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Abstract
We use recent advances in polynomial diffusion processes to develop a continuous-time joint mortality model for the
actuarial valuation and risk analysis of life insurance liabilities. The model considers the stochastic nature of future
mortality improvements and introduces a common subordinator for the marginal survival processes, resulting in a
nontrivial dependence structure between the survival of pairs of individuals. Polynomial diffusion processes can
be used to derive closed-form formulae for standard actuarial quantities. The model fits well with a classic dataset
provided by a Canadian insurer and can be used to evaluate products issued to multiple lives, as shown through
numerical applications.

1. Introduction and literature review
Mortality modeling holds a prominent place in the realm of actuarial science research. The dynamic
nature of mortality patterns is of great importance to life insurance companies, as their financial lia-
bilities are closely tied to fluctuations in the number of deaths. Although individual mortality has been
extensively studied in literature, the interrelationship between lives remains a complex challenge.

Currently, the prevailing approach among issuers in the life contingency market is to assume indepen-
dence of mortality rates when pricing and offering different life contingency products, such as joint life
and last survivor annuities, as illustrated in Ventura-Marco et al. (2023). However, this approach over-
looks the potential link between joint lives, despite the evidence of interdependence in the life courses
of married couples. Indeed, several empirical studies emphasize that the survival times of paired indi-
viduals are not independent events: see Jagger and Sutton (1991), who show that individual mortality
risk increases after marital bereavement; Hougaard et al. (1992), who analyze the similarities between
the life spans of adult Danish twins; and other related papers that reach similar conclusions (e.g., Frees
et al., 1996; Johnson et al., 2000; Manor and Eisenbach, 2003; Seifter et al., 2014).

The future lifetimes of a cohort, such as married couples, can manifest interdependencies stemming
from shared lifestyles or exposure to mutual risk factors. This interdependence of life trajectories not only
plays a pivotal role in assessing insurance products involving multiple individuals but also contributes
to a deeper comprehension of elderly longevity.

From a modeling point of view, the challenge is to keep the framework simple enough to allow easy
calculation of the relevant actuarial quantities, while combining the dependency of death times between
pairs of individuals with the dynamic behavior of mortality. This paper tries to cope with this call. By
exploiting the powerful tool of polynomial diffusion processes, we aim to offer a modeling framework
that is both mathematically tractable and flexible enough to incorporate the most salient features of joint
mortality.
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The literature on joint mortality modeling identifies three types of dependence between the survival
of a couple (see Ji et al., 2011): the long-term dependence due to common lifestyles, the short-term effect
of the death of one member in the couple, also known as the broken-heart effect, and the instantaneous
dependence due to a catastrophic event affecting the lives of both members in the couple.

Addressing long-term dependence typically involves employing copulas as demonstrated by Frees
et al. (1996), Carriere (2000), Spreeuw (2006), and Luciano et al. (2008). The copula-based approach
garners attention due to its distinct advantage: it permits the isolation of correlation structures among
remaining lifetime variables, independent of their individual marginal distributions, a notion emphasized
by Youn and Shemyakin (1999) and Kaishev et al. (2007).

The well-documented “broken-heart syndrome”, where the passing of one spouse triggers a sudden
increase in the mortality rate of the surviving partner, is widely recognized as the source of short-
term dependence of survival within a couple. The Markovian approach is typically used to capture this
effect, as it provides a clear depiction of state transitions in a couple’s lifetime, elucidating the inter-
dependence between spouses’ remaining lifetimes and allowing for asymmetrical death effects. This
phenomenon was empirically explored by Lu (2017) through joint annuity data, revealing persistent and
asymmetric effects on spouses resulting from the loss of their partner. Despite recent advances acknowl-
edging these stylized facts, the prevalent approach often maintains a static perspective, overlooking the
dynamic nature of spousal dependencies and the broken-heart syndrome. However, the literature offers
also exceptions. Blanchet-Scalliet et al. (2019) present a dynamic context governed by a Farlie–Gumbel–
Morgenstern copula, although the assumption of symmetric reactions between the involved individuals
prevails. Jevtić and Hurd (2017) present a probabilistic framework for joint stochastic mortality that
explicitly accommodates for the broken heart effect. In their setup, the passing of one insured changes
the force of mortality associated with the member alive. Henshaw et al. (2020) extend Jevtić and Hurd
(2017) to account for not only bereavement but also socioeconomic conditions. A couple of works try
to capture both long-term and short-term dependence. Gourieroux and Lu (2015) build a model with
latent risk factors to capture the long-term dependence, while allowing for asymmetrical death effects
using a Freund model. Lu (2017) unties the dependence broken heart effect from spurious dependence
using a Markovian modeling coupled with copulas.

A different stream of the literature considers the possibility of simultaneous death by introducing
catastrophic events. Gobbi et al. (2019) and Gobbi et al. (2021) incorporate a dependence structure based
on a copula function and a random fatal shock, which leads to the simultaneous death of both annuitants.
This latter form of dependence is referred to as Marshall–Olkin. The model treats mortality as a fixed
phenomenon, therefore not incorporating potential future and random enhancements in mortality rates.
Chaieb et al. (2023) provide a framework that can incorporate the Marshall–Olkin-like dependence
structure and also accommodate the stochastic nature of mortality in a straightforward manner. Zhang
and Brockett (2020) borrow from quantitative finance to represent simultaneous deaths by means of a
common subordinator.

The framework we propose follows the idea described in Zhang and Brockett (2020) and uses a com-
mon subordinator for the marginal survivor processes, thus belonging to that stream of the literature
which studies simultaneous deaths due to disaster. Unlike Zhang and Brockett (2020), we model the
underlying processes using linear hypercubes, a new class of Itô processes whose properties are dis-
cussed in Ackerer and Filipović (2020). As they belong to the class of polynomial processes, which
extend the well known and successful affine models, linear hypercubes display richer dynamics while
maintaining analytical tractability. This feature enables us to derive closed-form solutions (up to the
computation of a matrix exponential) for standard actuarial measures. This feature is not displayed in
the framework proposed by Zhang and Brockett (2020).

In contrast to statistical copula models and nonparametric models, our approach offers a more intu-
itive means of comprehending the mutual influence exerted by joint lives. As highlighted in Frees
et al. (1996), copula models concentrate on quantifying and assessing dependency effects but do not
strive to clarify the underlying mechanism governing joint mortality. Furthermore, unlike copula mod-
els where the association level between partners is determined by a deterministic function of time
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(as in Oakes 2005 and Spreeuw 2006), the model allows for stochastically time-dependent associa-
tions between partners. An additional distinctiveness of the proposed mathematical framework is that
it enables to further consider a stochastic evolution of interest rates and a possible dependence between
mortality and financial risks (e.g., see Filipović and Larsson 2016) without affecting its mathematical
tractability. We show how the illustrated model provides a good fit to real data from a Canadian insurer,
as in Frees et al. (1996), and perform extensive numerical experiments.

The remainder of the paper is as follows. Section 2 reviews the useful facts about polynomial diffusion
processes that are relevant for our purposes. Section 3 builds the joint mortality model. Section 4 shows
how to specify and calibrate the model, also providing an application to a well-known dataset. Section 5
discusses the actuarial evaluation of standard insurance products. Section 6 provides a numerical
application. Section 7 concludes.

2. Polynomial diffusions and the linear hypercube model
Polynomial diffusion processes constitute a new class of diffusion processes which extend the well-
known class of affine processes originally developed in Duffie et al. (2003). In this section, we
summarize the most useful results of polynomial diffusion processes, which constitute the foundation
for our paper. We refer to Filipović and Larsson (2016) for a comprehensive treatment of polynomial
diffusions on compact state space and to Filipović and Larsson (2020) for their extension to polynomial
jump diffusions. The linear hypercube model is introduced in Ackerer and Filipović (2020).

Consider a state space E ⊆Rm. A polynomial diffusion on E is a m-dimensional stochastic process
U = (Ut)t≥0 of the form

dUt = a(Ut) dt +�(Ut) dWt, (2.1)

where W = (Wt)t≥0 is a m-dimensional Brownian motion defined on some filtered probability space
(�, F, P) satisfying the usual regularity assumptions. The map a(·) : Rm →Rm is made of components
that are polynomial of degree 1 on Rm. The symmetric map A(·) =�(·)�(·)� : Rm →Rm consists of
elements which are polynomials of degree 2 on Rm. In Cuchiero et al. (2012), the authors show that,
under very mild conditions, every affine process is also a polynomial diffusion. Filipović and Larsson
(2016) develop the necessary mathematical theory that guarantees such process to be well defined, giving
conditions on a(·) and �(·) that ensure the existence and uniqueness of E-valued solutions of (2.1), as
well as boundary attainment.

Polynomial diffusion processes feature a great deal of analytical tractability since any polynomial
conditional expectation can be computed in closed form up to a matrix exponential, as it is summarized
below. Let A(·) denote the infinitesimal generator of U:

A (f (u))= a(u)�∇f (u) + 1

2
Tr

(
�(u)�(u)�∇2f (u)

)
,

where, as usual, ∇f and ∇2f denote the gradient and the hessian, respectively, of f . Suppose we want
to compute E

[
p (Ut) |Fs

]
for a polynomial on E of degree d. Consider the vector space Pold(E) defined

as the set of all polynomials on E of degree at most d. The dimension of this vector space is d̄ = (
m+d

d

)
.

Take a basis of monomials H(u) = (h1(u), . . . , hd̄(u))� of Pold(E). In this way, any p(u) ∈ Pold(E) admits
a representation p(u) = H(u)�p where p is the coordinate vector of p(u). In addition, since the partial
differential operator A(·) maps the space Pold(E) into itself, there exists a unique matrix representation
A of A (p(u)) in terms of the basis H(u), so that we have

A (p(u))= H(u)�Ap.

Thus, we have the explicit formula

E
[
p (Ut) |Fs

] = H(Us)
�eA(t−s)p. (2.2)
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In this paper, we will extensively make use of linear hypercubes, introduced in Ackerer and Filipović
(2020). In this case, the state space E is defined by

E = {(v, r) ∈Rn+1 : v ∈ (0, 1] and r ∈ [0, v]n}
and an n-dimensional Brownian motion W = (Wt)t≥0 defined on some probability space. Throughout
the paper, we will denote with LHC(n, α, β, γ , σ )1 the n + 1-dimensional process (V , R)= (Vt, Rt)t≥0,
defined by

dVt = −α�Rtdt V0 = 1

dRt = (βVt + γRt) dt +�(Vt, Rt) dWt R0 = r
(2.3)

for r ∈ [0, 1]n, α ∈Rn
+, β ∈Rn, γ ∈Rn×n and volatility matrix defined by

�(v, r) = diag
(
σ1

√
r1(v − r1), . . . , σn

√
rn(v − rn)

)
.

Under some restrictions on parameters α, β, γ , Filipović and Larsson (2016) show that the trajectories
of (V , R) are restricted to E. The V component of the process makes the linear hypercube models a
natural choice to model survival processes. Belonging to the class of polynomial jump diffusions, linear
hypercube models inherit their analytical tractability, so that any polynomial conditional expectation
can be computed using the procedure described above.

2.1. Subordination of a LHC
The subordinated (or time-changed) linear hypercube model, as all polynomial jump-diffusion models,
maintains all the properties of the standard linear hypercube model. Let Z = (Zt)t≥0 denote a one-
dimensional Lévy subordinator, that is an increasing Lévy process, which has characteristic triplet
(0, b, ν) with nonnegative drift b and Lévy measure satisfying ν ((−∞, 0])= 0 and

∫ ∞
0

(x ∧ 1)ν(dx)<
∞. Following Filipović and Larsson (2020), we use Z to time change the linear hypercube model (2.3),
thus obtaining a new process (V, R)= (

VZt , RZt

)
t≥0

. Since (2.3) is a Markov process satisfying the Feller
condition and E is compact, Theorem 6 in Filipović and Larsson (2020) guarantees that the subordinated
process (V, R) is a polynomial (linear, indeed) jump diffusion on E. In addition, for any polynomial
p(v, r) ∈ Pold(E) with representation p(v, r) = H(v, r)�p, we have

E
[
p (Vt, Rt) |Fu

] = H(Vu, Ru)
�eAZ (t−u)p,

where the matrix representation of the generator of (V, R) satisfies

AZ = bA +
∫ ∞

0

(
eφA − id̄

)
ν(dφ). (2.4)

In (2.4), id̄ is the identity matrix with dimension d̄, while A is the matrix representation of A(·), the
generator of the non-subordinated linear hypercube (V , R). Proposition 5.5 of Ackerer and Filipović
(2020) shows that (2.4) simplifies to

AZ = −U
(−D)U−1, (2.5)
where 
(·) is the Laplace exponent of Z and U, D are such that A = UDU−1, and D is diagonal and U
is unitary.

3. Joint mortality models using subordinated linear hypercubes
In this section, we exploit the parallelism between reduced-form credit risk and stochastic mortality to
build a joint mortality model along the lines of Ackerer and Filipović (2020). We consider a couple of
insureds of possibly different ages, x and y.

1Here and throughout the rest of the paper, the acronym LHC refers to linear hypercube model.
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We focus our attention on a finite time horizon M = [0, T]. T can be thought as the last date after
which all individuals die. We define a probability space (�, F, P) where the random times τm

x and τ f
y

represent the residual lifetime of the male, aged x ∈ X and female, aged y ∈ Y , respectively, in the couple.
We refer to P as the historical probability measure. We equip the probability space with the informa-
tion flow F= (Ft)t∈M, which satisfies the usual assumptions of right continuity and contains all the
relevant information for the insurance company, including the background about the driving forces of
mortality and whether or not individuals are alive. To distinguish among the types of information avail-
able, we follow the relevant literature and set Ft =Ht ∨ Gm

x,t ∨ Gf
y,t. The filtration H= (Ht)t∈M models

information about historical mortality as well as the financial market. Gm
x = (Gm

x,t

)
t∈M

and Gf
y = (Gf

y,t

)
t∈M

are the filtrations generated by the processes Gm
x,t = I{τm

x >t} and Gf
y,t = I{τ f

y>t}. The residual lifetime τm
x

(respectively τ f
y ) is a stopping time with respect to the filtration H∨Gm

x (respectively H∨Gf
y).

The joint mortality setup discussed in this paper consists of twoH-adapted positive and nonincreasing
processes, Sm

x = (
Sm

x,t

)
t∈M,x∈X

and Sf
y = (

Sf
y,t

)
t∈M,y∈Y

with Sm
x,0 = Sf

y,0 = 1, representing the survival processes
for the male and female in the couple. More specifically, consider the H-adapted stochastic process
P = (Pt)t∈M = (V1

t , V2
t , R1

t , R2
t , R3

t

)
t∈M

of dimension n̄ = n1 + n2 + n3 + 2. Here, ni is the dimension of
the latent factor Ri, while n3 represents the dimension of the process R3. For i = 1, 2, the processes
(Vi, Ri) are constructed by subordination of two independent linear hypercubes (Vi, Ri), as defined in
(2.3) with parameters (ni, αi, βi, γi, σi) both time-changed with the same subordinator Z , that is

(V i, Ri) = (Vi
t, Ri

t)t≥0 = (Vi
Zt

, Ri
Zt

)t≥0.

The process R3 is a polynomial diffusion as defined in (2.1), independent of the two linear hypercubes
above, with dimension n3, linear drift given by a (·) and volatility matrix �(·).2

Then, we define the survival processes as3

Sm
x,t = m�

x Pt

Sf
y,t = f �

y Pt, (3.1)

where mx, fy ∈Rn̄
+ are such that m�

x en̄ = 1 and f �
y en̄ = 1.4 The n̄-dimensional vectors mx and fy have

nonzero components only in their first two elements. This guarantees that the corresponding Sm
x,t and

Sf
y,t are valid survival processes, that is, they are nonincreasing and their trajectories lie in the interval

(0, 1].
The common subordination of the survival processes introduces a nontrivial dependence structure

between the death times in the couple that accounts for the possibility of simultaneous deaths. In this
respect, we follow Zhang and Brockett (2020) in the generation of the dependence structure. This
approach, first introduced in Mendoza-Arriaga and Linetsky (2016) for multi-name credit-risk models,
thus falls into that branch of the literature trying to capture simultaneous deaths consequent to catas-
trophic events. Although the common subordination creates a dependence structure which goes beyond
mere catastrophic events, we remark that such an approach is not able to generate asymmetric mortality
jumps, which are found to be typical of the broken heart syndrome.

3.1. Joint mortality
Consistently with Ackerer and Filipović (2020), we define the residual lifetimes of the male and female
in the couple as follows:

τm
x = inf{t ≥ 0 : Sm

x,t ≤ Um},
τ f

y = inf{t ≥ 0 : Sf
y,t ≤ Uf }

2We will make use of the process R3 in Section 5, when we will discuss the pricing of death and survival benefits.
3For a vector c ∈Rn, c� represents the transpose of c.
4en is the all-one vector of Rn.
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where Um and Uf are mutually independent uniform random variables which are also independent of
HT̄ . In this way, the conditional marginal and joint survival functions given the information available
at time u, S̄m

x,u(·), S̄f
y,u(·), and S̄xy,u(·, ·), are just the conditional expectations of the processes Sm

x , Sf
y, and

Sm
x Sf

y, respectively. In fact, for t, s> u and t, s ≤ T̄ , we have

S̄m
x,u(s) = P

(
τm

x > s|Hu

) =E
[
I{τm

x >s}|Hu

] =E
[
E

[
I{τm

x >s}|HT̄

] |Hu

] =
E

[
E

[
I{Sm

x,s>Um}|HT̄

] |Hu

] =E
[
Sm

x,s|Hu

]
.

Using similar arguments, one can easily show that S̄f
y,u(s) =E

[
Sf

y,s|Hu

]
. In addition, the joint survival

function can be computed as follows:

S̄xy,u(s, t) = P
(
τm

x > s, τ f
y > t|Hu

) =E
[
I{τm

x >s}∧{τ f
y>t}|Hu

]
=E

[
E

[
I{τm

x >s}∧{τ f
y>t}|HT̄

]
|Hu

]
=

E
[
E

[
I{Sm

x,s>Um}∧{Sf
y,t>Uf }|HT̄

]
|Hu

]
=E

[
E

[
I{Sm

x,s>Um}|HT̄

]
E

[
I{Sf

y,t>Uf }|HT̄

]
|Hu

]
=

E
[
Sm

x,sS
f
y,t|Hu

]
,

where the second-last equality comes from the independence between Um and Uf and the fact that Sm

and Sf are H-adapted.
Given the specification of the survival process (3.1), the marginal survival functions can be computed

explicitly using formula (2.2). For instance,

S̄m
x,u(t) =E

[
Sm

x,t|Hu

] =E
[
m�

x Pt|Hu

] = m�
x eAZ (t−u)Pu

with Az computed as in either (2.4) or (2.5).
The joint survival function, S̄xy,u(s, t), can be expressed in terms of the conditional expectations of

polynomials of degree two of the linear diffusion P, as shown below.

- For s> t, we have

S̄xy,u(s, t) =E
[
Sm

x,sS
f
y,t|Hu

] =E
[
E

[
Sm

x,sS
f
y,t|Ht

] |Hu

] =
E

[
Sf

y,tE
[
Sm

s |Ht

] |Hu

] =E
[
fy

�Ptm
�
x eAz(s−t)Pt|Hu

]
; (3.2)

- For s< t, we have

S̄xy,u(s, t) =E
[
Sm

x,sS
f
y,t|Hu

] =E
[
E

[
Sm

x,sS
f
y,t|Hs

] |Hu

] =
E

[
Sm

x,sE
[
Sf

y,t|Hs

] |Hu

] =E
[
m�

x Psf
�
y eAz(t−s)Ps|Hu

]
; (3.3)

- For s = t, we have

S̄xy,u(t, t) =E
[
Sm

x,tS
f
y,t|Hu

] =E
[
E

[
Sm

x,sS
f
y,t|Ht

] |Hu

] =E
[
Sm

x,sS
f
y,t|Hu

] =
E

[
m�

x Ptf
�
y Pt|Hu

]
. (3.4)

Before discussing the applications of the present setup, let us remark that the approach presented
here deviates from the vast majority of the literature. Indeed, the standard approach to build a mortality
model is by means of the definition of the so-called force of mortality, and then recovering the survival
process as a function of the integrated intensity. Instead, we follow Ackerer and Filipović (2020) and
model directly the survival process as a nonincreasing positive process with starting value equal to 1.
Both approaches are equivalent. We refer to Ackerer and Filipović (2020) for a detailed mathematical
treatment.
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4. Application to the Canadian dataset
The dataset at our disposal5 records a number of joint-life insurance contracts in force with a large
Canadian insurance company. It was first analyzed in Frees et al. (1996) and then in many others (e.g.,
see Carriere 2000; Luciano et al. 2008; Zhang and Brockett 2020). The data refer to 14,947 joint and
last-survivor annuities in force over a 5-year period, which is from December 29, 1988 to December 31,
1993. In accordance with the aforementioned literature, we disregard those contracts signed by same-sex
individuals, and for couples with multiple policies, we have eliminated all but one contract. In our cali-
bration exercise, we select those contracts whose males and females are born over the period January 1,
1907–December 31, 1920, and January 1, 1910–December 31, 1923, respectively. The resulting dataset
consists of 3,931 contracts whose entry ages are x = 68 for males and y = 65 for females. Due to the
right censoring of the data, in order to construct the empirical marginal (male and female) and joint
survival functions we rely on semi-parametric methods. In this regard, we follow Luciano et al. (2008)
and Zhang and Brockett (2020) and exploit the Kaplan-Meier and Dabrowska estimators to obtain the
empirical marginal and joint survival processes, respectively. We denote by Se

68(u), Se
65(u), and Se

68,65(u, s)
the empirical male, female marginal and joint survival functions.

4.1. Calibration procedure
In this section, we describe the method we use to calibrate the joint survival function. While we acknowl-
edge that likelihood-based estimation methods are preferable whenever possible, we want to point out
that the proposed model involves dynamic latent factors, and the likelihood function demands compu-
tations of high-dimensional integrals of the density, which are not available in closed-form. The two
tools available to perform likelihood-based estimation, namely filtering techniques and Markov Chain
Monte Carlo methods are not applicable to our dataset, as the length of our time series has only five
annual observations. We are aware of only three papers that propose models with dynamic latent fac-
tors on the same dataset, namely Zhang and Brockett (2020), Luciano et al. (2008) and Chaieb et al.
(2023). All those papers propose calibration procedures similar to ours. For these reasons, we believe
that likelihood-based estimation on this dataset is impracticable and switch to ordinary least square-
based calibration. Here, we limit ourselves to the calibration of the mortality model only, leaving aside
the estimation of the process R3 concerning the financial market. This shall be discussed later in the
paper.

The effective number of policies available in the dataset at our disposal is so scarce that it does not
allow the simultaneous estimation of the survival functions for several ages or cohorts. For this reason,
we fix the age-/gender-specific components to f �

y = (a, b, 0n̄−2)= (1, 0, 0n̄−2) and m�
x = (c, d, 0n̄−2)=(

1
2
, 1

2
, 0n̄−2

)
. This avoids the model to be overparametrized.

We use a two-stage procedure to calibrate the joint survival surface. The first stage calibrates the
marginal survival functions, thus providing the estimates of parameters {(αi, βi, γi)}i=1,2. The second
stage takes as input the output of the first stage and calibrates the joint survival function, thus providing
the estimates for all the parameters involved.

The procedure we use is as follows:

1. Fix arbitrarily �2, and estimate �1 by minimizing the residual sum of squares defined as:

L(�1) =
j∑

k=0

(
Ŝf

65,0(k) − Se
65(k)

)2

where Ŝf
65,0(·) is the marginal female survival processes implied by the model. In this way, we

obtain a first estimate of the parameters vector �̂1 =
{
α̂1, β̂1, γ̂1, σ1

}
;

5The authors wish to thank the Society of Actuaries through the courtesy of Edward (Jed) Frees and Emiliano A. Valdez, for
making available the data in this paper.
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Table 1. Specification of the models calibrated and comparison
among them in terms of Bayesian Information Criterion.

Name n1 n2 Subordination BIC
Model 1 1 1 no −2168.25
Model 1s 1 1 yes −2145.11
Model 2 2 1 no −2128.97
Model 2s 2 1 yes −2130.20
Model 3 1 2 no -2233.08
Model 3s 1 2 yes -2164.77
Model 4 2 2 no −2209.77
Model 4s 2 2 yes −1976.86

2. Considering �̂1, estimate �2 by minimizing the residual sum of squares defined as

L(�2) =
j∑

k=0

(
Ŝm

68,0(k) − Se
68(k)

)2

where Ŝm
68,0(t) is the marginal male survival process implied by our model. This will provide us

with �̂2 =
{
α̂2, β̂2, γ̂2, σ2

}
;

3. Starting from the estimates �̂1 and �̂2, we calibrate the entire set of parameters, that is �=
(�1,�2,�Z) by fitting the joint survival process. Hence, we obtain �̂ by minimizing the spreads
between the implied joint survival surface of the LHC model with respect to that obtained from
the Dabrowska estimator.

4.2. Results
We test three different specifications of the model in terms of the number of latent factors. We also test the
subordinated version of each specification. For ease of exposition, we relegate the detailed expressions
of the models we specify in Appendix B. We would like to remark that, in the case one considers the
specifications in Appendix B with σ1,1 = σ1,2 = σ2,1 = σ2,2, the models estimated in this paper would
fall in the setup of multivariate Jacobi processes of Gourieroux and Jasiak (2006). In such a case, the
joint survival function can also be expressed in closed form. We refer to Gourieroux and Jasiak (2006),
Filipović and Larsson (2016) for further details6. In Table 1, we report the features of each specification
tested. We refer to Appendix B for additional details.

In Table 1, we report the Bayesian Information Criterion (BIC).7 Among the non-subordinated spec-
ifications, the best-performing model is Model 3, while among the subordinated versions, the BIC
suggests Model 3s. For the dataset under investigation, it appears that the models without subordinator
perform better. This may be due to the limited sample size and the limited period of observation, for
which simultaneous deaths do not appear frequently in the dataset.

Table 2 reports the obtained parameter estimates for each considered model specification as well
as the corresponding time-changed versions. The calibrated parameter values are quite similar across
the different model specifications, in particular, if we compare the subordinated version with the non-
subordinated one of each specification. Furthermore, in Table 2, we can notice that, in each model

6We would like to thank an anonymous reviewer for pointing out this analogy.
7Note that BIC values have been computed in terms of the residual sum of squares (RSS), that is BIC = n · ln

( RSS
n

) + k · ln (n),
where n is the number of observations and k is the number of parameters.
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Table 2. Parameter estimates obtained for each specification tested.

Parameters Model 1 Model 1s Model 2 Model 2s Model 3 Model 3s Model 4 Model 4s
α1

1 0.0396 0.0200 0.0339 0.0156 0.0380 0.0415 0.0328 0.0379
α1

2 – – 0.0208 0.0478 – – 0.0498 0.0545
α2

1 0.1092 0.0571 0.1099 0.1229 0.0232 0.0122 0.0117 0.0085
α2

2 – – – – 0.1051 0.1689 0.1185 0.1585
β1

1 0.0384 0.0204 0.0362 0.0473 0.0409 0.0390 0.0440 0.0573
β1

2 – – 0 0 – – 0 0
β2

1 0.1092 0.0570 0.1080 0.1233 0.1578 0.1693 0.1485 0.3100
β2

2 – – – – 0 0 0 0
γ 1

1,1 −0.0779 −0.0404 −0.0701 −0.0633 −0.0789 −0.0805 −0.1257 −0.1305
γ 1

1,2 – – −0.0229 −0.0473 – – −0.0382 −0.0449
γ 1

2,1 − − 0.5817 0.2247 – – 0.2804 0.2578
γ 1

2,2 – – −1.3387 −0.2880 – – −1.1858 −2.4268
γ 2

1,1 −0.2184 −0.1141 −0.2179 −0.2462 −0.1810 −0.1815 −0.1602 −0.3185
γ 2

1,2 – – – – −0.1051 −0.1689 −0.1185 −0.1620
γ 2

2,1 – – – – 0.2453 0.2190 0.2807 0.3478
γ 2

2,2 – – – – −0.3736 −0.4001 −0.4109 −0.5148
σ1,1 0.1829 0.1550 0.2513 0.1699 0.3555 0.3768 0.3991 0.3637
σ1,2 – – 0.2326 0.3992 – – 1.5421 0.4371
σ2,1 0.2225 0.2348 0.2105 0.2508 0.0913 0.0730 0.1004 0.2158
σ2,2 – – – – 0.0890 0.3060 0.1617 0.3064
r1,1 0 0 0 0 0 0 0 0
r1,2 – – 0.0158 0.0028 – – 0.0058 0.0111
r2,1 0 0 0 0 0 0 0.0210 0.0178
r2,2 – – – – 0.0333 0 0.0552 0.0238
γZ – 3.3762 – 1.6155 – 0.5558 – 0.1990
λZ – 1.7552 – 1.4507 – 0.5830 – 0.2573

specification, the parameters β1
2 and β2

2 are equal to zero, which implies that the dynamics of the second
latent factors of the two LHC models does not depend on the process V1 and V2, respectively.

5. Pricing
The mortality setup presented in Section 3 readily extends to a combined joint-mortality/financial market
model in which the classical insurance products can be priced under no arbitrage conditions.

We consider a financial market consisting of d ≥ 1 traded primary assets Q1, . . . , Qd, one of which
(say Q1) with strictly positive price process that is chosen as the numeraire. To guarantee the absence
of arbitrages in the financial market, one usually assumes the existence of an equivalent martingale
measure, that is a probability measure Q equivalent to the historical P for which the deflated asset
prices are Q-martingales. This is equivalent to assuming the existence of a state price density, that is a
positive H-adapted process ϒ = (ϒt)t∈M for which the time-t value of an asset paying CT at time T > t
is given by

E [ϒTCT |Ht]

ϒt

.

Alternatively, Constantinides (1992), Rogers (1997), Filipović and Larsson (2016) and Filipović et al.
(2017) specify directly the state price density, showing that the approach leads to a tractable specification
of the term structure of the interest rates. We adopt the same approach, which leads to a tractable way
to compute the basic actuarial quantities and to an efficient approximation of more complex insurance
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products. Thus, on the probability space defined in Section 3, we define a state price densityϒ = (ϒt)t∈M

which will be used for no-arbitrage pricing purposes, where

ϒt = e−δtg(Rt), (5.1)

R = (Rt)t∈M = (R1
t , R2

t , R3
t )t∈M is the (n̄ − 2)-dimensional process of latent factors and g : Rn̄−2 →R+ \

{0} is a linear function of its argument. The choice of the parameter δ affects the range of possible values
of the short rate.8

The state price density together with the two survival processes define a combined joint-
survival/financial market that can be used for pricing purposes. This model allows for a rich dependence
structure not only between the remaining lifetimes of both spouses in the couple but also between mor-
tality and the financial market. In particular, letting g depend on all components of the latent process R
implies dependence between mortality and the financial market. Conversely, one may let g depend only
on R3. This special case implies independence between mortality and the financial market, leaving the
dependence structure between the joint survival of individuals unaltered.

The combined model defined above is incomplete due to the presence of mortality/survival risk which
cannot be completely diversified away, therefore an infinite number of pricing operators exists. Choosing
a particular state price density to evaluate the insurance products is equivalent to specifying the so-called
market price of mortality risk.

5.1. Insurance benefits
5.1.1. Joint-life annuity
A joint-life pure endowment is a contract that pays one unit of money if both spouses survive at maturity
T . Its time-t price (t< T) is given by

TExy(t) = E
[
I{τ>T}ϒT |Ft

]
ϒt

,

where τ = min
(
τm

x , τ f
y

)
.

Proposition 1. The value of a joint-life survival benefit simplifies to

TExy(t) = I{τ>t}
S̄xy,t(t, t)ϒt

E
[
Sm

x,TSf
y,TϒT |Ht

] =

e−δTI{τ>t}
S̄xy,t(t, t)ϒt

E
[
mx

�PTfy
�PTg(RT)|Ht

]
. (5.2)

The above proposition expresses the price of a joint-life survival benefit in terms of the conditional
expectation of a cubic polynomial of the state space P, which is available in closed form since P is a
polynomial jump diffusion. The precise expression depends, however, on the specification of the model.
For the reader’s convenience, an Online Supplementary Appendix provides the expressions of the joint-
life pure endowment for the specifications used in the paper.

A joint-life annuity is a contract consisting of n different joint-life pure endowments with successive
maturity. The contract pays one unit of money for each year of the contract as long as both members of
the couple are alive. Its price is given by

axy:n(t) =
n∑

l=1

lExy(t). (5.3)

8We refer to Filipović and Larsson (2016) for the details.
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5.1.2. Last-survivor annuity
A n-year last-survivor annuity is a contract that pays one unit of money at the end of each year as long
as either member of the couple survives. Its price, denoted by axy:n(t), can be obtained by the inclusion–
exclusion principle as follows:

axy:n(t) = ax:n(t) + ay:n(t) − axy:n(t), (5.4)

where aj:n(t) represents the price of a n-year individual annuity contract provided to the j-th member of
the couple (j ∈ {m, f } ), and axy:n(t) is the price of the n-year joint-life annuity as defined in Equation (5.3).
To derive aj:n(t), j ∈ {m, f }, we need to determine the price of an individual pure endowment contract.
Hence, let us focus on just one member of the couple, we state the following proposition.

Proposition 2. The value of an individual survival benefit simplifies to

TEx(t) = I{τm
x >t}

S̄m
x,t(t)ϒt

E
[
Sm

x,TϒT |Ht

]

= e−δTI{τm
x >t}

S̄m
x,t(t)ϒt

E
[
m�

x PTg(RT)|Ht

]
. (5.5)

Based on Proposition 2, we can obtain the price of a n-year individual annuity contract (it pays a unit
of money at the end of each year as long as the insured is alive) as follows

ax:n(t) =
n∑

l=1

lEx(t). (5.6)

The same can be done for ay:n(t). By using Equations (5.3) and (5.6), we can get the price of the
last-survivor annuity as defined in Equation (5.4).

5.1.3. Death benefits: First-to-die joint-life insurance
A first-to-die joint-life insurance contract pays a unitary benefit upon the first death in the couple, if it
happens before a fixed maturity T . Hence, its time-t price (t< T) is given by

TDxy (t)= E
[
I{t<τ≤T}ϒτ |Ft

]
ϒt

,

where τ = min
(
τm

x , τ f
y

)
.

Proposition 3. The value of a joint-life death benefit simplifies to

TDxy(t) = I{τ>t}
S̄xy,t(t, t)ϒt

E

[
−

∫ T

t

ϒudSm
x,uS

f
y,u|Ht

]
=

I{τ>t}
S̄xy,t(t, t)ϒt

E

[
−

∫ T

t

e−δug(Ru)dSm
x,uSf

y,u|Ht

]
. (5.7)

6. Numerical application
In this section, we implement the combined joint mortality/financial model to illustrate the actuarial
implications of the framework we propose. The aim is to show the impact of subordination in terms of
fair values of the contracts.

We consider again a couple of individuals aged x = 68 and y = 65 at time t = 0, respectively. Even if
the framework proposed in this paper allows for the possibility of dependence also between the financial
market and the mortality model, the dataset at our disposal would not be sufficiently large to give reliable
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Table 3. Parameter estimates of the state price density based on the euro-area yield
curve on 1 October 12, 2023.

δ ψ φ κ θ r3

0.0316 0.7189 1.1867 0.1174 0.2505 0.1551

information in this respect. Consequently, we calibrate the financial model independently, thus neglect-
ing the possible dependence structure between mortality and the financial market. This is an important
topic which goes far beyond the scope of this paper.

We calibrate the parameters of the state price density as follows. We consider the euro-area yield
curve associated to AAA-rated bonds9 at the date of October 12, 2023, from which we compute the
corresponding Zero-Coupon-Bond (ZCB) prices. The parameters of the state price density are thus
obtained by minimizing the residual sum of squares between the observed and the theoretical ZCB
prices. We report the calibrated parameters in Table 3.

In what follows, we conduct our analysis on the two best-performing model specifications. We refer to
the Online Supplementary Appendix for further details about the pricing formulae in each specification
we consider.

6.1. Price estimates
We focus the attention on joint life annuities and first-to-die contracts. We compute the prices of these
contingent claims by varying the corresponding maturities and compare the best-performing LHC mod-
els in terms of goodness of fit, namely Model 3 and Model 3s, with other approaches from the existing
literature. In particular:

- The approach where the marginal survival functions follow a deterministic Gompertz function,
without allowing for stochastic mortality improvements. This results in the two following mod-
els: Indep. Gompertz, where no dependence is modeled, and Gompertz + Nelsen, where
dependence within the couple is captured by means of a Nelsen Copula.

- The approach where the marginal survival functions are modeled by affine stochastic models,
while the dependence within the couple is captured by Copulas. This approach results in models
Indep. LSV (no dependence) and LSV + Nelsen. The acronym LSV is due to the authors of
the original paper that inspired these models, namely Luciano et al. (2008), where we refer for
details about these models. Prices derived using the Indep. LSV model leverage the assumption
of independence between spouses’ lifetimes as well as among mortality and financial factors.
Consequently, the fair values can be factorized and are available in closed form.10 Furthermore,
prices under the LSV + Nelsen model are computed using an average of 50,000 Monte Carlo
simulations with daily discretization.

Moreover, we examine the LHC model by assuming independence between the marginal survival
processes of each couple member, denoted as Indep. LHC.

Note that further details on the above-mentioned models are available in the Online Supplementary
Appendix: the models have been calibrated using the same dataset; the associated Bayesian Information
Criteria are reported in Table 4. These numbers, when compared with those reported in Table 1, provide
the quality of fit of LHC models relative to some other models in the literature. Here we observe that
model Indep. LHC displays a goodness of fit better than that of Model 3. The reason for that lies in the

9The data are downloaded from the website of the European Central Bank, at the following url: https://www.ecb.europa.eu/
stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html.

10We refer the reader to Equation (4) of Luciano et al. (2008) and Equation (5) in Filipović et al. (2017) for the analytical
solutions of the marginal survival functions and discount factor, respectively.
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Table 4. Goodness of fit for the alter-
native models.

Name BIC
Indep. LHC −2313.88
Indep. Gompertz −1614.05
Indep. LSV −1867.69
Gompertz + Nelsen −2027.33
LSV + Nelsen −2065.00

(a) (b)

Figure 1. Panel 1(a): Price of a n-years joint-life annuity contract. Panel 1(b): Price of a first-to-die
life insurance contract with maturity T. In both panels, we refer to a couple of individuals aged x = 68
and y = 65.

choice of the vectors f �
y and m�

x , which in Model 3 are fixed to f �
y = (1, 0, 0n̄−2) and m�

x = (
1
2
, 1

2
, 0n̄−2

)
,

since the extremely low number of records in the dataset does not allow proper estimation of these
age- and gender-specific vectors. Since a comprehensive comparison of the quality of fit of alternative
specifications of our setup is far beyond the scope of this paper, we defer a deeper investigation of this
aspect to later research.

In Figure 1(a), we illustrate the value of n-year joint-life annuities by varying the maturity of the con-
tracts according to different approaches. First, we compare the Indep. Gompertz with Indep. LHC and
Indep. LSV. We observe in the prices of such contracts differences that are increasing as the maturity
increases. By recalling that all three models do not capture dependence within the couples, we can fairly
attribute these differences in prices to the stochastic improvements of longevity captured by models
Indep. LHC and Indep. LSV and not taken into account by model Indep. Gompertz.

Second, we compare two copula-based models, Gompertz + Nelsen and LSV + Nelsen. The dif-
ferences between the deterministic approach and the one that takes into account the stochastic nature of
longevity remain evident.

In comparing models that take into account the stochastic nature of longevity, namely LSV + Nelsen,
Model 3, and Model 3s, we observe only minor differences in contract prices. This indicates that LHC
models provide contract prices consistent with the state-of-the-art literature. Figure 1(a) illustrates the
impact of dependency on contract pricing. Comparing Indep. LHC with Model 3, the latter shows
higher joint-life annuity prices, consistent with findings in the benchmark literature, as seen in the com-
parison between Indep. LSV and LSV + Nelsen. Moreover, while both Model 3 and Model 3s account
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Table 5. Percentage variation of n-years joint-life annuity price (left) and T-years first-to-die life
insurance contract price (right). Baseline values are reported by the symbol “=”, while “-” and
“+” stand respectively for a decrease and increase of 10%, “- -” and “+ +” for a decrease and
increase of 20%.

Joint-life First-to-die
n T

γZ � λZ 5 10 15 20 5 10 15 20
= � = 1.23% 2.17% 2.79% 3.15% 3.90% 2.50% 2.76% 3.06%
– � – 1.44% 2.34% 2.82% 3.05% 6.22% 5.07% 4.99% 4.86%
− � - 1.33% 2.25% 2.80% 3.11% 4.94% 3.66% 3.77% 3.87%
– � - 2.28% 4.39% 6.02% 7.18% −2.68% −0.19% 2.97% 5.26%
− � – 0.64% 0.46% −0.10% −0.74% 13.53% 9.48% 6.72% 4.45%
++ � ++ 1.08% 2.05% 2.76% 3.21% 2.32% 0.68% 1.20% 1.82%
++ � + 0.56% 0.69% 0.54% 0.29% 9.03% 5.06% 3.23% 1.97%
+ � ++ 1.75% 3.63% 5.16% 6.27% −3.86% −2.53% 0.45% 2.80%
+ � + 1.15% 2.11% 2.77% 3.19% 3.04% 1.52% 1.92% 2.39%
= � ++ 2.59% 5.53% 7.98% 9.74% −10.59% −5.48% 0.31% 4.48%
= � + 1.89% 3.84% 5.40% 6.52% −3.55% −1.88% 1.14% 3.48%
= � – 0.03% −1.00% −2.47% −3.92% 19.99% 13.89% 9.04% 4.93%
= � - 0.61% 0.56% 0.15% −0.33% 11.76% 7.74% 5.33% 3.45%
++ � = 0.08% −0.64% −1.68% −2.72% 16.02% 10.10% 6.05% 2.86%
+ � = 0.59% 0.63% 0.36% 0.00% 10.28% 6.29% 4.19% 2.64%
– � = 3.16% 6.48% 9.17% 11.10% −10.94% −4.32% 2.07% 6.51%
− � = 2.07% 4.09% 5.68% 6.82% −3.17% −1.12% 1.97% 4.29%
− � + 2.84% 5.96% 8.51% 10.35% −10.77% −4.97% 1.10% 5.40%
– � + 4.09% 8.59% 12.22% 14.80% −18.58% −7.45% 2.05% 8.32%
− � ++ 3.66% 7.85% 11.27% 13.72% −17.86% −7.97% 0.98% 6.99%
– � ++ 5.05% 10.69% 15.16% 18.27% −25.59% −9.71% 2.68% 10.46%
+ � - 0.06% −0.80% −2.04% −3.26% 17.84% 11.83% 7.40% 3.78%
++ � - −0.38% −1.90% −3.87% −5.77% 23.25% 15.83% 9.79% 4.67%
+ � – −0.44% −2.17% −4.41% −6.58% 25.68% 18.18% 11.72% 6.05%
++ � – −0.80% −3.11% −6.02% −8.84% 30.70% 22.26% 14.57% 7.63%

for dependency among lives, Model 3s also incorporates simultaneous dependence through the sub-
ordinator. The effect of this can be observed in Figure 1(a) when compared to its non-subordinated
counterpart. This comparison indicates that Model 3s results in slightly lower annuity prices. The case
of death benefits, reported in Figure 1(b), fully confirms the results above.

Next we further investigate the effect of subordination on the fair values of death and survival benefits.
We take as baseline values the estimates of γZ and λZ for Model 3s provided in Table 2, inflate and deflate
(by 10% and 20%) those values and compare, in terms of relative variation, the prices of survival and
death benefits with those coming from the non-subordinated specification.

Concerning survival benefits, the left part of Table 5 shows that for short maturities the relative change
is rather limited. However, these differences increase or decrease significantly as the maturity increases.
For example, note the case where the parameters, γZ and λZ , are reduced and increased, respectively, by
20% (- - � + +, in the table). In this scenario, we get an underestimation of 5.05% when T = 5 years,
which then increases to 18.27% in the long run. On the contrary, for death benefits, the right part of
Table 5 reveals significant relative changes for short-term contracts, which however tend to taper off as
the maturity increases.
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Overall, the analysis demonstrates the importance of embedding the potential impact of external fac-
tors that simultaneously affect the mortality evolution of the individuals in a couple given the high price
sensitivity. Neglecting this aspect, indeed, may lead to significant underestimation or overestimation of
the relevant quantities, which could have serious consequences from a solvency and risk-management
perspective.

7. Summary and conclusions
In this paper, we build on recent developments in polynomial diffusion to introduce and analyze a novel
stochastic mortality framework, validated through robust alignment with real data and comprehensive
numerical assessments within a Canadian insurer’s context, that challenges the conventional assumption
of independent survival functions. By advocating for a dynamic characterization of joint density to com-
prehend mortality interdependencies, this approach offers substantial theoretical and practical benefits.
It provides, indeed, a wide range of applications beyond pricing, such as risk management or solvency
capital requirements valuations. In this regard, we can easily combine simple Monte Carlo simulations
with the extreme mathematical tractability of the proposed model. The numerical analysis demonstrates
the impact of the introduction of a complex dependence structure on the fair values of classical insurance
products.

This paper also comes with limitations. First, the proposed setup is unable to reproduce asymmetric
mortality jumps, which is a stylized fact observed in annuity datasets (Lu 2017). To solve this issue, one
would embed the asymmetric joint mortality model presented in Jevtić and Hurd (2017) and Henshaw
et al. (2020) into the framework of polynomial diffusion presented here. Second, while we see the esti-
mation proposed in this paper as an example of how the framework can be applied, there is the need of
a comprehensive comparison of the quality of fit among alternative LHC models. In this direction, the
main difficulty is having available a dataset which spans a sufficiently large records on a wide enough
time window. These are promising avenues, which we leave for a future project.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2025.8.
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A. Proofs
A.1. Proof of Proposition 1
The derivation of the joint-life survival benefits is a straightforward extension of the results in Ackerer
and Filipović (2020) to the case of two heads.

First, build a preliminary lemma (lemma 1 of Ackerer and Filipović 2020), then prove the result.
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Lemma 1. Consider a nonnegative random variable Y measurable with respect HT̄ . Then, for any 0 ≤
t ≤ s ≤ T̄ we have

E
[
I{τ>s}Y|Ft

] = I{τ>t}
S̄xy,t(t, t)

E
[
Sm

x,sS
f
y,sY|Ht

]
.

Proof. The following is our version of lemma 1 for the two-head case.
First recall case ii. of lemma 5.1.2 in Bielecki and Rutkowski (2004):

E
[
I{τ>t}Z|Ft

] = I{τ>t}
E

[
I{τ>t}Z|Ht

]
P (τ > t|Ht)

Now our version of lemma 1. Setting Z = I{τ>s}Y

E
[
I{τ>s}Y|Ft

] =E
[
I{τ>t}I{τ>s}Y|Ft

] = I{τ>t}
E

[
I{τ>t}I{τ>s}Y|Ht

]
P (τ > t|Ht)

= I{τ>t}
E

[
I{τ>s}Y|Ht

]
P (τ > t|Ht)

= I{τ>t}
S̄xy,t(t, t)

E
[
I{τm

x >s}∧{τ f
y>s}Y|Ht

]

= I{τ>t}
S̄xy,t(t, t)

E
[
E

[
I{τm

x >s}∧{τ f
y>s}|HT̄

]
Y|Ht

]

= I{τ>t}
S̄xy,t(t, t)

E
[
E

[
I{Sm

x,s>Um}|HT̄

]
E

[
I{Sf

y,s>Uf }|HT̄

]
Y|Ht

]

= I{τ>t}
S̄xy,t(t, t)

E
[
Sm

x,sS
f
y,sY|Ht

]
.

�

A.2. Proof of Proposition 3
From Proposition 5.1.1 in Bielecki and Rutkowski (2004), we have that

Lemma 2. Let Z be a bounded, H-predictable process. Then, for any 0 ≤ t< s ≤ T̄ ≤ ∞ we have

E
[
I{t<τ≤T}Zτ |Ft

] = I{τ>t}
S̄xy,t(t, t)

E

[
−

∫ T

t

ZudSm
x,uSf

y,u|Ht

]
.

Proof. The following is our version of lemma 1 for the two-head case.
First recall case ii. of proposition 5.1.1 in Bielecki and Rutkowski (2004):

E
[
I{t<τ≤T}Zτ |Ft

] = I{τ>t}
P (τ > t |Ht)

E

[∫ T

t

ZudFu|Ht

]
.

Now our version of lemma 2. Let Z be a stepwise H-predictable process; that is Zu =∑n
i=0 ZtiI{ti<u≤ti+1}, for any t< u ≤ s, where t0 = t< . . . < tn+1 = s, and Zti is Fti-measurable random

variable for any i = 0, . . . , n. Then, we have

E
[
I{t<τ≤T}Zτ |Ft

] = I{τ>t}
S̄xy,t(t, t)

E
[
I{t<τ≤T}Zτ |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[
I{ti<τ≤ti+1}Zti |Hti+1

]
|Ht

]

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2025.8
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 12 Aug 2025 at 16:50:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2025.8
https://www.cambridge.org/core


ASTIN Bulletin 349

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[
I{ti<τ≤ti+1}|Hti+1

]
Zti |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[
I{τ>ti} − I{τ>ti+1}|Hti+1

]
Zti |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[
E

[(
I{τ>ti} − I{τ>ti+1}

)
|HT̄

]
|Hti+1

]
Zti |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[
E

[(
I{τm

x >ti}∧
{
τ

f
y>ti

} − I{τm
x >ti+1}∧

{
τ

f
y>ti+1

}) |HT̄

]
|Hti+1

]
Zti |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[(

E
[
I{τm

x >ti}∧
{
τ

f
y>ti

}|HT̄

]
−E

[
I{τm

x >ti+1}∧
{
τ

f
y>ti+1

}|HT̄

])
|Hti+1

]
Zti |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[(

E
[
I{Sm

x,ti
>Um}|HT̄

]
E

[
I{

Sf
y,ti
>Uf

}|HT̄

]

−E
[
I{

Sm
x,ti+1

>Um
}|HT̄

]
E

[
I{

Sf
y,ti+1

>Uf
}|HT̄

])
|Hti+1

]
Zti |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

E
[
Sm

x,ti
Sf

y,ti
− Sm

x,ti+1
Sf

y,ti+1
|Hti+1

]
Zti |Ht

]

= I{τ>t}
S̄xy,t(t, t)

E

[
n∑

i=0

(
Sm

x,ti
Sf

y,ti
− Sm

x,ti+1
Sf

y,ti+1

)
Zti |Ht

]
.

Thus, we have

E
[
I{t<τ≤T}Zτ |Ft

] = I{τ>t}
S̄xy,t(t, t)

E

[
−

∫ T

t

ZudSm
x,uSf

y,u|Ht

]
.

�

B. Model specifications
In this appendix, we provide details about the adopted model specifications. Note that, for each model
specification, we adopt the same state price density ϒ = (ϒt)t∈M where

ϒt = e−δt (φ +
�Pt

)
,

for some φ ∈R and 
 ∈Rn̄ such that φ +
�x> 0 for all x ∈ E, and δ ∈R. In particular, without loss
of generality, we define the n̄-dimensional vector ψ such that all elements are zero except the last one,
that is we assume that ϒt depends only on the third latent factor, R3.

Further, let us recall that the marginal survival processes of the female and male are defined as

Sf
y,t = f �

y Pt,

Sm
x,t = m�

x Pt.

In what follows, we specify the process Pt, the vectors f �
y , m�

x and 
� for each considered model. The
closed-form pricing formulae for the various multiple life contingent claims under the different model
specifications are available in the Online Supplementary Appendix.
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Model 1
The first model specification considers just one latent factor for both the LHC models. Hence, the process
Pt =

(
V1

t , V2
t , R1,1

t , R2,1
t , R3

t

)�. Further, we set f �
y = (a, b, 0, 0, 0), m�

y = (c, d, 0, 0, 0), with a, b, c, d> 0,
a + b = 1 and c + d = 1, and 
� = (0, 0, 0, 0,ψ). The dynamics of the process Pt is

dV1
t = −α1

1R1,1
t dt V1

0 = 1

dV2
t = −α2

1R2,1
t dt V2

0 = 1

dR1,1
t = (

β1
1 V1

t + γ 1
1,1R

1,1
t

)
dt + σ1,1

√
R1,1

t

(
V1

t − R1,1
t

)
dW1,1

t R1,1
0 = r1,1

dR2,1
t = (

β2
1 V2

t + γ 2
1,1R

2,1
t

)
dt + σ2,1

√
R2,1

t

(
V2

t − R2,1
t

)
dW2,1

t R2,1
0 = r2,1

dR3
t = κ

(
θ − R3

t

)
dt + σ3

√
1 − R3

t
2 dW3

t R3
0 = r3,

where W1,1
t , W2,1

t , and W3
t are mutually independent standard Brownian motions.

Model 2
The second model specification considers two latent factors for the first LHC model and just one
latent factor for the second one. Hence, the process Pt =

(
V1

t , V2
t , R1,1

t , R1,2
t , R2,1

t , R3
t

)�. Further, we
set f �

y = (a, b, 0, 0, 0, 0), m�
y = (c, d, 0, 0, 0, 0), with a, b, c, d> 0, a + b = 1 and c + d = 1, and 
� =

(0, 0, 0, 0, 0,ψ). The dynamics of the process Pt is
dV1

t = − (
α1

1R1,1
t + α1

2R1,2
t

)
dt V1

0 = 1

dV2
t = −α2

1R2,1
t dt V2

0 = 1

dR1,1
t = (

β1
1 V1

t + γ 1
1,1R1,1

t + γ 1
1,2R1,2

t

)
dt + σ1,1

√
R1,1

t

(
V1

t − R1,1
t

)
dW1,1

t R1,1
0 = r1,1

dR1,2
t = (

β1
2 V1

t + γ 1
2,1R1,1

t + γ 1
2,2R1,2

t

)
dt + σ1,2

√
R1,2

t

(
V1

t − R1,2
t

)
dW1,2

t R1,2
0 = r1,2

dR2,1
t = (

β2
1 V2

t + γ 2
1,1R2,1

t

)
dt + σ2,1

√
R2,1

t

(
V2

t − R2,1
t

)
dW2,1

t R2,1
0 = r2,1

dR3
t = κ

(
θ − R3

t

)
dt + σ3

√
1 − R3

t
2 dW3

t R3
0 = r3,

where W1,1
t , W1,2

t , W2,1
t , and W3

t are mutually independent standard Brownian motions.

Model 3
The third model specification considers one latent factor for the first LHC model and two latent
factors for the second one. Hence, the process Pt =

(
V1

t , V2
t , R1,1

t , R2,1
t , R2,2

t , R3
t

)�. Further, we set
f �
y = (a, b, 0, 0, 0, 0), m�

y = (c, d, 0, 0, 0, 0), with a, b, c, d> 0, a + b = 1 and c + d = 1, and 
� =
(0, 0, 0, 0, 0,ψ). The dynamics of the process Pt is

dV1
t = −α1

1R1,1
t dt V1

0 = 1

dV2
t = − (

α2
1R2,1

t + α2
2R2,2

t

)
dt V2

0 = 1

dR1,1
t = (

β1
1 V1

t + γ 1
1,1R

1,1
t

)
dt + σ1,1

√
R1,1

t

(
V1

t − R1,1
t

)
dW1,1

t R1,1
0 = r1,1
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dR2,1
t = (

β2
1 V2

t + γ 2
1,1R2,1

t + γ 2
1,2R

2,2
t

)
dt + σ2,1

√
R2,1

t

(
V2

t − R2,1
t

)
dW2,1

t R2,1
0 = r2,1

dR2,2
t = (

β2
2 V2

t + γ 2
2,1R2,1

t + γ 2
2,2R

2,2
t

)
dt + σ2,2

√
R2,2

t

(
V2

t − R2,2
t

)
dW2,2

t R2,2
0 = r2,2

dR3
t = κ

(
θ − R3

t

)
dt + σ3

√
1 − R3

t
2 dW3

t R3
0 = r3,

where W1,1
t , W2,1

t , W2,2
t , and W3

t are mutually independent standard Brownian motions.

Model 4
The fourth model specification considers two latent factors for both the LHC models. Hence, the process
Pt =

(
V1

t , V2
t , R1,1

t , R1,2
t , R2,1

t , R2,2
t , R3

t

)�. Further, we set f �
y = (a, b, 0, 0, 0, 0, 0), m�

y = (c, d, 0, 0, 0, 0, 0),
with a, b, c, d> 0, a + b = 1 and c + d = 1, and 
� = (0, 0, 0, 0, 0, 0,ψ). The dynamics of the process
Pt is

dV1
t = − (

α1
1R1,1

t + α1
2R1,2

t

)
dt V1

0 = 1

dV2
t = − (

α2
1R2,1

t + α2
2R2,2

t

)
dt V2

0 = 1

dR1,1
t = (

β1
1 V1

t + γ 1
1,1R1,1

t + γ 1
1,2R

1,2
t

)
dt + σ1,1

√
R1,1

t

(
V1

t − R1,1
t

)
dW1,1

t R1,1
0 = r1,1

dR1,2
t = (

β1
2 V1

t + γ 1
2,1R1,1

t + γ 1
2,2R

1,2
t

)
dt + σ1,2

√
R1,2

t

(
V1

t − R1,2
t

)
dW1,2

t R1,2
0 = r1,2

dR2,1
t = (

β2
1 V2

t + γ 2
1,1R2,1

t + γ 2
1,2R

2,2
t

)
dt + σ2,1

√
R2,1

t

(
V2

t − R2,1
t

)
dW2,1

t R2,1
0 = r2,1

dR2,2
t = (

β2
2 V2

t + γ 2
2,1R2,1

t + γ 2
2,2R

2,2
t

)
dt + σ2,2

√
R2,2

t

(
V2

t − R2,2
t

)
dW2,2

t R2,2
0 = r2,2

dR3
t = κ

(
θ − R3

t

)
dt + σ3

√
1 − R3

t
2 dW3

t R3
0 = r3,

where W1,1
t , W1,2

t , W2,1
t , W2,2

t , and W3
t are mutually independent standard Brownian motions.
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