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FAMILIES OF PARTIAL FUNCTIONS

KEVIN P. BALANDA

The degree of disjunction, <S(F) , of a family F of functions

is the least cardinal x such that every pair of functions in F

agree on a set of cardinality less than T .

Suppose 9, p, A, K are non-zero cardinals with 6 < u £ X .

This paper is concerned with functions which map u-sized subsets

of X into K . We f i rs t show there is always a ' large' family

F of such functions satisfying 6(F) < 6 . Next we determine

the cardinalities of families F of such functions that are

maximal with respect to 6(F) < 8 .

1. Introduction

Suppose u, X, K are non-zero cardinals with y - X . Let ' K

denote the se t of a l l functions which map a u-sized subset of X into

K . Given functions f,g; we use E(f; g) to denote

ix € dom(f) n dom(g); f(x) = g(x)} .

The degree of disjunction, &(F) , of a family F of functions is the

least cardinal T such that \E{f; g)\ < x for all pairs / , g of

functions in F . More generally, the degree of disjunction, 6(S) , of a

family S of sets is the least cardinal x such that \S n S'\ < x for

all pairs S, S' of sets in S .

This paper is concerned with two problems about families of part ial
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funct ions . Suppose 9 i s another non-zero cardinal and 6 5 \i . We f i r s t

determine the 'maximum' ca rd ina l i ty of a subset F of K sat isfying

6(F) S 8 . Secondly, we determine the ca rd ina l i t i e s of subsets F of

'•VJ' K̂ tha t are maximal with respect to 6(F) < 8 . The following two

def in i t ions w i l l be useful .

DEFINITIONS. Let

( i ) F e (u , X, K) = s u p { | F | ; F c [ y ' X ] K and 6(F) 2 9} ,

( i i ) maXoF(p, X, <) = {£; C is a cardinal and there i s an

C-sized subset F of K tha t i s maximal with respect to
6(F) 5 8} .

The Generalized Continuum Hypothesis i s assumed throughout the general

discuss ion. We also assume tha t X i s i n f i n i t e .

In Section 2 we show that there i s always a ' l a r g e ' subset F of

^ y ' ^K sa t i s fy ing 6(F) S 9 . F.(u, X, K) i s as large as possible in the

y

following sense. Suppose 6, p , £ are non-zero cardinals such tha t

8 < u < T. . Let

5e(M, E) = s u p { | S | ; S C [l]V and 6(S) 5 8} .

The cof ina l i ty X' of a cardinal X i s the l e a s t cardinal T such that

X can be expressed as the sum of T cardinals each less than X . If £

i s i n f i n i t e then the values of SQ(p, I ) are known under the Generalized

Continuum Hypothesis. I f 8 < u or i f \i' * E' , then S (u, E) = I ;

otherwise ^Q(W5 2) = I (see Baumgartner [ 7 ] , Theorem 3.1*). A comparison

of these r e su l t s and Proposit ion 1 shows tha t ^ ( V J >̂ K) = ^9(^5 ^-<)

always.

Section 3 contains the subs tan t ia l part of th i s paper: the

descr ip t ion of the se t s max0F(u, X, K) of cardinals . We prove in Theorem

k t h a t i f X < K or i f u < X , then a l l maximal families have the same

c a r d i n a l i t y ; namely ^"gdJ. ^> K) • When \1 = K and X > K , however,

maximal families of d i f fe r ing ca rd ina l i t i e s e x i s t . The ca rd ina l i t i e s of
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these maximal families are given in Theorem 7 below.

Our set notation is standard. An ordinal is identified with the set

of i t s predecessors and cardinals are identified with i n i t i a l ordinals. We

use a, 3 , y> <$, . . . to denote ordinals and £, A, K, y, . . . to denote

cardinals. Cn(ic) denotes the set of non-zero cardinals less than or equal

to K . The symbol [S]V denotes {5 ' ; S' c S and | S ' | = y} . A (X, K)

family is an indexed family [S.; i € l) of sets where | j | = A and

|S . | = K for each i in J . A family S of sets is said to be almost

disjoint i f \S n S'\ < min(\s\, \S'\) for a l l pairs S, S" of sets in

S . Note that a subset F of K is almost disjoint i f and only i f

\E(fi g)I < U for a l l pairs / , g of functions in F . An almost

disjoint family X of A-sized sets is said to be X-maximally almost

disjoint i f |UX| = A and every A-sized subset of UX intersects some

member of X in a set of cardinality A . For sets S, T the symbol T

denotes {/; / : S •* T} . If X c S and g i T then g/X denotes the

restriction of g to X . The oofinality A' of non-zero A is the

least cardinal T such that A can be expressed as the sum of T

cardinals a l l less than A . We say A is regular i f A' = A ; otherwise

A is singular in which case A' < A . A \-sequenoe is a sequence

< Aa; a < A'> of cardinals a l l less than A such that A = £ (A ; a < A') .

If A is singular then s t r ic t ly increasing A-sequences exist . We refer

the reader to Williams [4] for any further set theoretical background.

For the remainder of the paper we assume that 9, y, A, K are non-

zero cardinals such that A is infinite and 8 5 y 5 A . Neither y nor

K is necessarily inf ini te .

2 . V a l u e s o f F ( \ I , A, K )
o

We show that FQ(y, A, K) = 5 (y, A.K) always.

PROPOSITION 1 (Generalized Continuum Hypothesis), (i) If 6 < y

or if y' * (A.K)' , then PQ(V, A, K) = A.K .

(ii) If y ' = ( A . K ) ' then F (y , A, K) = ( A . K ) + .
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Proof. The proof i s not d i f f i cu l t .

Suppose F c l l J ' Jic and 6(F) 5 6 . Since F c [X x K ] ^ and

|X x K| = X.K , i t follows that |F| 2 SQ(y, A.K) . Therefore

( i ) i f 6 < y or i f y ' t ( X . K ) ' , then FQ(y, X, K) S X.K ,

( i i ) i f y ' = ( X . K ) ' then P (y , X, K) < (X, K ) + .

To show tha t these upper bounds are the values of -FQ(y, X, K) we

cons t ruc t , in each case , a ' su i tab ly large 1 subset F of ' K with

S(F) 5 6 .

(i) Suppose tha t e i t he r 9 < y or y ' ^ ( X . K ) ' . Let (s ; a < X)

be a pairwise d i s jo in t (X, y) decomposition of X and, for each ordered

p a i r <a, g> in X x K , l e t / „ denote the constant function defined

on B which maps each ordinal in B to 3 . Put

F = \f „ ; <a, 3> € X x K} . The family F i s a pairwise d i s jo in t subset

of [ y ' X ] K and | F | = X.K .

(ii) Next suppose y ' = ( X . K ) ' . We consider the cases X 2 K and

X > K separa te ly .

CASE 1. X 5 K . In t h i s case K i s i n f i n i t e and X.K = K . Since

y'. = K ' i t follows from Williams [ 4 ] , Theorem 1.2.7, that there i s an

almost d i s jo in t subset F of K with |F | = K = (X.K) . Since

yK c '•1J' •'K the family F suff ices .

CASE 2. X > K . In t h i s case X.K = X and we appeal to the resu l t s

on SQ(VI, X) . Let 8 ( B, X) . Let 8 = ( B ; a < X ) be an a lmost d i s j o i n t (X , y)

decomposi t ion of X and s e t F = { / R ; < a , 3 > € X xx:} (where f „ i s

d e f i n e d as a b o v e ) . C e r t a i n l y F c ^ ' V . To show t h a t F i s a lmos t

d i s j o i n t , suppose < a , B> and <"y, 6> a re d i s t i n c t members of X * K .

I f g # 6 then E[fa &; f &) = 0 . I f 6 = 6 t hen a * y and

E(fa,fi> *V,6J ~ S« " By • " f ° l l 0 W S t h a t | E ^ a , g ; fy,&) I S K n S Y ' * P

since B i s almost d i s j o i n t . Hence F i s an almost d i s jo in t subset of
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[ P ' X ] K a n d | F | = ( A . K ) + .

This completes the proof of Proposition 1. D

We remark that there is always a subset F of K such that

6(F) 5 6 and |F| = FQ(V, A, K) ; the supremum in the definition of

Fg(y, X, K) is a maximum and not a strict supremum.

3. Cardinalities of maximal families of partial functions

In this section we describe the cardinalities*of subsets F of

K that are maximal with respect to 6(F) 5 8 . We first make a few

simple observations about maximal families of partial functions.

LEMMA 2. Suppose F c *-v' JK and F is maximal with respect to

6(F) 5 6 . Then

(A) |F| > K ,

(B) |X-U{dom(f); / € F}| < U ,

(C) K = U{ran(f); / € F} .

Proof. (A) For a contradiction suppose |F| < K . Choose a function

g from H< such that g(a) {: {/(a); f € F} for each a less than \i .

This is possible since |{ / (a) ; / € F}| 5 |F| < K by assumption. Then

£(/ ; 9) = 0 for each / in F ; contradicting the maximality of F .

(B) If X € [X-U{dom(/); f € F}]y and g € X< , then E{f; g) = 0

for each / i n F ; contradicting the maximality of F .

(C) If B € K - U{ran(f); f € F} and g is any function in ^V'X'K

that is constant with value 3 , then E(f, g) = 0 for each / in F ;

contradicting the maximality of F . D

LEMMA 3. Suppose u is infinite and uf = K' . If F is an almost

disjoint subset of K and F is maximal with respect to almost

disjointness then |F| > K

Proof. Suppose F is an almost disjoint subset of ' K and

|F| 5 K . We show that F is not maximal with respect to almost
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dis jo in tness by construct ing a function g in K such that

\E(f; g) | < y for each / in F . Write F = ( / ; v < K) where

r e p e t i t i o n s occur i f | F | < K . Let <6 , T < y ' > , < Y ; O < y ' > be

s t r i c t l y increasing sequences of ordinals such tha t y = sup{6 ; T < y '}

and K = SUP{YO; O < y '} • Inductively define the function values g(a.)

as follows. Suppose tha t a < y and g(&) has been defined for each 6

l e s s than a . Let x(a) be the l ea s t T less than y ' such that

a < 6 and choose g(a) from K - {/ ( a ) ; V < YT(a\} • This i s possible

s ince | { / v ( a ) ; v < Y T ( a ) } | < lYT(a)I < K • T o s h o w t h a t 9 suf f ices ,

suppose tha t V < K and l e t o(v) be the l e a s t O less than y ' such

t h a t v < Ya . I f 6 a ( v ) 5 a < y then V < Y a ( v ) < Y x ( a ) , and i t follows

from the choice of ^(a) tha t g(a) 4 f^M • Hence E[f^; g) c &a- ,

and \E[fv, g)\ < ! 6
a ( v ) l < u a s required.

The family F , then , i s not maximal and the resu l t follows. D

With th i s lemma the se ts maxgf(y, A, K) of cardinals can be

described in the case when e i t h e r A 5 K or y < A .

THEOREM 4 (Generalized Continium Hypothesis). Suppose that either

X < K or \x < X .

(i) If 9 < y or if y ' f ( A . K ) ' , then maxQF(y, A, K) = {A.K} .
o

(ii) If y ' = ( A . K ) ' then max F{\i, A, <) = { ( A . K ) + } .

Proof. Certainly maxfiF(y, A, K) C Cn(FQ(y, A, K)) . Since there i s

a subset F of ^P ' -"K with 6(F) 5 6 and |F | = FQ(\x, X, K) , a simple

appl ica t ion of Zorn's Lemma implies tha t "̂g(Vi, A, K) € maXgF(y, A, K) .

From these observations i t follows tha t

(i) If 6 < y or i f y ' + ( A . K ) ' , then maxQF(y, A, K) C Cn(A.K)

and A.K € maxQF(y, A, K) .

(ii) I f y ' = ( A . K ) ' t h e n max F ( y , A, K) C CnfU.K)*) and
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( X . K ) + € max F(u, A, K ) .

We show, in each case, that the cardinals above are the only members

of maxQF(li, X, K) . For t h i s , suppose that F c ' K and F i s

maximal with respect to 6(F) < 8 . We consider two cases.

CASE 1. X 5 K .

Property (A) of Lemma 2 implies that |F| > K = X.K . This is all

that is needed if either 6 < u or U ' # K ' . If u ' = K f then Lemma 3

implies that |F| > K = ( X . K )

CASE 2. y < X .

Since the case when X S K has been s e t t l ed we may further assume

that X > K . Property (B) of Lemma 2 implies tha t

X = |U{dom(/); / € F}| < p . | F | . Since u < X i t follows that

|F | > A = X.K . This i s a l l tha t i s needed i f e i ther 6 < u or u ' t X' .

I f y ' = X' and 8 = u , we claim that |F | > X+ = ( X . K ) + . For

suppose that |F | 5 X and write F = (f • v < X) . We define a function

g such that \E[f ; g)I < V for a l l v less than X . Let <6T; T < y'>

and W o ; o < p'> be s t r i c t l y increasing sequences of ordinals such that

y = sup{6 • x < y '} and X = sup{y ; o < y '} . Inductively define a

sequence < a: ; a < y> of pairwlse d i s t inc t elements of X as follows.

Suppose that a < y and I , has been defined for each 6 less than o. .

Let T(<X) be the l eas t T less than y ' such that 6^ > a and choose

x from

X - (U{dom(/V); V < Y T ( a ) }
 u {*fii 6 < a}) .

This i s possible since

l U j d o m t f J i V < Y T ( a ) H 2 y . | Y T ( a ) | < A .

S e t X = [ x ; a < \}} a n d c h o o s e g f r o m K . T h e n X € [X]V a n dx

' *g € *-v' *K . To show that \E[f ; g) \ < u for each V less than X , i t
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suffices to show that \X n dom(/ J | < \i for each v less than A . To

see this suppose v is less than A and let a(v) be the least a less

than u' such that v < yQ . If 6 a ( v ) s a < y then v < Ya ( v ) < Yx(a)

and the choice of x implies that x {: dom(/ ) . Therefore

X n dom(/v) c {xa; a < 6 a ( v ) } and \X n domffj | 5 | 6 a ( v ) | < u as

claimed. Hence \E\f ', g) I < M for each V less than A ; the required

contradiction.

The proof of Theorem *» is nov complete. •

For the remainder of the section suppose that A > K . To determine
the nature of the set maxa.F(A, A, K) we follow a programme similar to one

t)
used in ErdBs and Hechler [2] to determine the cardinalities of A-maximally
almost disjoint families.

The following lemma is essentially Theorem 2.3 from the above paper by
Erdos and Hechler and provides a method of constructing A-maximally
almost disjoint families.

LEMMA 5 (Erdos and Hechler). Suppose A is singular, 1 5 5 < *• >
and < A ; a < A'> is a strictly increasing ^-sequence of regular

cardinals greater than £ . Suppose that

(i) Sg; o < X' and 6 < si is a pairwise disjoint family of

sets such that Sn = ^~ for each (a , (3) in A' x Z, 3

(ii) G is an almost disjoint subset of ' £ that is
maximal with respect to almost disjointness,

(Hi) S = UiS / y, a € dom(̂ ) j for each g in G .

Then the family [s ; g € 6) is X-maximally almost disjoint and has the

same cardinality as G . •

The next lemma asserts that max,f(A, A, K) is closed under limits at
A

singular cardinals. It is modification of Theorem 3.1 of Hechler [3] and

its proof is similar.
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LEMMA 6 . If Z, is an infinite singular cardinal and <£ ; T < £ '>

i s a strictly increasing X,-sequence such that X, € max,F(A, A, K) for
T A

each T less than Z,' i then Z, € max.F(X, X, K) . •
A

With these two lemmas it is possible to describe the sets

maXgF(X, X, K) when X > K .

THEOREM 7 (Generalized Continium Hypothesis). Suppose that X > K .

(i) If 6 < A then maXgfU, A, < ) = { ? € Cn(A); K 5 l) .

(ii) If A' t K' then maxxF(A, A, K) = {z, € Cn(A
+); K 2 U - {A'} .

(Hi) If X' = K' then

max^A, A, K) = {z, 6 Cn(A+); K + < Z,} - {A'} .

Proof. We deal with the three cases separately.

CASE (i). 1 2 6 < A .

Suppose C, € maxoF(X, A, K) . Property (A) of Lemma 2 implies that

Z, > K . On the other hand S 5 A since FQ(^, X, K) = X . Hence

maxeF(A, A, K) C {̂  € Cn( A); K 5 Z,} .

We now show that i f K < ^ 5 A then ? € maXgF(A, A, K) . Since

FQ(^, A, K) = A and there i s a subset F of ^ X ' ^ K with | F | = A and

6(F) « 9 , i t follows from a simple application of Zorn's lemma tha t

A € maXgF(A, A, K) . Next suppose K < Z, < A . We show

Z, € maxgF(A, A, K) .

In this paragraph suppose that C is infinite. Let \Pn>
 a < ^) ̂ e

a pairwise disjoint (z,, X) decomposition of A and, for each ordered

pair <a, B> in Z, x K let f o be the constant function defined on

S that takes value 3 . Put F = {/ R; a < Z, and & < K} . The familyJ l / U d l / UOACQ V O 1 U E p • f UU I — 1 J Q

F is a pairwise disjoint subset of '

decomposes A x K . We claim that F is maximal with respect to

F is a pairwise disjoint subset of ^ » ̂ K and |F| = Z. . Note that F
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6(F) 5 6 . For suppose g € l ' *K . Now \g\ = A ,

g = U\fa g " £ ; < a , g> € C x <} , | C X K | <A and 6 < A . Hence t h e r e

i s an o r d e r e d p a i r < a , 6 > i n ? x K such t h a t \f g n # | > 8 • Thus

\E[f . ; g]\ > 0 and F i s maximal wi th r e s p e c t t o 6(F) 5 6 as c la imed.

Now suppose C i s f i n i t e . Let [B ; a < £-K+lJ be a p a i r w i s e

d i s j o i n t (C-K+l, A) decomposi t ion of A . For each a l e s s than

£ - K + 1 l e t <7 denote t h e cons tan t func t ion def ined on B t h a t t a k e s

v a l u e 0 . For each g w i t h 1 5 $ < K l e t 7io denote t h e c o n s t a n t
p

function defined on A that takes value 3 . Put

F = {ga; a < C-K+l} u {hs; 1 £ B < K} .

Then F is a pairwise disjoint subset of ' K and |F| = t, . Since

UF = A x K and £ < N 5 \ f , i t follows that F is A-maximally almost

disjoint and so is certainly maximal with respect to 6(F) 5 6 .

In either case, C € maXgip(A, A, K) as required; and the theorem is

established in Case d).

Before dealing with Cases (i-i) and (Hi) , we make the following three

observations.

(a) A' $ maxxF(A, A, K) .

For a contradiction, suppose A' € max,-f(A, A, K) and le t F be a

A'-sized almost disjoint subset of ' K that is maximal with respect to

almost disjointness. Then F is an almost disjoint subset of [A x <]

where |A X K| = A . In fact F is A-maximally almost disjoint. To see

this suppose X € [A x <] . Since | * | = A and A > K , i t follows that

there is a function g in ' K such that j c j ; . Since g € ' K

the maximallty of F implies there is / in F such that | / n g\ = A .

Therefore |£ n f\ = A and F is A-maximally almost disjoint as

claimed. But no A-maximally almost disjoint family of cardinality A'

exists (see Erdos and Hechler [2]); the required contradiction.
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(3) I f K < A' , K £ X, < X and X, * X' , then X, € max,.F(X, A, K) .

In t h i s paragraph we assume that X, i s i n f i n i t e . Let

8 = [B ; a < X,) be a X-maximally almost d is jo in t ( t , X) decomposition

of X (see Erdos and Hechler [2]) and set F = {/ ; a < X, and 3 < <}
Ct jP

[where / fi is defined as above). Certainly F c ' K , F is almost

disjoint and |F| = X, . We claim F is maximal with respect to almost

disjointness. For suppose g € K . Since K < X' the function g
is constant on a set of power X : there is an ordinal 3 less than K

and a set X in [dom(^) ] such that g(\>) = 8 for a l l v in X .

Since X € [X] , the X-maximally almost disjointness of 8 implies

there is an ordinal a less than C, such that \X n B \ = X . I t follows

that X n Ba£ E(fa g ; g) and |iF(/a &; g)\ = X . The family F , then,

witnesses that X, € max,f(X, X, K) .

Now suppose £ is f ini te . Let [B ; ot < £-K+l) be a pairwise

disjoint (C-K+1, X) decomposition of X . For each a less than

t, - K + 1 le t g denote the constant function defined on B that takes

value 0 . For each 3 with 1 £ 3 < K le t h. denote the constant
p

function defined on X tha t takes value 3 . Put

F = {9a; a < C-K+l} u {h&; 1 5 3 < <} •

Then F is a pairwise d is jo in t subset of ' K and |F | = C, . Since

UF = X x K and Z, < K 5 X' , i t follows tha t F i s X-maximally almost

dis jo in t and so witnesses t ha t C, € max.f(X, X, K) .

In e i ther case, Z, € max,F(X, X, K) and observation (3) follows.

(Y) If X' < K , K £ t, £ X and X,' f X' , then X, t max^FU, X, K) .

We construct an C-sized almost disjoint subset F of ' K that

is maximal with respect to almost disjointness. Since X' £ K < X and

X, < X , we have that X is singular and there exists a strictly increasing
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X-sequence <X ; 0 < X'> of regular ca rd ina l s g rea t e r than £ . Let

\SQ; a < X' and p < t,\ be a pairwise d i s j o i n t decomposition of X with

S? = X always. For each y l e s s than K l e t fi denote thep I u p

cons t an t function defined on oi t ak ing value y . The following

properties hold:

(a) fi Y
 € * K always;

(b) X x K = [}\f ; O < X', g < C and y < KI .

Next observe that since C,' / X' and X' < C , i t follows that

F. , (X' , X', t,) = X' .£, = C and there is an C-sized almost disjoint subset

[X' X']
G of ' C x ic maximal with respect to almost disjointness. Further,

we can assume, without loss of generality, that UG = X' x £ x K . we n o w

apply the construction of Lemma 5- For each g in G put

F = u j ^ o j ; ° € dom(g)j and put F = \Fg; g € G} . Since |dom(ff)| = X'

and property (a) holds, i t follows that F c ' J< . Lemma 5 guarantees

that F is X-maximally almost disjoint and |F| = £ . Finally, since

UG = X' x £ x < and property (b) holds, i t follows that UF = X x < .

Hence F i s a X-maximally almost disjoint (£, X) decomposition of

X x < and so is certainly maximal with respect to almost disjointness as

claimed. The family F , then, witnesses that £ € max,F(X, X, K) .

With these three observations we can now se t t l e the theorem in Cases

(ii) and (Hi). By the usual argument, X = F,(X, X, <) € max..F(X, X, K) .

CASE (ii). X' * K' .

Suppose £ is a cardinal and C, € max,.F(X, X, K) . Property (A) of

Lemma 2 implies X, > K . On the other hand t, < X and observation (a)

implies Z, t \' . Hence maxxF(X, X, K) C {£ € Cn(X
+); K 5 C> - (X'} . As

above, X 6 max̂ jF"(X, X, K) . Next suppose K < t, < X and £ * X' . We

show that Z, € max,F(X, X, K) . If K < X' then observation (B)
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establ ishes that t, € max,F(X, X, K) . I f A' 5 K and C' + X' , then

observation (y) implies that £ € max,F(X, X, K) . The remaining case i s

when X' 2 K and Z,' = X' . Here we appeal to Lemma 6. Since X' # K'

i t follows that C' = X' < K 2 £ and £ i s s ingular . Let < t, ; T < C'>

be a s t r i c t l y increasing C-sequence of regular cardinals all greater than

K . For each T less than V we have K 5 £T 5 X and Ĉ  * X' ; so

observation (y) implies that £ € max-JF^X, X, K) . Lemma 6 now gives that

C € max,f(X, X, K) and the proof i s complete in Case (ii).

CASE (Hi), K i s i n f in i t e and X' = K' (SO X ' S K ) .

Suppose C i s a cardinal and £ € max.f(X, X, K) . Since X' = K ' ,
A

Lemma 3 implies that C - K • On the other hand t, 2 X and observation

(a) implies C * X' . Hence max,f(X, X, K) C {£ € Cn(X+); K+ 2 U - tX'} .

As above, X € max,.F(X, X, K) . Next suppose < S C, S X and t, t X' .

We show that T, € m a x ^ X , X, K) . If C' i- X' then observation (y)

implies ^ € max,.F(X, X, K) . If Z,' = X' then £ is singular (since

C' = X ' = K ' < K £ ? ) and the proof that C, € max^^X, X, K) in this

A

case i s ident ica l t o the corresponding proof when X' 2 K and £ ' = X' in

Case (ii) above. Hence {t, € Cn(X+); K+ 5 C> - (X'} c max.f(X, X, K) .
A

This then proves the theorem in Case (Hi) and establishes the result. D
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