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Aiming at improving the poor real-time performance of existing nonlinear filtering
algorithms applied to spacecraft autonomous navigation based on Global Positioning
System (GPS) measurements and simplifying the algorithm design of navigation algorithms,
a spacecraft autonomous navigation algorithm based on polytopic linear differential
inclusion is proposed in this paper. Firstly, it is demonstrated that the nonlinear estimation
error system of spacecraft autonomous navigation can be modelled as a polytopic linear
differential inclusion system model according to the idea of global linearization. Thus,
the filtering of a nonlinear system simplified to a filtering of a polytopic linear system with
coefficients. Secondly, Tensor-Product (TP) model transformation is applied to determine
the polytopic linear differential inclusion system model. The model error introduced by
global linearization is reduced and the compromise between computational complexity and
modelling accuracy is realised. Finally, a spacecraft autonomous navigation algorithm based
on polytopic linear differential inclusion is designed by combining multi-model Kalman
filtering with data fusion. Compared with an Extended Kalman Filter (EKF), the proposed
algorithm is simpler and easier to implement since it need not update the Jacobian matrices
online. Simulation results demonstrate the same estimation accuracy of the proposed
algorithm to that of EKF.
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1. INTRODUCTION. Autonomous navigation technology enables a space-
craft to determine its position and velocity by itself, without need for ground tracking.
This technology can not only improve the reliability of a space mission, but also
reduce operational complexity while working.
The capability of spacecraft autonomous navigation relies mainly on its navigation

method and navigation algorithm. A variety of autonomous navigation methods have
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been proposed so far: photoelectric autonomous navigation (fully autonomous
navigation), including horizon-sensing (Ning and Fang, 2007), magnetometer-based
navigation (Shorshi and Bar-Itzhack, 1995), star sensor (Ning and Fang, 2008) and
inertial navigation (Xu and Fang, 2008); inter-satellite link (semi-autonomous
navigation), including Doppler measurement (Ning and Fang, 2008) and Global
Positioning System (Choi et al., 2010; Chiaradia et al., 2003; Yoon et al., 2000;
Bolandi et al., 2013) and so on. Unlike other autonomous navigation methods, GPS
has the following advantages: (1) global coverage; (2) low cost; (3) able to determine
positions with centimetre level accuracy and measure velocities with high precision by
Differential GPS (DGPS) (Chiaradia et al., 2003). Therefore, GPS is widely applied to
spacecraft autonomous navigation.
A nonlinear filtering algorithm is employed for autonomous navigation. The

filtering algorithms applied to spacecraft autonomous navigation can be divided into
three classes according to the handling methods of nonlinear problems. The first is the
approximation analytic method, which approximates the nonlinear measurement and
transition equations with the Taylor series expansion, e.g. Extended Kalman Filter
(EKF). The second is the deterministic sampling method, which approximates the
underlying density functions of state-vectors by producing a variety of sigma points
according to a rule, e.g. Unscented Kalman Filter (UKF). The last is a method based
on the Monte Carlo simulation, which approximates the posterior density functions on
the basis of the law of large numbers, e.g. Particle Filter (PF). EKF is widely used
in spacecraft autonomous navigation (Shorshi and Bar-Itzhack, 1995; Yim et al.,
2000; Zhang et al., 2009). Compared with other nonlinear filtering algorithms,
EKF has an algorithm design of low complexity and its estimation accuracy satisfies
the requirements of practical applications. However, EKF needs to linearize the
measurement and transition equations in real time, which leads to a large online
calculation quantity. It will also introduce large approximation model errors that may
lead to poor filtering performance or sometimes divergence of the filter in a highly
nonlinear and non-Gaussian system.
In order to improve the estimation accuracy and considering the lower

approximation model errors than EKF, the application of UKF in spacecraft
autonomous navigation has also received great attention (Ali and Fang, 2006; Cheng
et al., 2014; Liu et al., 2011). UKF uses the actual nonlinear model and a set of sigma
sample points produced by the unscented transformation to capture the mean and
covariance of states (Julier and Uhlmann, 2004). This has proved to have a better
performance than EKF in nonlinear system state estimation. Nevertheless, UKF has
not only a complicated algorithm design and large online calculation quantity, but
also serious influence on the preference in system state estimation, caused by the
uncertainty of the true distribution (Song and Han, 2008). The poor stability of UKF
limits its application in spacecraft autonomous navigation to some extent. Compared
with UKF, PF has not only a high-precision state estimation, but also stable
performance with an uncertain distribution. PF approximates the posterior density
function of state vector by obtaining a random sample. It achieves the optimal
estimation by adjusting the weights of samples and changing samples based on
measured data (Song et al., 2009). However, the large online calculation quantity
caused by vast samples and the complicated algorithm design also limit the
application of PF in spacecraft autonomous navigation, in spite of the above
advantages. A lot of modified nonlinear filtering algorithms based on EKF, UKF and
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PF have appeared in recent years (Ning and Fang, 2008; Li et al., 2012; Yang et al.,
2014). In order to improve the performance of UKF in case of uncertain noise statistic
characteristics, a noise statistic estimator was designed to estimate uncertain noise
characteristics online for UKF by Cheng et al. (2014). Moreover, the single algorithms
can be integrated to enhance their estimation performance. Ning and Fang (2008)
proposed the unscented particle filter by combining UKF with PF to enhance the
stability of UKF, while according to the research of Yang et al. (2014), by designing a
switch-mode information fusion filter, the iterated square root unscented filter was
combined with EKF to strengthen the reliability of autonomous navigation. However,
it will be more and more difficult for the increasingly complex algorithm to provide
real-time navigation, especially for modern spacecraft with limited computing
resources.
Aiming at improving the poor real-time performance of the nonlinear filtering

algorithms applied to spacecraft autonomous navigation, an effective spacecraft
autonomous navigation algorithm based on Polytopic Linear Differential Inclusion
(PLDI) is proposed in this paper. Firstly it is demonstrated that the estimation error
system of spacecraft autonomous navigation can be modelled as a Polytopic Linear
Differential Inclusion Systems (PLDIs) model and the problem of the nonlinear
filtering is converted to the problem of multiple linear time-invariant systems in the
form of convex combination on linear filtering. Then the PLDIs model of spacecraft
autonomous navigation is determined by TP model transformation. And on this
basis the spacecraft autonomous navigation algorithm based on PLDI is proposed
by combining multi-model Kalman filtering with data fusion. This algorithm has
better performance in state estimation and lower complexity of algorithm design
than EKF.
This paper is structured as follows: after this introduction, the orbit dynamic

model and GPS measurement model are introduced in Section 2. In Section 3, it is
demonstrated that the estimation error system of spacecraft autonomous navigation
can be modelled as a PLDIs model. Meanwhile, the methods for determining the
PLDIs model and the spacecraft autonomous navigation algorithm based on PLDI

Figure 1. Diagram of satellite navigation.
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are given. The navigation algorithm is verified by using simulation in Section 4 and the
simulation results of the algorithm will be compared with that of EKF. Conclusions
are drawn in Section 5.

2. SPACECRAFT AUTONOMOUS GPS NAVIGATION MODEL
2.1. Orbit dynamic model. WGS84 is selected as the reference coordinate

system, and we suppose that the high order terms of disturbance caused by the
Earth, Sun, Moon or atmosphere are ignored. The equations of this model are given
below (Ning and Fang, 2007):

dx
dt

=vx + wx

dy
dt

=vy + wy

dz
dt

=vz + wz

dvx
dt

=− μ
x
r3

1− J2
Re

r

� �
7.5

z2

r2
− 1.5

� �� �
+ ax + wvx

dvy
dt

=− μ
y
r3

1− J2
Re

r

� �
7.5

z2

r2
− 1.5

� �� �
+ ay + wvy

dvz
dt

=− μ
z
r3

1− J2
Re

r

� �
7.5

z2

r2
− 4.5

� �� �
+ az + wvz

dax
dt

=− αxax + wax

day
dt

=− αyay + way

daz
dt

=− αzaz + waz

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)

where r represents
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2
� �q

, x, vx, y, vy, z, vz are satellite positions and
velocities on the three axes respectively; ax, ay, az are part of the perturbing
accelerations on the three axes respectively which can be approximated by the Singer
model; αx, αy, αz are reciprocals of the correlation time constants on the three axes
respectively; Re is the earth radius; μ is the gravitational constant of the earth; J2 is the
second zonal coefficient.

2.2. Measurement model of GPS. The theory of satellite navigation is illustrated
by Figure 1.
The pseudo-range between spacecraft receiver and navigation satellite is regarded

as the observation of the measurement equations. To determine unknown position
vectors of the target spacecraft in space, the position information of three navigation
satellites needs to be obtained. Considering that the clock bias can produce a big
observation error that can neither be ignored nor be predicted, the clock bias is
regarded as an unknown quantity that needs to be determined. As a result, the
information of a fourth navigation satellite is needed. Now, the position information
of four navigation satellites need to be obtained to determine the position vectors
of the target spacecraft and clock bias of receiver using the least squares method.
The number of observable satellites is assumed to be four, and the measurement
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equations are given as follows:

ρ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x
� �2+ y1 − y

� �2+ z1 − z
� �2q

+ cδtu + ε1

ρ2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x
� �2+ y2 − y

� �2+ z2 − z
� �2q

+ cδtu + ε2

ρ3 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 − x
� �2+ y3 − y

� �2+ z3 − z
� �2q

+ cδtu + ε3

ρ4 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − x
� �2+ y4 − y

� �2+ z4 − z
� �2q

+ cδtu + ε4

8>>>>>>><
>>>>>>>:

(2)

where [xi, yi, zi]T (i = 1, 2, 3, 4), [x, y, z]T denote the position of observable satellites
and position of spacecraft receiver in the WGS84 coordinate system respectively;
c denotes the velocity of light; δtu denotes the GPS clock bias; ρi (i = 1, 2, 3, 4) denotes
the pseudo-range between spacecraft receiver and observable satellites; εi is the
measurement noise and assumed to be zero-mean white noise.
Define δfu as the clock bias drift of receiver, and δtu is caused by the clock bias drift

with the following equation:

δ̇tu = δfu (3)
In practice, δfu is usually regarded as coloured noise, and can be modelled as a
Markov model:

δ̇fu = −λξδfu + s (4)
where λξ denotes the reciprocal of the correlation time constants for the model,
s denotes the zero-mean Gaussian noise.

2.3. Autonomous navigation system model based on GPS measurement. X = [x,
vx, ax, y, vy, ay, z, vz, az, δtu, δfu]

T is regarded as the state variable of an autonomous
navigation system, where δtu and δfu denote the clock bias and clock bias drift of GPS
receiver respectively. According to Equations (1) to (4), the autonomous navigation
model based on GPS measurement can be given by:

X̂ = f (X) + w

Z = h(X) + ε
(5)

where X [ Rn and Z [ Rm denote the state variable and observation which is
comprised of the pseudo-range between target spacecraft and GPS navigation
satellites; f (·) and h(·) denote the general equation of Equation (1) and Equation (2)
respectively; w = (wx, wvx, wax, wy, wvy, way, wz, wvz, waz, 0, wt)

T, ε = (ε1, ε2, ε3, ε4)
T

denotes the system noise and measurement noise respectively.

3. SPACECRAFT AUTONOMOUS NAVIGATION ALGORITHM
BASED ON PLDI. EKF needs to linearize the nonlinear system model in real
time and update the Jacobian matrices online. However, updating the Jacobian matrices
may lead to not only poor real-time performance, but also higher complexity of the
algorithm design in case the dynamic andmeasurement models have high nonlinearities.
In order to simplify the algorithm design, a spacecraft autonomous navigation
algorithm based on PLDI (PLDI Kalman Filter (PKF)) is proposed in this Section.

3.1. PLDIs model of autonomous navigation estimation error system. X̂ is
assumed to be the optimal system state estimation. The system state and observed
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estimation satisfy:

˙̂X = f X̂
� �

Ẑ = h X̂
� � (6)

where Ẑ denotes the observed estimation of measurement model.
The state estimation error and observed residual can be defined as:

ΔX =X − X̂

ΔZ =Z − Ẑ

Therefore, the estimation error model of autonomous navigation system can be
given by:

ΔẊ = f X( ) − f X̂
� �+ w

ΔZ = h X( ) − h X̂
� �+ ε

(7)

Theorem 1: Ωx is a subset of n-dimensional space, Ωx # Rn, and the vector function
f is defined as: Ωx � Rm. If Ωx and f satisfy the following conditions:

(1) f is continuously differentiable;
(2) The arbitrary point X and vector H at the subset Ωx satisfy: X + αH [ Ωx;
(3) Partial derivatives of f vary in a bounded domain belonging to Rm×n;

Then,

f X +H( ) − f X( ) [ Co Ωf
� �

H (8)
where 0 4 α 4 1, H [ Rn, Co(Ωf) is the convex hull generated by Ωf.

Proof : The vector function f : Ωx � Rm is continuously differentiable. The
arbitrary point X and X + H [ Ωx satisfy X + αH [ Ωx, thus according
to differential mean value theorem of vector function (de Boor, 2005) we have:

f (X +H) − f (X) = [
ð1
0
∇f (X + αH)dα]H (9)

where ∇f is the partial derivative of f, namely, the Jacobian matrix of f. Therefore,

fi(X +H) − fi(X) =
ð1
0

Xn
j=1

∂fi
∂xj

(X + αH)hj
� �

dα (10)

where i = 1, 2···m. Because partial derivatives of f vary in a bounded
domain belonging to Rm×n , the value of each element in ∇f is bounded, and can be
expressed as:

∇fij = ∂fi
∂xj

∇f max
ij =max ∇fij X + αH( )� �

∇f min
ij =min ∇fij X + αH( )� � (11)
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∇fij can also be expressed as:

∇fij(X + αH) = λ1∇f max
ij + λ2∇f min

ij (12)
where,

λ1 =
∇fij(X + αH) − ∇f min

ij

∇f max
ij − ∇f min

ij

λ2 =
∇f max

ij − ∇fij(X + αH)
∇f max

ij − ∇f min
ij

(13)

When∇fijmax = ∇f ijmin, one of λ1 and λ2 can be assumed to be 1 and the other is assumed
to be 0. As a result, the above equation holds. According to the above equation, ranges
of λ1 and λ2 are 04 λ1 4 1, 04 λ2 4 1. Therefore, according to Equation (12):

∇fij(X + αH) [ Co(∇f max
ij ,∇f min

ij ) (14)
The following equation can be given by substituting the above equation into Equation
(10):

fi X +H( ) − fi X( ) [
ð1
0

Xn
j=1

Co(∇f max
ij ,∇f min

ij )hj
h i

dα (15)

Let Ωi be Ωi = {a|aj [{∇fijmax, ∇fijmin}, j = 1, 2···n}, namely, each point at set Ωi is
a [ Rn, aj is the n-th element of a and its value is ∇fijmax or ∇fijmin. Thus, the above
equation can also be expressed as:

fi X +H( ) − fi X( ) [
ð1
0
Co Ωi( )Hdα (16)

Considering that the integral term is irrelevant to α, the above equation is
equivalent to:

fi X +H( ) − fi X( ) [ Co Ωi( )H (17)
The above equation shows that each row in the Jacobian matrix of f can be

expressed in the form of differential inclusion,
∂fi
∂X

= Co(Ωi) . The left side of

Equation (9) can also be expressed as:

f X +H( ) − f X( ) =
Xm
i

fi X +H( ) − fi X( )� �
I im×1

[
Xm
i

Co(Ωi)H[ ]I im×1

(18)

Where I im×1 denotes the i-th unit of space Rm×1 whose elements are all 1. According
to Equation (17), the above equation is equivalent to:

f X +H( ) − f X( ) [ Co Ωf
� �

H (19)
where Ωf = {a|aij [ {∇fijmax, ∇fijmin}, i= 1, 2···m; j = 1, 2···n} means that each point
in Ωf is a [ Rm×n, and the value of element in a, aij, is ∇fijmax or ∇fijmin.

QED.

517SPACE NAVIGATION USING POLYTOPIC DIFFERENTIAL INCLUSIONNO. 3

https://doi.org/10.1017/S0373463314000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000770


According to Theorem 1, the estimation error system represented by Equation (7)
can be expressed as:

ΔẊ [ Co(Ωf )ΔX + w

ΔZ [ Co(Ωh)ΔX + ε
(20)

Theorem 2: Considering the nonlinear system represented by Equation (5), if f (·),
h(·) are both continuously differentiable and the value set of the Jacobian matrices is
a bounded set, the estimation error system can be modelled as follows:

ΔẊ = AΔX + w

ΔZ = CΔX + ε
(21)

where matrix A and matrix C are defined as:

(A,C) =
Xl
i=1

λi(Ai,C i)

where λi are weights of convex combination, and
Pl
i=1

λi = 1, 0 4 λi 4 1, Ai and Ci are

system vertex matrices of the PLDIs model; l is number of the system vertex matrices.

Proof : The estimation error system represented by Equation (7) can be expressed as:

ΔẊ
ΔZ

� �
= f X̂ + ΔX

� �
h X̂ + ΔX
� �

 !
− f X̂

� �
h X̂
� �

 !
+ w

ε

� �
(22)

For a nonlinear filtering algorithm with good estimation performance, the difference
between state estimation and real state of system, ΔX, tends to be zero or very small.
As a result, we can find a proper subset Ωx , Rn which includes X̂ and X̂ + αΔX,
where 04 α4 1. Considering that nonlinear functions f (·), h(·) are both continuously
differentiable and partial derivatives of them vary in a bounded domain, the above
estimation error system can be expressed as:

ΔX̂
ΔZ

� �
[ Co Ωfh( )ΔX + w

ε

� �
(23)

Where Ωth , R(m+n)×n is the value set of partial derivative of nonlinear function
g (X) = ( f (X)T h (X)T)T with respect to the system state variable. The above equation
represents a Linear Differential Inclusion system (LDIs). In general, Co(Ωfh) can
be approximated by an endo-tangent polytope with any accuracy (Xie et al., 2005;
Li, 2002). Therefore, there will always be a polytope Ω satisfying:

Co Ωfh( ) ≈ Ω = A
C

� �				 A
C

� �
=
Xl
i=1

λi
Ai

C i

� �
, 0 4 λi 4 1

( )
(24)

Thus, Equation (23) can be expressed in the form of Equation (21).
QED.

According to Theorem 1, Theorem 2 and the autonomous navigation estimation
error system indicated by Equation (7), an estimation error system can be modelled as
the PLDIs model. According to the TP model transformation (Baranyi, 2004), the
PLDIs model can be determined by the following steps:
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Step 1: Determine the bound domain Ωp. Considering that parameters included
by the Jacobian matrices are positions on three axes, x, y, z, Ωp can be expressed
as Ωp = [c1, d1] × [c2, d2] × [c3, d3].
Step 2: Divide Ωp into In grids uniformly distributed on each dimensionality:

pn [ {pn,1, pn,2, · · · pn,In} where cn 4 pn,1 4 pn,2 · · · 4 pn,In 4 dn, n = 1, 2, 3;
Step 3: Sample the functions S(pn,in) over the hyper rectangular grid and store the

sample matrices in the tensor S;
Step 4: Execute the Higher Order Singular Value Decomposition (HOSVD) on each

dimensionality of tensor S, and discard not only zero n-mode singular values but
also part of the non-zero n-mode singular values. Normalised n-mode matrices Un,

and tensor S are approximated by: Ŝ = Ḡ
′ ⊗3
n=1

Ū
′

n

Step 5: Extract the vertex matrices Cj for the PLDIs model from Ḡ
′
.

The vertex systems of autonomous navigation system which is modelled as a PLDIs
model are determined by TP model transformation. It means that the Jacobian matrix
is expressed in the form of convex combination, which is composed by a variety of
constant matrices. S(p) is defined as a matrix composed by Jacobian matrices:

S(p) = ∂h
∂X

� �
, p=X

According to TP model transformation, S(p) can be approximately expressed in the
form of convex combination, composed by a variety of constant matrices.

S p
� � ≈Xl

i=1

λi p
� �

S i =
Xl
i=1

λi p
� �

C i (25)

where λi (p) are weights of convex combination, and
Pl
i=1

λi p
� � = 1, 0 4 λi(p) 4 1,

Ci is the constant matrices.
Therefore, the autonomous navigation estimation error system can be described

by a PLDIs model as follows:

ΔẊ = ΦΔX + Bυ

ΔZ = CΔX +Dυ
(26)

where

B = I 11×11 011×4[ ],D = 04×11 I4×4[ ], υ = w

ε

� �

C [ C |C =
Xl
j=1

λjC j, 0 4 λj 4 1,
Xl
j=1

λj = 1

( )

where Cj denotes the j-th vertex system matrices, and Cj is constant matrix; l is number
of the vertex system matrices.

3.2. Spacecraft autonomous navigation algorithm. The PLDIs model of space-
craft autonomous navigation system is determined by TP model transformation as
above, and the PKF algorithm will be given by following steps based on the above
results.
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Forecast states:

X̂k/k−1 = Φk/k−1X̂k−1 (27)

Forecast estimation error covariance matrix:

P̂k/k−1 = Φk/k−1P̂k−1 Φk/k−1
� �T+Qk (28)

Calculate the observed residual:

ΔZk = Zk − Ẑk = Zk − h X̂k/k−1
� � (29)

Calculate gain: Calculate different filtering gains according to different Cj.

K j,k = P̂k/k−1CT
j C jP̂k/k−1CT

j + Rk


 �−1
(30)

Update estimation error covariance matrix: Different estimation error covariance
matrices are obtained by different gains Kj,k and Cj, and the global estimation error
covariance matrix is obtained according to data fusion.

P̂ j,k = In − K j,kC j
� �

P̂k/k−1 In − K j,kC j
� �T+K j,kRkKT

j,k (31)

P̂
−1
k =

Xl
j=1

sj P̂j,k
� �−1

.Xl
j=1

sj (32)

Calculate correcting value of state estimation: Different correcting values are
obtained for different gains Kj,k, and the global correcting value can be given
according to data fusion.

ΔX̂ j,k = K j,kΔZk (33)

ΔX̂k =
Xl
j=1

sjΔX̂ j,k
� �.Xl

j=1

sj (34)

Update state estimation:

X̂k = X̂k/k−1 + ΔX̂k (35)
where j = 1. . .l, sj denotes the j-th n-mode singular matrix of the n-mode matrix.
The PKF navigation algorithm proposed in this section takes the place of EKF.
The difference between the nonlinear filtering algorithm used by PKF navigation
algorithm and that used by EKF navigation algorithm is that the Jacobian matrix
is represented by convex combination composed by a variety of constant matrices.
Compared with EKF, the algorithm proposed needs not to update the Jacobian
matrix online and the algorithm design is simpler.

4. SIMULATION RESULTS. In order to verify the good performance of the
PKF navigation algorithm, a numerical experiment is conducted and a comparative
analysis of results based on EKF and PKF navigation algorithm will be given. The
parameters for simulation are set as: μ = 398600·44×109 m3/s2, J2 = 1·08263×10−3,
orbital radius of the target spacecraft a= 7154440m, eccentricity ratio e = 0·0010311,
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orbit inclination i = 98·5°, RAAN Ω = 202·669°, argument of perigee ω = 90°; time
of simulation is 8000 s, and simulation step size is 1 s. The results of numerical
experiment are given as follows.
The Monte Carlo simulation experiment was conducted to verify the good

performance of the PKF navigation algorithm. The performance of position
estimation and velocity estimation based on PKF is shown in Figures 2 to 5. The
position estimation error means on the three axes are given in Figure 2 and the mean
square error of absolute position estimation error is given in Figure 4. The velocity
estimation error means on the three axes are given in Figure 3 and the mean square
error of absolute velocity estimation error is given in Figure 5. The red lines in Figures
2 and 3 indicate the 3δ error of the corresponding estimation error, and blue lines in
Figures 2 and 3 indicate the estimation error mean based on PKF.

Figure 2. Position estimation error means and 3δ error based on PKF.

Figure 3. Velocity estimation error means and 3δ error based on PKF.
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Figures 2 and 3 show that the position estimation error mean and velocity
estimation error mean based on PKF vary within 3δ error of corresponding estimation
error, which means that the filter is stable. It can be seen in Figure 2 that the position
estimation error means on the three axes based on PKF are less than 5m. Figure 4
shows that the absolute position estimation error based on PKF converges near zero
over time and gradually becomes stable. During the stable stage, the absolute position
estimation error based on PKF is less than 2 m. Figure 3 shows that the velocity
estimation error means on the three axes based on PKF are all less than 0·5 m/s, and
the absolute velocity estimation error based on PKF is less than 0·2 m/s. These figures
show that the PKF navigation algorithm has not only good performance of position
estimation and velocity estimation, but also good stability.
The performance of position estimation and velocity estimation based on EKF

and PKF, achieved by Monte Carlo simulation experiment, is given in Figures 6 to 9.

Figure 4. Mean square error of absolute position estimation error based on PKF.

Figure 5. Mean square error of absolute velocity estimation error based on PKF.
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Figure 6. Mean square errors of position estimation error.

Figure 7. Mean square errors of velocity estimation error.

Figure 8. Mean square error of absolute position estimation error.
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The mean square errors of position estimation error on the three axes based on the
two algorithms are shown in Figure 6. The mean square errors of velocity estimation
error on the three axes based on the two algorithms are shown in Figure 7. The mean
square errors of absolute position estimation error based on the two algorithms are
shown in Figure 8. The mean square errors of absolute velocity estimation error
based on the two algorithms are shown in Figure 9. Considering that the mean
square errors of position estimation error based on PKF gradually become stable
after 2000 s, simulation data after 4000 s are selected for statistical analysis.
The maximal mean square errors of position estimation errors on the three axes
are shown in Table 1. The maximal mean square errors of velocity estimation error
on the three axes are shown in Table 2. The maximal mean square errors of absolute
position estimation error and absolute velocity estimation error are shown in
Table 3.
Figure 6 shows that the estimation errors based on PKF converge more slowly than

those based on EKF. However, the estimation accuracies of position on the three axes
based on the two algorithms are almost identical in the stable stage. Figure 7 shows
that the trends of velocity estimation errors on the three axes based on PKF are similar
to that based on EKF. Figure 8 shows that the estimation accuracies of absolute
position based on the two algorithms are alike in stable stage, and both of them are
less than 2 m. Figure 9 shows that the trends of absolute velocity estimation errors
based on PKF and EKF are alike. Table 1 shows that the mean square errors of
position estimation errors on the three axes based on PKF are all less than 3m. The
mean square errors of position estimation errors on the three axes based on PKF are
larger than that based on EKF, but the differences between them are smaller than
0·5 m. Table 2 shows that the differences between mean square errors of velocity
estimation errors on the three axes based on the two algorithms are all less than 0·1 m/
s. Table 3 shows that the maximal mean square errors of absolute position based on
PKF and EKF are 1·685 m and 1·439 m respectively, and the difference between them
is less than 0·3 m. Besides, the maximal mean square errors of absolute velocity based
on PKF and EKF in Table 3 are 0·336 m/s and 0·278 m/s respectively, and the
difference between them is less than 0·1 m/s. These indicate that the estimation

Figure 9. Mean square error of absolute velocity estimation error.
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accuracies of position and velocity based on the two algorithms are alike, and the
estimation accuracy based on PKF is slightly lower than that based on EKF. The
reason for the results is that in order to decrease the calculation quantity of the PKF
navigation algorithm, a number of the non-zero n-mode singular values are discarded
for a decreasing number of vertices in the PLDIs model, and the compromise between
computational complexity and modelling accuracy is realised. As a result, the PLDIs
model is an approximate model of original nonlinear estimation error system, rather
than a fully accurate model.
In conclusion, the estimation accuracy of position and velocity based on PKF

navigation algorithm is equivalent to that based on EKF.

5. CONCLUSION. With the aim of improving the poor real-time performance
of nonlinear filtering algorithms applied to spacecraft autonomous navigation, a PKF
navigation algorithm is proposed in this paper. This method is based on the fact that
the spacecraft autonomous navigation estimation error system can be modelled as a
Polytopic Linear Differential Inclusion (PLDI) model, and the position and velocity
of spacecraft can be estimated by combining multi-model Kalman filtering with data
fusion. Compared with EKF, PKF navigation algorithm does not need to update the
Jacobian matrix online and the algorithm design is simpler. The simulation results
show that the PKF navigation algorithm has a good navigation performance

Table 2. Maximal mean square errors of velocity estimation error.

Method x/(m/s) y/(m/s) z/(m/s)

EKF 0·404 0·329 0·462
PKF 0·466 0·333 0·563

Table 3. Maximal mean square error of absolute position, absolute velocity estimation error.

Maximal value

Method

Mean square error
of absolute position

estimation
error/(m/s)

Mean square error
of absolute

velocity estimation
error/(m)

EKF 0·278 1·439
FKF 0·336 1·685

Table 1. Maximal mean square errors of position estimation error.

Method x/(m) y/(m) z/(m)

EKF 1·881 1·593 2·290
PKF 2·026 1·554 2·840
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and state estimation accuracy is similar to EKF. The PKF navigation algorithm
simplifies the design of autonomous navigation algorithm, and has a simple online
calculation. It is also relatively easy to implement. As a result, the PKF navigation
algorithm has a better performance than EKFwhen applied in spacecraft autonomous
navigation.
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