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COUNTEREXAMPLES TO A CONJECTURE
FOR NEUTRAL EQUATIONS

T. KRISZTIN, R. M. MATHSEN AND XU YUANTONG

ABSTRACT. A collection of examples of first order linear neutral differential delay
equations having a nonoscillatory solution with lim sup = oo and liminf = 0 at oo is
given. This disproves a recent conjecture about the asymptotic behavior of solutions to
such equations.

In a paper in 1986, Grammatikopoulos, Grove and Ladas [3] proved some asymptotic
properties of nonoscillatory solutions of the first order linear differential delay equation

d
)] DO +pyt—n]+gyt—0) =0

where g # 0, p, T and o are real constants. The asymptotic behavior of solutions of (1) in
several cases involving various sign conditionson ¢, 7, p and p — 1 was left unresolved in
[3], but two conjectures covering these unresolved cases were given in that paper. Before
stating these conjectures, we observe that y satisfies (1) if and only if —y satisfies (1).
Thus we can without loss of generality assume that a nonoscillatory solution of (1) is
eventually positive, i.e., is positive on [#y, 00) for some real number .

CONJECTURE 1.  Suppose p < 0 and gr < 0. Then lim, ., y(t) = 00 or lim,—, ¥(t)
= 0 for every eventually positive solution of (1).

CONJECTURE 2.  Supposeq < 0.If(i)p = 1 or (ii)p > 1 and T > 0, then t]_ig})y(t) =
00 for every eventually positive solution of (1).

Recently in [4], Conjecture 1 was proved as was Conjecture 2(i). In addition, Conjec-
ture 2(ii) was shown to hold in case any one of the following three conditions is satisfied:
—qr<Inpando > 0, or
—qr<plnpando >, or
06>20,1+qgr>0,p>2and 1l +gr+p—2>0.

The purpose of this note is to show that in general Conjecture 2(ii) is false. Let o be

a positive real number. Put p = €%, g = —2ae® and 7 = ¢ = 1. With these choices the
characteristic equation for (1) becomes
) A1+ e = 20"
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A = «ais clearly a positive root of this equation. To find nonreal roots with real part «,
let A = a + i(3. Putting this expression for X in (2) and equating real and imaginary parts
gives the two equations

_[3(1 +cos 3)

. _ Bsin
©) = sin 3 and & = 1—cosf

which are equivalent. Note that g% = @gﬁw > 0, so « is an increasing func-
tion of 3 on each of the intervals (2(k — D, 2k7r) for each positive integer k and has
vertical asymptotes at § = 2km. Also, limg ;. () = 00, limg i (B) = —00,
a((2k+ 1)7r) = Oand limg_,y+ a(3) = —2. Thus for any @ > 0 there are unique numbers
Bo = Bo(@) € (m,2m) and B; = [i(a) € (3w, 4m) so that « = g(B;) = g(Bo) where
g(B) = —B(sin 8) /(1 — cos B). This means that o, o & iy and « %+ i; are roots of the
characteristic equation (2). Consequently

(C)) y(t) = e*(2 — cos Bot — cos B1t)

is a solution of (1). Clearly y(#) > 0 and lim sup,_,, y(#) = oo for any choice of 8y and
B1. y(®) > 0 for all ¢+ > O if and only if 31 /3o is irrational. We now claim there is a
dense set of o’s with the property that y(f) > 0 for + > 0, limsup,_,,, y(f) = oo and
liminf,_, y(¢) = 0.

In our construction we use the sequence {a,}32, defined by a; = N and a;,; = N*
for k > 1 where N > 1 is an integer to be selected. We will also use the number 7y where
TNg = Yp_,ay' — Ty as n — 00. Observe that

1 N
an+l N—l

o0
(&) 0<TN—TNp= 3 a; <

k=n+1
First we show that 7y is irrational. Clearly 7n, = m, / a, for some positive integer m,,. If

7y = k/ £ for positive integers k and ¢, then

1
la,’

k m
0<TN—TN‘,, -z

= >
{  ay,

_ lka,, —fm,
La,

But this contradicts (5) for large n.

Now let ap > Oand £ > O be given withe < g and e < 1. Let h(a) = Bl(a)/ﬂo(a).
Then A is a continuous function of o and maps the interval (g —¢, g +¢) to an interval of
length § > 0 containing h(c). Now pick N > 2/§ and N > €*®*!) and an integer M so
that Ty +M /N = h(ay) for some ay € (ap—e, ap+¢). Then 81 /B0 = Bi(an) /Bolan) =
M / N + 7y is an irrational number. Let ¢, = 2ma, / Bo- Then from (4),

W(tn) = €*"(2 — cos Bot, — cos Bit,) = eha"a”/ﬂo(l —cos(2manB /o))
< (£2M)n (1 - cos(27ran(M /N+ TN,")))

< (eHorDyan (1 — COS(27Tan(TN - TNﬂ)))
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since a,Tn,, and aN/N are integers. Now cosu > 1 —ufor0 <u < 1, so

Y(tn) < (DY 2ma,(Ty — Ty )
N e2(a0+l) an
a(~—)
N—-1 N

by (5). But now by choice of N, €*@*D) /N < 1, 50 lim, . ¥(t,) = 0. Thus y has the
desired property as we claimed.

This class of counterexamples shows that Conjecture 2 is false in general. In the nota-
tionof NDDE (1),0 = 1 =7, p = ¢* and —qg = 2ae® = 2p Inp. Hence we have found a
dense collection of points along the curve —g = 2p Inp for which Conjecture 2(ii) fails.
A similar construction for the equation

<27

d%[y(t) +e%y(t — 1)] = 2ay(1)

furnishes a dense collection of examples along the curve —g = 2 Inp for which Conjec-
ture 2(ii) also fails. Here r=1> o = 0.

Recently there have been several papers written on linear generalizations of (1) ob-
tained by replacing

k
py(t —7) by > piy(t —7;) or
i=1

qy(t — o) by 3 qiy(t — 0y).

i=1

See references [1], [2], [5], [6] and [7]. We offer here two examples to show that these
more general equations may also have positive solutions with lim sup = oo and liminf =
0 at co.

The examples are:

(6) %LV(:) +2e"Ty(t — 1) — e*y(t — 0)] = 2ce” y(t + p)

wherea > 0,7> 0,0 = (1 +§2f—1)7' for some positiveintegers £ and k, p € (pg—¢, po+¢)
where py € [—0,00) and £ > 0, and

7 %U(t) +e"y(t — 1) = (2 +)ae™y(t — o) — eae™y(t — p)

where o > 0,7> 0, 3> 0and (8sin37) /(1 — cos B7) = a, 0 = 2kn /o, p = 2n7/Bo
where nand k are integers withn > kand n > 37/(2),and € € (O, 2/(~1+e2(""‘)’“’/5)).
For both (6) and (7) the assumptions on the parameters guarantee that the characteristic
equations have roots o, o + i3 and ¥ < 0. Thus

y(t) = €' + (1 + cos 3t)

is a solution having the desired properties.
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