are the backward shift operator and the
dependent variable, respectively. ɑt represents white noise. d
and D are the order of non-seasonal and seasonal difference,
respectively. The expression of the SARIMA model could be
like this: SARIMA ( p, d, q) × (P, D, Q)S, where p, d and q
represent the order of AR, the degree of difference and the
order of MA, respectively; P, D and Q represent the order of sea-
sonal AR, the seasonal integration and the order of seasonal MA,
respectively and s represents the lengths of seasonal period in
months [18].

There are three steps in the SARIMA modelling procedure:
identification, estimation and diagnosis [22]. Before constructing
SARIMA models, the time series should be checked by the Ljung–
Box test for white noise. In addition, the series should be
stationary and its stationarity was tested by the Augmented
Dickey–Fuller (ADF) method [23]. If the time series is not

stationary, we performed the regular difference or the seasonal
difference for the SARIMA model to ensure the stationarity of
the time series, then d and D were confirmed by the above differ-
ence. The orders of p, q, P and Q were identified by using the
autocorrelation functions (ACF) and the partial autocorrelation
functions (PACF) in the differenced series. The optimum model
with good performing was selected according to the lowest
value of either Akaike Information Criterion (AIC) or the
Schwartz Bayesian Criterion (SBC) [24]. The conditional least
square method was used to estimate parameters after identifying
the optimal model and the t test was used to test parameters
[25]. Next, white noise and residuals were checked by the
Ljung–Box test [26, 27], and the Q–Q plot was used to check
the normality of residuals. Finally, we forecasted the monthly
CT incidence in the hold-out period using the optimal model.
The mean absolute percentage error (MAPE) between predicted
values and the actual values was used to assess the accuracy of
the SARIMA model.

Ethical review

The individual data without identifiable personal information
were from the web-based Chinese National Disease Surveillance
Reporting and Management System for Disease Control and
Prevention. The current study was approved by the Ethics
Committee of Shenzhen Center for Chronic Disease Control
(Approval No. 20180206).

Results

Overall trends

The monthly incidence of CT infection ranged from 4.80/100 000
to 21.56/100 000. Figure 1 shows the monthly CT incidence
(1/100 000), long-term trend, seasonal fluctuation and random
fluctuation in Shenzhen using decomposition methods. There
was a slight rising trend from 2010 to 2019 and the seasonal fluc-
tuation indicated that the incidence of CT infection mostly
peaked in May, and reached the trough in January and
February (Fig. 2).

SARIMA model

After using a first-order non-seasonal difference (d = 1) and a
first-order seasonal difference (D = 1, s = 12), the result of the
ADF test ( p = 0.01) showed that the ACF and PACF of the new
data tended to be stationary, as also shown in Figure 3. To diag-
nose the fitness of the model, following criteria should be satis-
fied: (1) the residuals were distributed with a mean of zero and
a constant variance in the standardised residuals; (2) there was
no significant deviation from a zero mean white noise process
in the ACF of the residuals; (3) the P value for the Ljung–Box stat-
istic was greater than 0.05, which means that the null hypothesis
of independence for this residual series cannot be rejected and (4)
the normal Q–Q plot of the residuals of the model was normal
distributed. We compared AIC values and SBC values of 40 mod-
els (Supplementary Table S1) and the SARIMA (0.1,1)(0.1,1)12
model was selected as the optimal model with the lowest SBC
(SBC = 444.26) and relatively low AIC (AIC = 436.08). Estimated
parameters and the Ljung–Box test of the optimal model are
shown in Table 1 and all the parameters in the SARIMA (0.1,1)
(0.1,1)12 model were statistically significant. Besides, the results
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from the Ljung–Box tests (Q = 0.358, P = 0.549) indicated that the
residual series of these models belong to white noise. Figure 4
shows the graphical diagnostics for assessing the SARIMA
(0.1,1) (0.1,1)12 model fit, and it fitted well according to the
above criteria. Figure 5 shows that the observed values and predicted
values of the SARIMA (0.1,1) (0.1,1)12 model matched well, with
the actual incidence falling within the predicted 95% CI.
The equation of the SARIMA (0.1,1) (0.1,1)12 model was shown
as yt = ((1 + 0.634B) × (1 + 0.867B12) × ɑt)/((1− B) × (1− B)12).

Performance of the optimal model

The simulating power and the predictive power of the optimal
model are shown in Table 2. The MAPE between the predicted
values and the actual values was 8.08% in the hold-out period.

The predicted values from July 2018 to June 2019 are shown in
Table 3. The relative error in February 2019 was relatively high
but the actual incidence in February 2019 still fell within the pre-
dicted 95% confidence interval.

Discussion

Case reporting is one of core components of Sexually Transmitted
Infections (STI) surveillance [28], which could provide the mag-
nitude of STI burden in general population (the incidence of
new infections). The high quality data through a good predictive
model could reflect trends in sexual transmission and the effect-
iveness of STI efforts [29], and thus helping integrate STI surveil-
lance and implement relevant programmes more effectively and
precisely. CT is an important public health issue globally and it
is important to have a better understanding of the magnitude of
future CT burden in the general population. To our knowledge,
this is the first study to apply a SARIMA model to fit and predict
the incidence trend of CT infection.

In our study, the optimal SARIMA model showed highly
accurate forecasting performance (MAPE = 8.08%), with their
MAPE value falling within 5%–10% [30]. As a practical and low-
cost method with only collecting a time variable, this SARIMA
model could provide precise estimates of future CT incidence
and its future trend, and also provide a theoretical basis for the
development of targeted interventions for disease control and pre-
vention. Also, this SARIMA model could provide early warning to
health authorities to have advanced plan and timely implement
relevant STI control strategies. Besides, a good prediction of CT

Fig. 1. Monthly CT incidence (1/100 000) from January
2008 to June 2019 in Shenzhen and long-term trend,
seasonal fluctuation and random fluctuation. (a) The
actual CT incidence from January 2008 to June
2019; (b) the decomposed trend trait of CT incidence;
(c) the decomposed seasonal trait of CT incidence
and (d) the decomposed random fluctuation trait of
CT incidence.

Fig. 2. Seasonal indices of CT incidence from January to December in Shenzhen. It
can be seen that the incidence of CT mostly peaked in May, and reached the trough
in January and February.
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incidence may help the evaluation of future interventions. For
example, after promoting routine CT screening in a city, using
the real-time predicted values from a model with good perform-
ance to evaluate the expansion of CT screening may be better
than using those actual but old values.

An obvious seasonal fluctuation of CT incidence from 2008 to
2019 was also found in the present study. Specifically, the seasonal
fluctuation showed that the CT incidence in Shenzhen decreased
from December to February each year, with the trough in

February, but later increased. The result was similar to previous
studies on other sexually transmitted diseases such as gonorrhea
and syphilis in China [31–33], which could be interpreted by
what is called ‘Spring Festival effects’ [34]. The ‘Spring Festival
effects’ refer to the fact that the number of new infections dropped
during the Spring Festival, followed by a rise [32, 34].

Shenzhen is a developed city with large amounts of
rural-to-urban migrants. This population is reported to be more
likely to engage in high-risk sexual behaviour and more

Table 1. Estimated parameters and the Ljung–Box test in the optimal SARIMA model

Parameters Coefficient Standard error T P value

Residuals of SARIMA model

Ljung–Box Q P value

SARIMA (0.1,1)(0.1,1)12 0.358 0.549

MA(1) −0.634 0.072 −8.860 <0.001

SMA(1) −0.867 0.029 −29.582 <0.001

SARIMA, seasonal autoregressive integrated moving average; MA1, moving average, lag1; SMA1, seasonal moving average, lag1.

Fig. 3. The standardised residual plot (a), ACF (b) and
PACF (c) of the series after a first-order non-seasonal
difference and first-order seasonal difference. ACF,
autocorrelation function; PACF, partial autocorrel-
ation functions.

Fig. 4. SARIMA (0.1,1)(0.1,1)12 model diagnosis. (a) Standardised residual plot; (b) ACF of the errors at various lags; (c) P values for Ljung–Box statistic and (d)
normal Q–Q plot. SARIMA, seasonal autoregressive integrated moving average; ACF, autocorrelation function.
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Fig. 5. Actual CT incidence from January 2008 to June 2019 in Shenzhen and predicted CT incidence of the SARIMA (0.1,1)(0.1,1)12 model from July 2018 to June 2019. The observed values and predicted values of the SARIMA (0.1,1)
(0.1,1)12 model matched well with the actual incidence falling within the predicted 95% confidence interval (CI). SARIMA, seasonal autoregressive integrated moving average.
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vulnerable to sexually transmitted diseases [31, 35]. Every year
before the Spring Festival, many migrant workers return to
their rural hometown from about November, which leads to a
reduction in sexually active population and reported cases of
CT, and thereby a decrease of reported CT incidence in
Shenzhen [32]. Additionally, many suspected cases would not
like to go to clinics for examination during the festival, also prob-
ably contributing to the decline of reported incidence [31]. With
the return of migrant workers to Shenzhen since early March, the
incidence of CT infection rose again.

The findings about ‘Spring Festival effects’ have important
implications for the design of future programmes targeting on
this specific population. First, health access in urban areas is usually
better than that in rural areas. The ‘Spring Festival effects’ did not
only affect case-reporting of CT but also result in the missed
opportunity of case management for those patients who return
to their hometowns. Additionally, these patients may bring the
infections home to further transmit to their couples or sexual part-
ners. A survey in southwest China indicates a higher prevalence of
syphilis among left-behind women (1.5%) in rural areas than the
general population [36], which suggests that this high-risk group
should be targeted in rural intervention programmes. For example,
education about STI-related symptoms can be conducted in rural
areas to promote their awareness of seeking medical attention.
Second, localised outbreaks of CT infection in Shenzhen may be
expanded by this floating population [37]. Therefore, due to the
peak in May and the rising after February in the CT incidence,
rural-to-urban migrants should be targeted in the prevention and
intervention programmes such as sexual health promotion to
avoid risky sexual behaviours before this population return to
their hometown, and the government needs to pay more attention

to the screening of CT among them. For instance, prevention pub-
licity for CT can be implemented in crowd gathering place such as
long-distance bus stations and train stations.

It was noteworthy that there was a slightly rising trend of CT
incidence since 2010. One possible reason is that laboratory tests
with higher performance such as the polymerase chain reaction
and point-of-care tests were increasingly used, which could help
detect more CT cases than using microscope and antigen detec-
tion. Second, the enhanced awareness of asymptomatic CT
cases by physicians could also help detect more infected cases.

There were some limitations in the study to be considered.
First, in the SARIMA model, stationarity of the time series is
necessary before fitting and updating the model. Second, the
SARIMA model can only be applied to short-term prediction.
New observation series should be continually added over time
to adjust the model to ensure the prediction accuracy.
Furthermore, the performance of the model was also affected by
the quality of surveillance data. Enhanced consciousness of seek-
ing treatment in different medical institutions would lead to
duplicated reported cases in the system, which was hard to explore
the effect.

In summary, the SARIMA model could be applied to effectively
predict the short-term CT incidence in Shenzhen, which contrib-
uted to a better insight into the future epidemic trends of CT
infection. We suggested that the models could be used as a
reminder for policy-makers to allocate health resources reasonably
and formulate preventive and control programmes for CT infec-
tion timely.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268820000680.

Table 2. In-sample fitting and out-of-sample predicting performance in the optimal model

Simulating power
Predictive power

Model MAE ME MAPE RMSE MAPE

SARIMA (0.1,1)(0.1,1)12 0.910 0.239 0.075 1.384 0.081

SARIMA, seasonal autoregressive integrated moving average; MAE, mean absolute error; ME, mean error; MAPE, mean absolute percentage error; RMSE, root mean square error.

Table 3. Predicted chlamydia trachomatis incidence from July 2018 to June 2019 with the selected model

Time Actual incidence Predicted incidence Relative error (%) LCL UCL

Jul 2018 21.40 20.02 6.45 17.04 22.99

Aug 2018 20.72 19.70 4.92 16.48 22.91

Sep 2018 20.16 19.07 5.41 15.63 22.51

Oct 2018 20.56 19.77 3.84 16.12 23.42

Nov 2018 20.97 18.40 12.26 14.55 22.26

Dec 2018 19.26 17.42 9.55 13.38 21.46

Jan 2019 15.71 15.12 3.76 10.90 19.34

Feb 2019 10.56 13.04 23.48 8.65 17.44

Mar 2019 18.51 18.92 2.22 14.36 23.48

Apr 2019 18.37 18.93 3.05 14.21 23.64

May 2019 18.96 20.97 10.60 16.10 25.85

Jun 2019 18.30 20.36 11.26 15.34 25.39

SARIMA, seasonal autoregressive integrated moving average; LCL, lower confidence limit; UCL, upper confidence limit.
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