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Strain-rate formulation of ice fabric evolution
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ABSTRACT. Reorientation of individual crystal-glide planes as isotropic surface ice is
deformed during its passage to depth in an ice sheet, lattice rotation, creates a fabric and
associated anisotropy. A simple macroscopic description is that these material glide planes
are rotated towards planes normal to an axis of compression, and away from planes
normal to an axis of extension, inducing an instantaneous orthotropic viscous response
with reflexional symmetries in the planes orthogonal to the current principal stretch axes.
An orthotropic viscous law is presented for the strain rate expressed in terms of the devia-
toric stress, the deformation, and three structure tensors based on the principal stretch
axes. This anisotropic relation is expressed in terms of a single fabric response function in
addition to the isotropic ice viscosity. The predicted responses in uniaxial compression
and simple shear are determined. While the uniaxial response yields an explicit relation
between the axial strain rate and stress, it is found that the shear response is governed by
three, complicated, coupled relations between the shear strain rate and three deviatoric-
stress components. The new result derived here is the solution of this system: an explicit
relation between the shear strain rate and shear stress. Correlation of these relations with
idealized uniaxial and shear responses is then used to determine the required fabric func-

tion in the model law.

1. INTRODUCTION

Ice-core samples taken from depth in an ice sheet reveal
strong fabrics, shown by significant alignment of initially
randomly distributed ¢ axes of individual crystals, and con-
sequent substantial differences in shear viscosities in differ-
ent planes. Macroscopic laws have been constructed from
the properties of individual crystals and assumptions on
how they interact (e.g. by Van der Veen and Whillans, 1994;
Azuma and Goto-Azuma, 1996). Visco-plastic self-consis-
tent theory has been applied (e.g. by Castelnau and others,
1996; Meyssonnier and Philip, 1996) to derive average prop-
erties. Meyssonnier and Philip (1996) also introduced an
orientation distribution function to measure weightings of
a continuous spectrum of ¢-axis orientations, and this ap-
proach has been used to construct direct macroscopic laws
(e.g. by Svendsen and Hutter, 1996; Goédert and Hutter,
1998; Gagliardini and Meyssonnier, 1999).

An alternative macroscopic viscous law for the shear
stress motivated by a simple picture of lattice rotation in
which individual crystal-glide planes, material planes, are
rotated towards planes normal to principal axes of compres-
sion, and away from planes normal to principal axes of exten-
sion, has been developed by Morland and Staroszczyk (1998,
2003) and Staroszczyk and Morland (2000, 2001). Instanta-
neous directional viscosities were introduced to define the in-
duced anisotropy in any given fabric state, and a set of
equalities and inequalities which must be satisfied by the
instantaneous directional viscosities was derived from the
above rotation concepts, designated by one author (L.W.M.)
as the “Staroszczyk inequalities” It was inferred that the
Instantaneous viscous response is orthotropic with respect to
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the current principal stretch planes, so that the base planes of
the orthotropy are evolving and that the directional
strengths of the response depend on the current deformation.
The orthotropic viscous law is then a frame-indifferent
relation between stress, strain rate, deformation and the three
structure tensors defined by the outer products of the three
orthogonal vectors along the principal stretch axes.

Morland and Staroszczyk (2003) analyzed the simplest
forms of both stress and strain-rate formulations, relations
for the deviatoric stress and for the strain rate, respectively,
consistent with the Staroszczyk inequalities, which each in-
volve two sets of tensor generators but only one independent
fabric response coefficient depending on one invariantargu-
ment. The stress formulation yielded explicit relations
between the primary stress and strain-rate components in
both uniaxial compression and simple shear responses, and
correlations between the predicted and assumed idealized
responses were made to determine the corresponding fabric
response function. For the strain-rate formulation, an expli-
cit relation between the axial strain rate and stress was
again obtained in uniaxial compression; in simple shear,
however, the shear strain rate is governed by three coupled
relations in terms of the shear stress and two axial deviatoric
stresses, and involves the fabric response function in a com-
plicated, non-linear manner. Correlations with the ideal-
ized responses did not appear feasible. We now re-examine
the Morland and Staroszczyk (2003) strain-rate formula-
tion, and determine a crucial new result: the solution of this
coupled system to derive an explicit relation for the shear
strain rate in terms of the shear stress. We then determine
the fabric response function for the strain-rate formulation
by correlation with the same idealized uniaxial and shear
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responses adopted by Morland and Staroszczyk (2003) for
the stress formulation. Only relations necessary to describe
the model and responses, and the new solution, are
repeated.

2. ORTHOTROPIC VISCOUS MODEL

We adopt the orthotropic viscous law for the strain rate D
presented by Morland and Staroszczyk (2003),

2u(J)D = {6’ + i: f(&) [Mmfr + M
(2.1)

+g(n) [&B +Bo — %tr(é’B)I} } D =a(T)D,

where Iis the unit tensor, T is temperature, D is an effective
strain rate incorporating a temperature-dependent rate fac-
tor a(T), and B is the left Cauchy—Green strain tensor. @ is
the deviatoric-stress tensor with a dimensionless invariant J
relative to a typical ice-sheet flow shear stress magnitude o:

1 ¥ 2
J=—tr(1) . oy =10°Nm™2.

5 (2.2)

(J) is the isotropic viscosity function. f(&,), §(n) are fabric
response coefficients, functions of single deformation invari-
ant arguments &, and 7, respectively, given by

&=b—1/b (r=1,2,3), n=1/(K-1)°-4,

K=trB=0b+by+bs, b >by>b3, (2.3)

where b, (r = 1,2, 3) are the ordered principal values (prin-
cipal stretches squared) of B. f(&,) and §(n) are supposed
differentiable functions of their arguments. The three struc-
ture tensors M) are defined by the outer products of the
unit vectors ) (1 =1,2,3) along the current principal
stretch axes:

M® = e @ e, (r=1,23). (2.4)

Isotropy in the undeformed state B = I gives the normaliz-
ation condition

F(0) +g(0) =0. (2.5)
The non-trivial equality of the general Staroszczyk inequal-
ities requires

Gn) =ngn) = —Fn) + f(=n) = -2 (), (2:6)
for n > 0, where f(€) has the decomposition into even, f°,
and odd, f°, parts defined by

2f°(0) = F©) + F(-9), 2P = F(©) - f(-9), 27
and the alternative fabric response function é(n), defined
by Equation (2.6), is finite and non-zero as ) — oc. The~l/imit
of Equation (26) as n — 0, noting thatf°(0) ~ nf (0),
together with Equation (2.5), shows that

G(0)=0, §0)=-F(0)=-2f(0), (2.8)

which is a restriction on f(£) at £ = 0. Thus §(n) and G(n)
are expressed explicitly in terms of fo(n), and the constitu-
tive law given by Equation (2.1) can be expressed in terms of
a single independent fabric response function f(f) Define,

for (4,5 =1,2,3; 4 # j),
hij = f&) - f(&) — 207 (), (2.9)
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then the remaining non-trivial Staroszczyk inequalities
require
621 <0, 623 <0, Elggo for §2§0, (2.10)

which must be verified for any adopted f(£) over the com-
plete range of ordered b, (r =1,2,3).

3. UNIAXTAL AND SHEAR RESPONSES

In uniaxial compression at constant temperature 7' along
the Ox3 axis there are equal lateral stretches A\; = Ay > 1,
and the axial stretch (a compression) is A3 = >\1_2 < 1.The
model viscous law (Equation (2.1)) gives the non-zero diag-
onal relations

oun_ _ _0» __0xn
2uD11 2pDyy 2 Dsg

u(éy) =

— [+ 2fe) +37E) + 20+ 20 5]
(3.1)
where u(0) = 1 and

G=b—b'>0, &=0b"-b]<0,

(3.2)
n=y/ @b 1)—4 20,

As by — oo, then & — 00, £&3 — —o0 and 1 ~ 2b; — 00,
and u(&;) — A; A1 is the enhancement factor in uniaxial
compression. Eliminating ¢g(n) by Equation (2.6),

2 f¢(o0) —gfo(oo) =At-1.

(3.3)
In a simple shear strain x > 0 at constant temperature and
constant strain rate Diz =37 = %a(T)"? > 0, other D;; =0,
the strain tensor B has the non-zero components
Bii=1+ K,Q, Byo = B33 =1 and Byj3 = B3, = K, and the
deviatoric-stress tensor has axial components 611,022, 033,
where 611 + 099 + 633 = 0, in addition to the direct shear
of B,
b, (r =1,2,3), the associated principal vectors €, and the
invariants &.,1 = 1, are given by

components 13 = 03;. The principal values

bp=1, 2by =2b;' =24+ K>+ KVK2+4, (34)
« [ R 2 _%
e? =(0,1,0), e(l1> = eg‘” = (14 ,
b —1
: b —1\?]°
eél) _ _6(13) = |1+ ( 1 ) 7 (3.5)
K
5220, 51:—53:7’]5:5\/5_2‘;2. (36)

The model law (Equation (2.1)) then has the three
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independent relations

2uD1y = 611+ F(n) ALY + F(0)AY + f(—n,)AY

11
- 2011J;O(775)/775: (3-7)
2uDs3 = 33 + f(m)Afa? + f(o) 33 + f(=n)A S%)
— 2C33f° () /s (38)

iy = 613/5(K)

:&13+f(775) 13 +f( ) 13 _2013f0(775)/7757

(3.9)
where
Ci1 = [4(1 + K%)611/3] — (2633/3)
+ (26613/3) — (2622/3) , (3.10)
Cye = [-2(1 + £%)611/3) — (2633/3)
— (4Kb13/3) + (4622/3), (3.11)
Ca3 = [-2(1 4 £%)611/3) + (4633/3)
+ (26613/3) — (2622/3) , (3.12)
Ci3 = C31 = k(611 + 633) + (24 £°)13, (3.13)
AD = A = 95,73, AP =464/3, (3.14)
and for (s =1, 3):
A = (4ey’ >e5 all/3> (2657el533/3)
+ (2e1 e3 013/3), (3.15)
A = (—2¢ el 611/3) — (26} el 63/3)
(4e1 e3 013/3), (3.16)
Ay = (—2¢17 el 0611/3) + (4€5)el)63/3)
+ (2e1 e3 013/3), (3.17)
A(fé,) = Afff = e({)ef{)(an + G33) + 013 (3.18)

Setting ﬁn = D33 =0 provides two linear relations to
eliminate 611 and &33, and in turn G99, in terms of 613. Then
Equation (3.9) can be expressed as a linear relation between
4 and 613, but involving f(1,) and f(—7;) in a complicated
manner; the derivation was not pursued by Morland and
Staroszczyk (2003).

We now show that this coupled system does lead to a
simple explicit relation between 4 and 613, which can then
be combined with the uniaxial relation (3.1) to relate the
fabric function to the uniaxial and shear responses, as done
for the stress formulation by Morland and Staroszczyk
(2003). Ignoring the systematic procedure described above,
we first determine the coefficients of 13 in Equations (37)
and (3.8) for 1311 and 1333. Collecting the relevant terms
from Equations (3.10-3.18), it is found that both coefficients
are

2= )W, 7 3) (3 K
5 [fme’ el + Fn)el?el? =22 )| (3.19)
Now, from Equations (3.4-3.6), it follows that
e(ll)egl) = —6(13)653) =kr/n, (3.20)

so that the coefficient (3.19) is a multiple of fo(m) and is
identically zero. Thus, setting ﬁn = D33 =0 yields two
non-singular, homogeneous, linear equations for 617 and
033, which implies that 1; = 33 = 0, and hence Equation
(3.9) reduces to

s(k) = [L+2F(n,) — 202 + 2)F°(na)/ms]) - (3.21)
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As k — 00, then 1, ~ k? — oo and s(k) — S, where S~ is

the enhancement factor in simple shear, and the shear
relation (3.21) has the limit

2[f*(00) = folo0)] = 57" -
Combining Equation (3.22) with the axial limit relation (3.3)
then determines the fabric response function limit values

fe(c0) = (3471 =287t —1)/2,
fo(00) ==3(871 - A71)/2.

(3.22)

(3.23)

4. CORRELATIONS

We adopt the Morland and Staroszczyk (2003) idealized
monotonic responses for the uniaxial and shear responses
which prescribe u(£;) and s(k), respectively, by

up(dr) = 1+ (A= 1) {1 —exp [~ (0 — 1)/0:]%},
sp(%) =14 (S — 1) [1 — exp(—K”/k.)],

where b, and k, are the scales of b; and k2

(4.1)

, respectively, over
which uy,(b1) and s;,(k?) make a significant change. These
prescriptions satisty the limits at by = 1 and £ = 0, and as
b1 and K — o0, and have zero and non-zero derivatives,
respectively, with respect to their arguments at by = 1 and
k? = 0 as required by Equations (3.1) and (3.21). Now s(k)
given by Equation (3.21) can be matched exactly with the
prescribed s, (k%) by setting

fe(n,) + 0.5 — 0.5 §p(n§)]

Fo _ Ts |: e
for 7, > 0, which in turn expresses f(€) in terms of f°(€)
and 3, (&?) for all £, where

§p(773) =sp(/$2), K2 = VnE+4-2. (4.3)

The required derivative condition (2.8), F*(0) = 0.5 (0), is
automatically satisfied by Equation (4.2). While there is still
a controversy whether the limit value A is greater or less

(4.2)

than unity, we consider both the “warm-” and “cold-ice”
parameters adopted by Morland and Staroszczyk (2003),
based respectively on laboratory tests by Budd and Jacka
(1989), and modifications of estimates by Mangeney and
others (1996) from Greenland Icecore Project (GRIP) and
Greenland Ice Sheet Project 2 (GISP2) ice-core data:

warm ice: A=1/3, S=1/8, b.=k, =05,
foloo) = =75, f(o0)=—4, f(oo)=—115, (4.4)
coldice: A=3, S=1/5, b=k, =4,

foloo) =—7, f(o0)=—5, floo)=—12. (45)

The fabric function limits are given by Equations (3.23) and
(2.7).

Correlation of the predicted uniaxial and shear responses
(&) and s(k) with the prescribed responses up(b1) and
sp(K?), respectively, determines the corresponding fabric
response function f(f) in the assumed model. We apply the
weighted least-squares difference minimization used by
Morland and Staroszczyk (2003) in the stress formulation.
As there, the best correlation for “warm ice” was obtained
by the combined uniaxial and shear response minimization,
and for “cold ice” by the uniaxial minimization with s(x)
matched exactly, adopting the same fabric response function
representations. Since there is no apparent critical value of
&(b) during the fabric evolution, it is expected that the func-

37


https://doi.org/10.3189/172756403781815942

Morland and Staroszezpk: Strain-rate formulation of ice fabric evolution

186G /

G

Fig. 1. Fabric functions f(£), (&) and G(&) for warm ice.
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Fig. 2. Calculated normalized axial viscosity u(&,) ( Equation
(31) ) vs lateral stretch Ay (dashed line) compared to pre-
scribed response (solid line) for warm ice.

tion f(£) should be monotonic, satisfying the limit values
given by Equations (4¢.4) and (4.5). Monotonicity of f(f)
ensures monotonicity of f°(£) and G(n), but not of §(n). For
the combined correlation, the representation is

F(&) = f(o0) — 2f°(c0) exp [ — aq(b)]

N

q(b) =D ayb™,

n=1

20 =€+ +14,

which is necessarily monotonic. The derivative condition

(2.8) at ¢ = 0, b = 1 becomes

(4.6)

a7 alH CIL > 07

2f°(00) [1 + aq'(1)] exp [ - aq(1)] = f(o0),  (47)
which has a unique positive root «, leaving 2N free para-
meters a, and ¢, in the representation (4.6). For the uniaxial
correlation, with the shear response matched identically,
the representation for the even part f°(£) is

o) ST — __ (48)
n=1 1+ Clb(2£/b*)2n

with ¢, > 0, but allowing some of the coefficients a,, to be
negative, so monotonicity of f¢(£) in £ > 0 is not ensured,
nor, in general, is that of f(€). The representation (4.8) also
has two N-free parameters a,, and c,.
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Fig. 3. Calculated normalized shear viscosity s(k) ( Equation
(3.21) ) vs shear strain K ( dashed line) compared to prescribed
response (solid line) for warm ice.
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Fig. 4. Fabric functions f(£), g(€) and G(€) for cold ice.

The best correlations obtained with moderate IV are as
follows. For “warm ice”, the coefficients in Equation (4.6) are

a=1, a; =1.6467, a; =0.0787,

(4.9)
cp = 1.7440, ¢y =5.4995.

Figure 1 shows the corresponding fabric response functions,
all monotonic, and Figures 2 and 3 show the prescribed and
predicted uniaxial and shear responses, respectively. The
maximum uniaxial and shear differences are, respectively,
0.057 compared to A = 0.333, and 0.045 compared to S =
0.2. For “cold ice”, the coefficients in Equation (4.8) are

a1 = 0.2263, ay = —0.2331, a3 = 0.0356,

ay = —0.0975, az = 0.0296; (4.10)
c1 = 0.0827, ¢ =1.5143, c3 = 0.000014,
¢ = 0.0167, c5 = 14.5080. (4.11)

Figure 4 shows the corresponding fabric response functions,
all monotonic, Figure 5 shows the prescribed and predicted
uniaxial response, and Figure 6 the identically matched
prescribed shear response. The maximum uniaxial differ-
ence is 0.15 compared to A = 3. In both cases, the validity
inequalities (2.10) were verified numerically over the wide
range

1001 > b >1, 0.01<by<b (bg<by). (4.12)
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Fig. 5. Calculated normalized axial viscosity u(&,) ( Equation
(31) ) vs lateral stretch Ay (dashed line) compared to pre-
scribed response (solid line) for cold ice.

CONCLUSIONS

We have presented a strain-rate formulation of an ortho-
tropic viscous law for evolving fabric in polar ice, and shown
that explicit relations between the primary strain rate and
stress can be obtained for both uniaxial compression and
simple shear responses. These allow correlation with ideal-
1zed uniaxial compression and simple shear responses, for
both “warm-" and “cold-ice” properties, to determine the
fabric response coefficient functions which yield good
approximations to those prescribed responses. We therefore
now have models for both stress and strain-rate formula-
tions which determine, to a close approximation, the same
uniaxial compression and simple shear responses.
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