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Recurrence Formulae for the Functions which represent
Solutions of the Differential Equation:

x?

By H. T. FLINT.

(Received 20th April 1915. Read l£th May 1915.)

The contents of this paper were suggested by a discussion of
the equation :

in a paper by Glaisher which appears in the Philosophical Trans-
actions, 1881, Part in.

The solutions in series of (1) are :

. * ^ . * } ,„
and in the paper referred to it is shewn that the coefficients of
Ap+1 in the expansions of e

a<-x%+hx$ a n d of e-«<*'+**)* satisfy e q u a .
tion (1) when p is a positive integer.

These coefficients are in fact:

\(U-gV) and r-k(U+gV)

where A and g are certain constants.
In this paper it is shown that the coefficient of hp+i in the

expansion of sinh a (ar2 + hx) is &, U, where kt is a certain constant,
and that the coefficient of hp+1 in cosh a (a;2 + hx)^ is k2 V, where
k2 is a constant.

These results are not stated in Glaisher's paper, though they
seem to follow easily from § II. 10.
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They are employed in the following pages to deduce recurrence
formulae for U and V for different values of p. Equation (1) is
treated in the same way as Legendre's or Bossel's equation, and
results analogous to those for Legendre polynomials or Bessel
functions are obtained. It will then be pointed out that we easily
obtain the result that Jp+^(x) and </_,,_$ (a:) for positive integral
values of p are the coefficients of hp+1 in the expansions of

• x * cos (x! + Ax)*

and of

respectively.
A proof that

2

is added.

sin x

/ 2 \ i
and J. }(«) = ( ) cos x

I. To show that the coefficients of A"**"1 in sinh a (x2 + Ax) and

in cosh a (x* + hxy satisfy equation (1).

Since the coefficients of hp+1 in e•<*'+**>* and e-
satisfy the equation, the result evidently follows.

We shall establish it independently.

Write ^'=sinha(x2 + a;A)i C = cosh a (o2 + hx)*.

VS a2 (Ix + hf ah?

4 '(ar'+Ax)* *"

If (7 be eliminated, we obtain a differential equation satisfied
by S. With some simple reduction this is seen to be :
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Write S=U0 + hU1 + h?U2+ ... and substitute in (4)

^ r ( r - 1 ) M , . = a2a?2hT Vr.dx*
On equating the coefficients of hv+1 on each side, we find

so that Up+1 satisfies the equation (I).
Similarly, writing

cosha{x* + hx)i = Vo

it can be shown that Vp+1 satisfies equation (1).

II . The value of the coefficient of h^1 in the expansions of
S and C will now be obtained.

S = sinh a (a:2 + hxf = a (a2 + hxf + a^x^x^ + ..,

The coefficient of h"+1 in (x* + hx) ' , i.e. in x"-'-H 1 + — J

is
(2 r - 3) ... (2r - 2j» -

Hence the coefficient of hp+J in the series is :

r=» o!—i (2r - 1) (2r - 3) ... (2r - 2;> -

1.3 .5. . .(2y-

a- (*2 + Ax) a4 (a;2 + hx)2

+
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hp+1 occurs in the terms containing :

(xs + hx)"+i), (xi + hx)"+i, etc.,

and it is easily seen that its coefficient is

If *L . r{r-\)...(r-p) ^ ^
j2 | + 1

a4 a:4

2/> + 2 I p + | 22 (/> + # ) ( ? + £) 24|_2

We shall adopt the notation :
( - l ) p a I 2JD

III. Recurrence formulae :

5 = sinh a (a;2 + A a;)* = ^ ( o x) + hU^a x) + h?U2(a x)+...
+ hrUr(ax)

i h ( + h x ) i x ^ c o s h a {*+h *)*x

&-sinh a ( a ; + h x ) i x 4 ^ - ) - c o s h a

2 . 1. £/,(<* as) + 3 . 2 . hU3(ax) + ... + r (r - 1) hr~2 Ur(ax) + ...

= 4(a;2 + fec){2 . 1 . U2 (ax) + 3 . 2 . hU3 (ax) + 4 . 3 . hUt{ax) + ...}

By equating the coefficient of hp on each side we obtain

a2* Up (ax) - 2 (p + 1) (2 p + 1) 0,+1 (aas)

a;?7p+2(ax) = 0 (5)
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Again,

dS a(2x
=

U0(ax) + h^-Ul(ax) + V~

dS ax i
T7- = 7~i—r~\i c o s n a

dh (* + hy

Vl (ax) + hU2 (ax) + h? U, (ax) + ...

= (2 x + h){Ul(ax)

Equating the coefficients of hp on each side we find

^0 Lrp+1(ax)+pUp(ax) (6)

These formulae may be compared with those corresponding for
Bessel functions or Legendre polynomials. Thus (5) resembles

xJn(x) - 2 (n +1) •/•„+, (*) +xJn+2(x)=0

or (n + 2) Pn+2 (*) - (2 n + 3) x Pn+l (x) + (n + 1) />„ (aj) = 0.

f0 (ax), the term independent of h in the expansion of 6', may
be obtained by putting h = 0 in S.

Uo (ax) = sinh (ax) (7)

7i (aoc) = | — sinh a (a;2 + At
* = 0

a
= — cosh (ax) (8)

In the same way the formulae for the F-series may be shewn
to be:

a=x Vp (ax) - 2 (p + 1) (2 p + 1) Vp+1 (ax)

-i(p + l)(p + 2)xrp+i(aX) = 0 (9)

V() 2(l)xVp+,(ax)+pVp(ax) (10)Vp(ax) =

Vo (ax) = cosh (ax) (11)

7,(00!)= | sinh(aa;) (12)
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IV. Extension of the above to other values of p.

If we write

a n d
„ . , «3p+2

it can be verified that the same recurrence formulae hold when p
is not integral. This verification is quite easy and need not be
given here.

I t will be noticed that, for positive integral values of p, (13)
and (14) are not different from the expressions at the end of §11.;
(13) and (14) are, however, more general, and we proceed to
examine what restrictions have still to be imposed upon p.

In the series, U and V, the radius of the circle of convergence
is infinite, so that U is convergent for all real values of p except
when p has the values

! , ( » - 1 . 2 . 3.. . .)

and V is convergent except when p has the values

If p has a value of either of these forms, one or other of the
series has a zero factor in the denominator from a certain term,
and the solution is not of the form :

Owing to the forms of the multipliers of Ef and Fin (13) and
(14), additional restrictions have to be imposed on p.

In order to restrict ourselves to real quantities ( - I)* must
be real.

No difficulty arises if p is an integer, positive or negative.
T

Let p be a fraction - in its lowest terms,
8

. .. , . . '- (2A+1) . . (2/fc+l)
( - 1 \f = (cos TT + l Sin Jr) ' = COS rir + i sin rir,

k = 0, 1,2 ... ( s -1) .
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In order that this may be real r must be integral, i.e.
s

p must be equal to a number of the form + ——- where m is a

positive integer. Thus p must be a fraction with an odd denomi-
nator, and it may be positive or negative. This form of p gives
rise to no further difficulty in the remaining parts of the constant
multiplier.

None of the Gamma functions must be of the form T ( - n)
where n is a positive integer, for in that case they are without
meaning: ( 2 p + l ) must not be a negative integer, thus p must
not be of the form :

( n = 1 . 2 . 3 . . . . ) ,

i.e. p* - 1, -f, - 2 , etc.
(p+l) and (p + 2) must not be negative integers, and this

requires that p should not be of the form

- ( n + 1 ) («=1 , 2. 3 . ...)

or p =t= - 2, - 3, - 4, etc. This is included in the last case.
Summing up these results, £7p+1 (ax) does not exist as denned

in (13) and (14) for the values :

Moreover, in order to avoid imaginary quantities, p must be

either integral or of the form + zrr— where m and k are positive
-t K + 1

integers.
The difficulty in the case of the F-series is not so great, (2 p + 3)

must not be integral and negative, so that p must not be of the
form:

n + 3
2

We have seen that p must not be of the form
2n+l

( « = 1 . 2 . 3 . ...).

; not be of the forn

( n - 1 . 2 . 8 . . . . ) ,
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so that we can include these in one case by stating that p must
not have the values :

V. A relation between U and V.

Since U and V satisfy (1), we have

x1 x1

and

Multiply these by V and U respectively, and subtract

,rdU TTdV
V— U — = constant.

dx dx

On substituting the value of V and V we easily find that the
constant term is - (2p + 1).

From (13) and (14) we have

(16)

= IT (say).

From (15)
d

dx \UJ IP
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In order to find the proper limits we need only examine the
lowest power of x on the right, which is a?2j> under the integral
sign. Hence the lowest term on the right is

Thus F=(2j,+ l ) f f £ ^ (17)

Similarly it can be shown that

^ f2 (18)

(17) and (18) do not hold for all values of p. In (17) (2p + l)
must be positive, or p > - £.

In (18) (2p+ 1) must also be positive.
- \, instead of (17) we have

V=(2p+l)u\X ps (17')
J 00

and instead of (18)

Z 7 = ( 2 P + 1 ) F £ p 2 (18')

There are, of course, similar formulae for Up+l and Vp+l, but
these differ only by some constant factor and can be obtained by
applying (13) and (14).

We may compare these results with

dxr
Jx

and
2 sin n irL (J-»(x)\

dxVJAx))

VI. In all the above we might write o= 1, but the advantage
of keeping in a is seen in the fact that if ia be written for a we
obtain similar relations for the equation:

(19)

It follows at once that the coefficients of hv+1 in the expansions
of sin a(x* + hxf and of cos a (or8 + hxf satisfy (19).
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The series U and V become :

1 aV 1

1 a¥ 1 aV
+

and the coefficient of hp+1 in sin a (a:2 + hx)^ is

and of Ap+1 in cos a (x' + kxf is

Evidently W=-~ T(-

and X

The ^'s denoting Bessel's functions.

) (21)

Thus Jp+i (x) = ^ J ^ 1 ^ * ^ r"*-X^i<!B). (substituting a = 1).
1 ( p + )

It follows that Jp+^{x), where p is a positive integer, is the
coefficient of AI>+1 in

»r(»+8) t ,

Similarly J.p_j(a;) is the coefficient of Ap+) in
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At the end of Glaisher's paper above referred to it is stated
that the solution of the equation

da? x dx \ x2

may be written

y = Ax~i { coefficient of hp+1 in sin(x* + hx)l }
+ B x~i { coefficient of A*""1"1 in cos (ar' + h x)i } .

VII. If we write p = 0 we have from (22) that J% (x) is the
~r% i qv

coefficient of A in — , x ~ * cos (a? + hx) .

( 2 \~i ( d A "I / 2 \4
t/j(a;)=-2f — J { — cos (a;8 + Aa) <• =f—J sin a; (24)

and

(25)
(24) and (25) will be found in a table on page 42 of Gray and
Mathews' " Bessel Functions," and are there obtained by another
method.

https://doi.org/10.1017/S0013091500002418 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002418

