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Abstract

For an irrational number x ∈ [0, 1), let x = [a1(x), a2(x), . . .] be its continued fraction expansion with
partial quotients {an(x) : n ≥ 1}. Given Θ ∈ N, for n ≥ 1, the nth longest block function of x with respect
to Θ is defined by Ln(x,Θ) = max{k ≥ 1 : a j+1(x) = · · · = a j+k(x) = Θ for some j with 0 ≤ j ≤ n − k}, which
represents the length of the longest consecutive sequence whose elements are all Θ from the first n partial
quotients of x. We consider the growth rate of Ln(x,Θ) as n→∞ and calculate the Hausdorff dimensions
of the level sets and exceptional sets arising from the longest block function.
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1. Introduction

For x ∈ [0, 1) with dyadic expansion x =
∑∞

k=1 xn/2n (xn = 0 or 1), we define the run-
length function

Zn(x) = max
{
l ≥ 1 : xi+1 = · · · = xi+l = 0 for some i with 0 ≤ i ≤ n − l

}
,

which counts the longest run of 0’s in the first n digits of the dyadic expansion of x.
A classical result due to Erdős and Rényi [4] asserts that for almost all x ∈ [0, 1),

lim
n→∞

Zn(x)
log2 n

= 1. (1.1)

It is natural to study the exceptional set in the Erdős–Rényi limit theorem. Ma et al.
[13] (see also [17]) proved that the set of all points x ∈ [0, 1) for which (1.1) does
not hold has Hausdorff dimension 1. Liu et al. [12] extended this result further by
considering the sets

Eϕ
α,β =

{
x ∈ [0, 1) : lim inf

n→∞

Zn(x)
ϕ(n)

= α, lim sup
n→∞

Zn(x)
ϕ(n)

= β
}
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with ϕ : N→ (0,+∞) an increasing function. They showed that if limn→∞ ϕ(n) = ∞

and limn→∞ ϕ(n)/ϕ(n + ϕ(n)) = 1, then the set Eϕ
α,β is of full Hausdorff dimension

for all α, β with 0 ≤ α ≤ β ≤ ∞. Tong et al. [19] generalised these results to the β-
expansion x =

∑∞
k=1 xn/β

n for β ∈ (1, 2]. (For more information on the β-expansion,
see [2, 6, 22].)

The asymptotic behaviour of similar run-length functions arising in the continued
fraction expansion was studied in [20]. With the help of the Gauss transformation
T : [0, 1)→ [0, 1) defined by

T (0) = 0, T (x) =
1
x

(mod 1) for x ∈ (0, 1),

each irrational number x ∈ [0, 1) can be uniquely expanded as a continued fraction

x =
1

a1(x) +
1

a2(x) +
1

. . . 1
an(x) + T nx

=
1

a1(x) +
1

a2(x) +
1

a3(x) +
1
. . .

(1.2)

with the an(x) = b1/T n−1(x)c, called the partial quotients of x. For simplicity of
notation, we write (1.2) as

x = [a1(x), a2(x), . . . , an(x) + T nx] = [a1(x), a2(x), a3(x), . . .].

For any n ≥ 1, we define the nth maximal run-length function of x by

Rn(x) = max
{
k ≥ 1 : a j+1(x) = · · · = a j+k(x) for some j with 0 ≤ j ≤ n − k

}
.

Wang and Wu [20] considered the metrical properties of Rn(x) and proved that

lim
n→∞

Rn(x)
log 1

2 (
√

5+1) n
=

1
2

for almost all x ∈ [0, 1).
We give a more subtle characterisation of the function Rn(x). More precisely, given

Θ ∈ N, for n ≥ 1, we define the longest block function of x as

Ln(x,Θ) = max
{
k ≥ 1 : a j+1(x) = · · · = a j+k(x) = Θ for some j with 0 ≤ j ≤ n − k

}
.

It represents the length of the longest consecutive sequence whose elements are all Θ

from the first n partial quotients of x. We obtain the following law of large numbers
for Ln(x,Θ).

Theorem 1.1. For almost all x ∈ [0, 1),

lim
n→∞

Ln(x,Θ)
log 1

2 (Θ+
√

Θ2+4) n
=

1
2
.
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Following Theorem 1.1, it is natural to study the metrical theory of the set

Dn(x,Θ) = max
{
k ≥ 1 : a j+1(x)a j+2(x) = · · · = a j+k−1(x)a j+k(x) = Θ

for some j with 0 ≤ j ≤ n − k
}
.

This is in turn related to the Dirichlet improvable sets discussed in [1, 8, 9]. This will
be the subject of a forthcoming article.

The fractal structures of the level sets and exceptional sets with respect to the
metrical result in Theorem 1.1 are also of interest. For 0 ≤ α ≤ ∞, we define the
level set

E(α) =

{
x ∈ [0, 1) : lim

n→∞

Ln(x,Θ)
log 1

2 (Θ+
√

Θ2+4) n
= α

}
.

For α, β ∈ [0,+∞] with α ≤ β, we define exceptional sets E(α, β) and Ê by

E(α, β) =

{
x ∈ [0, 1) : lim inf

n→∞

Ln(x,Θ)
log 1

2 (Θ+
√

Θ2+4) n
= α, lim sup

n→∞

Ln(x,Θ)
log 1

2 (Θ+
√

Θ2+4) n
= β

}
and

Ê =

{
x ∈ [0, 1) : lim inf

n→∞

Ln(x,Θ)
log 1

2 (Θ+
√

Θ2+4) n
< lim sup

n→∞

Ln(x,Θ)
log 1

2 (Θ+
√

Θ2+4) n

}
.

From a global measure theoretic point of view, they are zero sets. It is of interest to
know whether the ‘sizes’ of the sets are also small from the perspective of dimension
theory. We obtain the somewhat surprising result that all the exceptional sets have full
dimension.

Theorem 1.2. For any α, β with 0 ≤ α ≤ β ≤ +∞, the Hausdorff dimension
dimH E(α, β) of the exceptional set E(α, β) is equal to 1.

By taking first α = β and second α = 0, β = ∞ in Theorem 1.2 and noting that
E(α, β) ⊂ Ê, we obtain the following two corollaries.

Corollary 1.3. For any α with 0 ≤ α ≤ ∞, we have dimH E(α) = 1.

Corollary 1.4. We have dimH Ê = 1.

The paper is organised as follows. Section 2 collects some basic results on
continued fractions that will be used later. The proofs of Theorems 1.1 and 1.2 are
given in Sections 3 and 4, respectively.

2. Preliminaries

In this section, we fix some notation and cite some elementary properties of
continued fractions. For a wealth of classical results about the continued fraction
expansion, see the book by Khintchine [11] and for more information see [14, 18, 21].

For any irrational number x ∈ [0, 1) with continued fraction expansion (1.2), we
define the nth convergent of x by pn(x)/qn(x) = [a1(x), . . . , an(x)] with the conventions
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p−1(x) = 1, q−1(x) = 0, p0(x) = 0 and q0(x) = 1. Then pn(x) and qn(x) can be given by
the recursive relations

pn+1(x) = an+1(x)pn(x) + pn−1(x), qn+1(x) = an+1(x)qn(x) + qn−1(x), n ≥ 0.

Clearly, qn(x) is determined by a1(x), . . . , an(x), so we also write qn(a1(x), . . . , an(x))
instead of qn(x). We write an and qn in place of an(x) and qn(x) for simplicity when no
confusion can arise.

Lemma 2.1 [11]. Let n ≥ 1 and (a1, . . . , an) ∈ Nn.

(1) qn ≥ 2(n−1)/2.
(2) For 1 ≤ k ≤ n,

1 ≤
qn(a1, . . . , an)

qk(a1, . . . , ak)qn−k(ak+1, . . . , an)
≤ 2,

n∏
k=1

ak ≤ qn ≤

n∏
k=1

(ak + 1).

(3) If a1 = a2 = · · · = an = i, then

τn(i) ≤ qn(i, . . . , i) =
τn+1(i) − ζn+1(i)
τ(i) − ζ(i)

≤ 2τn(i),

where τ(i) = 1
2 (i +

√
i2 + 4) and ζ(i) = 1

2 (i −
√

i2 + 4).

For n ≥ 1 and (a1, . . . , an) ∈ Nn, we write

In(a1, . . . , an) = {x ∈ [0, 1) : ak(x) = ak, 1 ≤ k ≤ n}

and call it a basic interval of order n; this interval is the collection of points whose
continued fraction expansions begin with (a1, . . . , an).

Lemma 2.2 [11]. For any n ≥ 1 and (a1, . . . , an) ∈ Nn,

1
2q2

n
≤ |In(a1, . . . , an)| =

1
qn(qn + qn+1)

≤
1
q2

n
.

The Gauss transformation T is ergodic with respect to the Gauss measure µ, defined
by

dµ =
1

log 2
1

x + 1
dx.

From the definition of µ, we see that µ is absolutely continuous with respect to
Lebesgue measure. Philipp [15] showed that T is not only ergodic but also strongly
mixing with respect to µ and this result is critical in the metrical theory of the longest
block function Ln(x,Θ).

Lemma 2.3 [15]. For any k ≥ 1, let Bk
1 = σ(a1, . . . , ak) and B∞k = σ(ak, ak+1, . . .) denote

the σ-algebras generated by the random variables (a1, . . . , ak) and (ak, ak+1, . . .),
respectively. Then, for any A ∈ Bk

1 and B ∈ B∞k+n,

µ(A ∩ B) = µ(A)µ(B)(1 + θρn),

where |θ| ≤ K, ρ < 1 and K, ρ are positive constants independent of A, B, n, k.
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We cite some dimensional results on continued fractions (see [5] for more
information on estimation of the dimension). Let EM be the set consisting of all points
in [0,1) whose partial quotients are not greater than M, that is,

EM = {x ∈ [0, 1) : 1 ≤ an(x) ≤ M for n ≥ 1}.

Lemma 2.4 [10]. For M ≥ 8,

1 −
1

M log 2
≤ dimH EM ≤ 1 −

1
8M log M

.

In particular, the set E = {x ∈ [0, 1) : supn≥1 an(x) < +∞} has Hausdorff dimension 1.

Good [7] obtained the more accurate estimate dimH EM = limn→∞σM,n, where σM,n
is the real root of ∑

1≤a1,...,an≤M

( 1
qn(a1, . . . , an)

)2σM,n

= 1.

Let K = {kn}n≥1 be a subsequence of N which is not cofinite. Let x = [a1, a2, . . .]
be an irrational number in [0, 1). Eliminating all the terms akn from the sequence
a1, a2, . . ., we obtain an infinite subsequence c1, c2, . . . and we put φK(x) = [c1, c2, . . .].
In this way, we define a mapping φK : [0, 1) ∩ Qc → [0, 1) ∩ Qc.

Let {Mn}n≥1 be a sequence with Mn ∈ N, n ≥ 1. Set

S ({Mn}) =
{
x ∈ [0, 1) ∩ Qc : 1 ≤ an(x) ≤ Mn for all n ≥ 1

}
.

Lemma 2.5 [3]. Assume that {Mn}n≥1 is bounded. If the sequence K = {kn}n≥1 is of
density zero in N, then

dimH S ({Mn}) = dimH φKS ({Mn}).

Corollary 2.6. Given a set of positive integers K = { j1 < j2 < · · · } and an infinite
bounded sequence {bi}i≥1 with 2 ≤ bi ≤ B for some B ∈ N, let

E(K, {bi}) = {x ∈ [0, 1) : ai(x) = bi for all i ∈ K}.
If the density of K is zero, that is,

lim
n→∞

#{i ≤ n : i ∈ K}
n

= 0,

then dimH E(K, {bi}) = 1. Here and hereafter # denotes the cardinality of a finite set.

Proof. The main idea of the proof is to construct Cantor-like subsets with Hausdorff
dimensions approaching 1. Fix M ≥ max{8, B}. Let EM(K, {bi}) be the set of x ∈ [0, 1)
whose partial quotients satisfy

ai(x)

= bi, i ∈ K,
∈ [1,M], i < K.

It is easy to check that EM(K, {bi}) ⊂ E(K, {bi}) and φKEM(K, {bi}) = EM . Thus,

dimH E(K, {bi}) ≥ dimH EM(K, {bi}) = dimH φKEM(K, {bi}) ≥ 1 −
1

M log 2
by Lemmas 2.4 and 2.5. We complete the proof by letting M →∞. �
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3. Metrical properties of Ln(x,Θ)
In this section, we prove Theorem 1.1. The main idea of the proof is borrowed from

Theorem 7.1 in [16].

Lemma 3.1. For almost all x ∈ [0, 1) and any ε > 0,

lim inf
n→∞

Ln(x,Θ)
logτ(Θ) n

≥
1 − ε

2
.

Proof. It suffices to show that

µ
{
x ∈ [0, 1) : Ln(x,Θ) <

⌊1 − ε
2

logτ(Θ) n
⌋

for infinitely many n ∈ N
}

= 0.

Let µn = b 1
2 (1 − ε) logτ(Θ) nc and kn = bn/µ2

nc. For n > m ≥ 0, set

L[m,n](x,Θ) = Ln−m(am+1(x), . . . , an(x)),

which represents the longest run of the same symbol in the first n −m partial quotients
of T m(x). Note the covering of the set

{x ∈ [0, 1) : Ln(x,Θ) < µn for infinitely many n ∈ N}

=

∞⋂
m=1

∞⋃
n=m

{x ∈ [0, 1) : Ln(x,Θ) < µn}

⊆

∞⋂
m=1

∞⋃
n=m

{
x ∈ [0, 1) : L[iµ2

n,iµ2
n+µn](x,Θ) < µn, 0 ≤ i < kn

}
.

Based on this covering,

µ{x ∈ [0, 1) : Ln(x,Θ) < µn for infinitely many n ∈ N}

≤ lim inf
m→∞

∞∑
n=m

(µ{x ∈ [0, 1) : L[1,µn](x,Θ) < µn})kn (1 + θρµ
2
n−µn )kn

≤ lim inf
m→∞

∞∑
n=m

(1 − µ(Iµn (Θ, . . . ,Θ)))kn (1 + θρµ
2
n−µn )kn

≤ lim inf
m→∞

∞∑
n=m

e−knµ(Iµn (Θ,...,Θ))eknθρ
µ2

n−µn

≤ M lim inf
m→∞

∞∑
n=m

e−(n/16µ2
n)(1/τ(Θ))2µn

≤ M lim inf
m→∞

∞∑
n=m

e−nε/16µ2
n ≤ M lim inf

m→∞

∞∑
n=m

1
n1+ε

= 0.

Here the first inequality is obtained by Lemma 2.3 and the fourth inequality follows
from Lemmas 2.1 and 2.2 as well as the fact that limn→∞ eknθρ

µ2
n−µn

= 1, so that there
exists M ∈ (0,∞) with eknθρ

µ2
n−µn
≤ M for n large enough. The estimate in the lemma

therefore follows from the remark made at the beginning of the proof. �
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Lemma 3.2. For almost all x ∈ [0, 1), for any ε > 0,

lim sup
n→∞

Ln(x,Θ)
logτ(Θ) n

≤
1 + ε

2
.

Proof. It suffices to show that

µ
{
x ∈ [0, 1) : Ln(x,Θ) ≥

⌊1 + ε

2
logτ(Θ) n

⌋
+ 1 for infinitely many n

}
= 0.

Let µn = b 1
2 (1 + ε) logτ(Θ) nc. Note the covering of the set

{x ∈ [0, 1) : Ln(x,Θ) ≥ µn for infinitely many n}

=

∞⋂
m=1

∞⋃
n=m

{x ∈ [0, 1) : Ln(x,Θ) ≥ µn}

⊆

∞⋂
m=1

∞⋃
n=m

∞⋃
k=µn

n−k⋃
j=0

{x ∈ [0, 1) : a j+1(x) = · · · = a j+k(x) = Θ}.

Based on this covering,

µ{x ∈ [0, 1) : Ln(x,Θ) ≥ µn for infinitely many n}

≤
1

log 2
lim inf

m→∞

∞∑
n=m

∞∑
k=µn

n|Ik(Θ, . . . ,Θ)|

≤
1

log 2
lim inf

m→∞

∞∑
n=m

∞∑
k=µn

n
( 1
τ(Θ)

)2k

≤
1

log 2
lim inf

m→∞

∞∑
n=m

n · n−(1+ε) =
1

log 2
lim inf

m→∞

∞∑
n=m

1
nε
.

Choose a sequence {nk}k≥1, where nk = kτ and τε > 1. Then lim infk→∞
∑∞

n=nk
n−ε = 0.

It follows from the remark at the beginning of the proof that for almost all x ∈ [0, 1),

lim sup
k→∞

Lnk (x,Θ)
logτ(Θ) nk

≤
1 + ε

2
.

For n ≥ 1, there exists k ∈ N such that nk ≤ n < nk+1. As a consequence, we have
Lnk (x,Θ) ≤ Ln(x,Θ) ≤ Lnk+1 (x,Θ), so, for almost all x ∈ [0, 1),

lim sup
n→∞

Ln(x,Θ)
logτ(Θ) n

≤ lim sup
k→∞

Lnk+1 (x,Θ)
logτ(Θ) nk

≤ lim sup
k→∞

Lnk+1 (x,Θ)
logτ(Θ) nk+1

· lim
k→∞

logτ(Θ) nk+1

logτ(Θ) nk
≤

1 + ε

2
. �

Lemmas 3.1 and 3.2 together establish Theorem 1.1.
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4. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The proof relies on the
application of Corollary 2.6 by constructing a Cantor-like subset with Hausdorff
dimension 1. We divide the whole proof into six parts, giving a detailed proof for
the two cases with 0 < α ≤ β < +∞ and sketches of proofs for the remaining cases.

Proof of theorem 1.2. Fix d = Θ + 1.

Case 1. 0 < α = β < +∞.
Choose two sequences {mk}k≥1 and {nk}k≥1 satisfying, for each k ≥ 1,

nk = bτ(Θ)kc, mk = nk + bkαc.

Then it is clear that {mk}k≥1 increases exponentially and there exists N ≥ 1 such that
nk < mk < nk+1 for k ≥ N. For k ≥ N, let

tk = max{t : mk + t(mk − nk) < nk+1}.

Define a marked set K of positive integers by

K = K({mk}, {nk}) = {1, 2, . . . , nK − 1, and nk, nk + 1, . . . ,mk,

mk + (mk − nk), . . . ,mk + tk(mk − nk), for k ≥ N}.

Define a sequence {ai}i≥1 as follows. For 1 ≤ i < nN , set

ai = d.

For k ≥ N, set
ank = d, ank+1 = · · · = amk−1 = Θ, amk = d,

amk+(mk−nk) = amk+2(mk−nk) = · · · = amk+tk(mk−nk) = d.

Now we consider the set E(K, {ai}) of real numbers x ∈ [0, 1) whose continued
fraction expansion x = [a1(x), a2(x), . . .] satisfies ai(x) = ai for all i ∈ K, that is,

E(K, ai) = {x ∈ [0, 1) : ai(x) = ai for i ∈ K}.

We claim that E(K, {ai}) ⊂ E(α, α).
Suppose that x ∈ E(K, {ai}) and nk ≤ n < nk+1 with some k ≥ N. From the

construction of the set E(K, {ai}),

Ln(x,Θ) =


mk−1 − nk−1 − 1 = b(k − 1)αc − 1 if nk ≤ n ≤ nk + mk−1 − nk−1 − 1,
n − nk if nk + mk−1 − nk−1 ≤ n ≤ mk − 1,
mk − nk − 1 = bkαc − 1 if mk ≤ n < nk+1.

Thus,

lim inf
n→∞

Ln(x,Θ)
logτ(Θ) n

= lim inf
k→∞

min
{ Lnk+mk−1−nk−1−1(x,Θ)

logτ(Θ)(nk + mk−1 − nk−1 − 1)
,

Lnk+1−1(x,Θ)
logτ(Θ)(nk+1 − 1)

}
= lim inf

k→∞
min

{
b(k − 1)αc − 1

logτ(Θ)(nk + b(k − 1)αc − 1)
,

bkαc − 1
logτ(Θ)(nk+1 − 1)

}
= α
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and

lim sup
n→∞

Ln(x,Θ)
logτ(Θ) n

= lim sup
k→∞

max
{ Lnk (x,Θ)

logτ(Θ) nk
,

Lmk−1(x,Θ)
logτ(Θ)(mk − 1)

}
= lim sup

k→∞
max

{
b(k − 1)αc − 1

logτ(Θ) nk
,
bkαc − 1

logτ(Θ)(mk − 1)

}
= α.

Hence, x ∈ E(α, α).
It remains to prove that the density of K ⊂ N is zero. For nk ≤ n < nk+1 with some

k ≥ N,

#{i ≤ n : i ∈ K} =


nN +

k−1∑
j=N

[(m j − n j + 1) + t j] + n − nk, nk ≤ n ≤ mk,

nN +

k−1∑
j=N

[(m j − n j + 1) + t j] + mk − nk +

⌊ n − mk

mk − nk

⌋
, mk < n ≤ nk+1.

Consequently,

lim sup
n→∞

#{i ≤ n : i ∈ K}
n

≤ lim sup
k→∞

max
{ 1

nk

k−1∑
j=K

[(m j − n j + 1) + t j] +
mk − nk

mk
,

1
mk

k−1∑
j=K

[(m j − n j + 1) + t j] +
mk − nk

mk
+

1
mk − nk

}
≤ lim sup

k→∞
max

{ (mk − nk + 1) + tk−1

nk − nk−1
,

(mk − nk + 1) + tk−1

mk − mk−1

}
≤ lim sup

k→∞

(mk−1 − nk−1 + 1
nk − nk−1

+
nk − mk−1

(nk − nk−1)(mk−1 − nk−1)

)
=0.

So, dimH E(K, {ai}) = 1 by Corollary 2.6.

Case 2. 0 < α < β < +∞.
Take nk = bτ(Θ)β/α

k
c and mk = nk + bβ logτ(Θ) nkc for k ≥ 1. Clearly, {nk}k≥1 and

{mk}k≥1 increase super-exponentially, so there exists K ≥ 1 such that nk < mk < nk+1

for any k ≥ N.
Define K = K({nk}{mk}) and E(K, {ai}) as in Case 1 and consider x ∈ E(K, {ai}) and

nk ≤ n < nk+1 with some k ≥ N. From the construction of the set E(K, {ai}),

Ln(x,Θ) =


mk−1 − nk−1 − 1 = bβ logτ(Θ) nk−1c − 1 if nk ≤ n ≤ nk + mk−1 + nk−1 − 1,
n − nk if nk + mk−1 + nk−1 ≤ n ≤ mk − 1,
mk − nk − 1 = bβ logτ(Θ) nkc − 1 if mk ≤ n < nk+1.
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Thus,

lim inf
n→∞

Ln(x,Θ)
logτ(Θ) n

= lim inf
k→∞

min
{ Lnk+mk−1−nk−1−1(x,Θ)

logτ(Θ)(nk + mk−1 − nk−1 − 1)
,

Lnk+1−1(x,Θ)
logτ(Θ)(nk+1 − 1)

}
= lim inf

k→∞
min

{ bβ logτ(Θ) nk−1c − 1

logτ(Θ)(nk + bβ logτ(Θ) nkc − 1)
,
bβ logτ(Θ) nkc − 1

logτ(Θ)(nk+1 − 1)

}
= α

and

lim sup
n→∞

Ln(x,Θ)
logτ(Θ) n

= lim sup
k→∞

max
{ Lnk (x,Θ)

logτ(Θ) nk
,

Lmk−1(x,Θ)
logτ(Θ)(mk − 1)

}
= lim sup

k→∞
max

{ bβ logτ(Θ) nk−1c − 1

logτ(Θ) nk
,
bβ logτ(Θ) nkc − 1

logτ(Θ)(mk − 1)

}
= lim sup

k→∞
max

{
α,

bβ logτ(Θ) nkc − 1

logτ(Θ)(nk + bβ logτ(Θ) nkc − 1)

}
= β.

Hence, x ∈ E(α, β). It is readily seen that the density of K ⊂ N is zero from the
definitions of the sequences {nk}k≥1 and {mk}k≥1.

Similar arguments apply to the remaining cases. Here, we only give the
constructions for the proper sequences {nk}k≥1 and {mk}k≥1. It is easy to check that
the corresponding K is of density zero and E(K, {ai}) with full Hausdorff dimension is
a subset of E(α, β) in each case.

Case 3. α = β = 0. Take nk = bτ(Θ)kc,mk = nk + b
√

kc for each k ≥ 1.

Case 4. α = 0 < β <∞. Take n1 = 2, nk+1 = nk
k,mk = nk + bβ logτ(Θ) nkc for each k ≥ 1.

Case 5. α = 0, β = +∞. Take n1 = 2, nk+1 = nk
k,mk = nk + bk logτ(Θ) nkc for each k ≥ 1.

Case 6. α = β = +∞. Take nk = k2,mk = nk + b
√

nkc for each k ≥ 1. �
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