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ON THE SCHUR MULTIPLIER OF A QUOTIENT OF
A DIRECT PRODUCT OF GROUPS

GRAHAM ELLIS

We use a nonabelian exterior product to strengthen two old and basic results on the
Schur multiplier of a (central) quotient of a direct product of groups.

This is one of a series of papers (see also [5, 6, 7, 8]) advertising the relevance of
a certain ‘nonabelian exterior product. to the development and exposition of the basic
theory of the Schur multiplier of a group. We shall use the exterior product to prove the
following generalisation of a result of Eckmann, Hilton and Stammbach [3].

THEOREM 1. Let A = M x N be a direct product of groups, let mpy : A — M,
7y : A = N be the projections, and let U be a normal subgroup of A. Set G = A/U,
M = M/nyU, N = N/ayU. The Schur multiplier Hy(G) fits into a short exact
sequence

UniA, A

(1) 0— B — Hy(G) — T, A]

— 0

where B is an Abelian group that fits into exact sequences

(2) (U, Alop @ Hy(M) @ Hy(N) = B = Moy ® Nop — 0,

(3)  Mup® Ny — B = ker (H2 (M) - [_ATW%U]) @ ker (H2 (V) - ﬁ%)

A special case of this theorem, in which U is assumed to be central in A, was proved
in {3]. As illustrated in 3], the theorem can be viewed as a tool for determining some of
the structure of the Schur multiplier H,(G) from a knowledge of Hy(A).

Theorem 1 also implies a result of Wiegold [9] which states that if U & mp U = myU,
if U is central in A, and if G is finite, then M, ® N, is isomorphic to a subgroup of
H3(G). To deduce this result it in fact suffices to assume that G is finite, for then H,(G)
is finite, and thus (2) provides a surjection B—»M 4 ® Ngp of finite groups. So Mg, ® Ny
must be isomorphic to a subgroup of B, and hence isomorphic to a subgroup of H,(G).

Received 13th May, 1998
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 $A2.00+0.00.

495

https://doi.org/10.1017/50004972700032470 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700032470

496 G. Ellis 2]

We shall show how Wiegold’s result can be reworked into the following slightly more
general proposition.

PROPOSITION 2. Let M,N be normal subgroups of a group K such that
[M,N] =1. Set G = MN and suppose that the image of the canonical homomorphism
¢: G — Ko is a direct summand of Kg, that is K. = ¢(G) ® (K/G),,. Then:

(i) (¢(M)/¢(MON)) ® (¢(N)/¢(MON)) is isomorphic to a quotient of
Hy(K);

(ii) if May and Ny are finite then (¢(M)/¢(M N N)) ® (¢(N)/¢(M N N)) is
isomorphic to a subgroup of Hy{ K).

Note that if K = MN then (¢(M)/¢(MNN)) = (M/MNN),, and (¢(N)/
$(M N N)) 2 (N/M N N),,

For the proof of Theorem 1 we recall from [2, 4] that any group F = P@Q, which is
a product of two normal subgroups P,Q € E, gives rise to a natural exact sequence

PNQN[E, E]
(P.Q)

The derivation given in {4] is purely algebraic and uses only elementary arguments based

(4) ker (PAQ D [P,Q]) - Hy(E) —» Hy(E/P) & Hy(E/Q) — — 0.

on Hopf’s formula for the Schur multiplier and on an isomorphism
(5) Hy(E) = ker (EAE 5 E).

The exterior product P A Q is the group generated by symbols Ay (z € P, y € Q)
subject to the relations

' Ny = (xz'x'l A zy:c‘l)(z AY),

zAyy = (zAy)(yzy Agy'y),
zAz=1,
for z,2' € P, y,y € @, z € PN Q. The homomorphism A is defined on generators by
Mz Ay) =zyz "yl
On taking £ = A, P = U and Q = A, sequence (4) reduces to an exact sequence

UnN[4, 4]

U, 4] - 0.

ker (UA A (U, A]) 5 Hy(4) S Hy(G) -
We set B = coker(§) = im(a) and note that this definition of B leads to the exact
sequence (1).

If P,Q < E are such that [P,Q] = 1 then it is readily shown (see [2] for details) that

(6) ker (PAQ S [P,Q]) = Puy ® Qu/A
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where A is the subgroup of P, ® Qs generated by the tensors z|P, P] ® z[Q, Q] for
z€ PNQ. Weset -
Poy A Qab = Pap ® Qus/A.

The naturality of sequence (4) and the isomorphisms G/M 2 N, G/N = M lead to
the following commutative diagram in which the rows and columns are exact.

0 — Mg, ® Ny — H(A) — Hy(M) & Hy(N) - 0
{ la l
(MU/U),, A(NUJU),, — Hy(G) —  Hy(M) @ Hy(N)
i

{
7I'M(U) WN(U)

0 (M, 7070] © TN, U]

The exact sequence (3) follows immediately from this diagram.
In order to derive sequence (2) note that the composition of the inclusion Hy(M) @
H,(N) < H,(A) with the surjection Hy(4) 2 B yields a map with cokernel

coker (Hy(M) & Hy(N) % B)

= coker (Hy(M) @ Hy(N) @ ker (U A A 5 [U, A]) 5 Ha(A)).

The natural isomorphism (5) leads to a commutative diagram

0 0
i )
Hy(M)@® Hy(N)®ker (V) - Hy(A)
) 1]
) (MAM)®a(NAN)®(UAA) -5 AANA
) i)
[M,M] &[N, N)& [U, A 2 (A, 4]
i {
1 1

in which the columns are exact. Note that coker(v) = 0 and coker(6) = My, ® Ny (To
see the latter equality, recall [1] that ANA = (M AM)® (NAN)® (Mg ® Ny), and
note that if (z,y) € U 9 M x N and (a,b) € M x N then working in A A A we have

zyAab= (y ATa)(y Ab)(z Aa)(®z A D).

Thus
coker(d) & M,y @ Ny /T
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where I is the subgroup of Mg, ® N,y generated by the elements u[M, M] ® b[N, N]
and a[M,M] @ v[N,N] for a € M, b € N, u € npU, v € 7yU. It follows that
coker(d) = M4, ® Ngp.) Diagram (7) yields an exact sequence

— ker (v) — coker(y) — coker(d) — coker(v)
which we recognise as
— (U, A] = coker(at) = My ® Ngy — 0.

The exact sequence (2) follows from this sequence and the fact that coker(aw) is Abelian.
Let us now turn to the proof of Proposition 2. The quotient homomorphism

K(K/MON),, = ¢(M)/¢(MNN)® $(N)/¢(MNN)® (K/G),,
induces a homology homomorphism
Hy(K)—Hy( $(M)/$(M O N)® $(N)/$(M N N) & (K/G),, ) =

Hy(s(M)/(MON)) & Hy($(N)/$(MON)® (K/G),,) &
(6(M)/6(MON) ® ¢(N)/$(MNN)) & ($(M)/$(MNN)® (K/G),).

By projecting onto the penultimate summand we obtain a homomorphism
p: Hy(K) = ¢(M)/$(MNN) ® $(N)/$¢(M N N).

The homomorphism p is surjective because the condition [M, N] = 1 implies there is a
surjective composite homomorphism

My ANy = MANS HyK) D o(M)/¢(MNON)®$(N)/H(MNN).

(The isomorphism follows from (6), and the homomorphism p is derived from (4).) This
proves part (i) of Proposition 2. If My, and N, are finite then so too is My, A Ngp; hence
im(u) is finite and thus contains a subgroup isomorphic to its quotient ¢(M)/¢p(M N N)®
#(N)/#(M N N). This proves part (ii) of Proposition 2.
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