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Abstract

In this paper we discuss the asymptotic behaviour, as ¢ — oo, of the integral solution u(¢) of the non-
linear evolution equation u'(t) € A(f)u(t) + g(t), t > s, u(s) = xo € D(A(s)), where {A(t)}i»0 is @
family of m-dissipative operators in a Hilbert space H, and g € L;,.(0, oo; H). We give some sufficient
conditions and some sufficient and necessary conditions to ensure that o (¢) = ¢! f: “+ w(6)do and u(r)
are weakly convergent.
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1. Introduction and preliminaries

Let H be a real Hilbert space with inner product (,) and norm |, |. We consider the
non-linear evolution equation

u'(t) e AQu@) +g@), t=s

u(s) = xo

(1.1)

where {A(t)},»o is a family of m-dissipative operators in H, xo € D(A(s)) and
g € L,,.(0, oo; H). Our objective is to study the asymptotic behaviour, as t — oo, of
the integral solution u(¢) of (1.1). In [6,7,9] the weak convergence of the autonomous
dissipative system

u'(t) € Au(t)

u(0) = xo
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where A is an m-dissipative operator in H, x; € D(A), has been studied. In [4,
10] Morosanu and Rouhani discussed the weak convergence of the quasi-autonomous
dissipative system

u'(t) e Au(t) + g(t)
u(0) = xg

where g € L(0, oo; H) (or more generally, g — g, € L(0, oo; H) for some g, € H).
Throughout this paper we assume that A(t) satisfies the following conditions:

(H,): there exists a continuous function f : R, — H and a bounded (on bounded
subsets) function L : R, — R, such that

1.2) 01 = Y2, 11 = x2) < 1f () = F - 1% = x2) - Lix2])

forall0 <s <t¢, [x, 1] € A(t), [x2, y2] € A(s).

(Hy): Ift, 4 tin[s, +o0], x, € D(A(t,)), x, — x in H,then x € D(A(?)).

DEFINITION 1.1. If u(¢) is continuous on [s, 00), u(s) = xy, u(t) € D(A(¢)) for
t € [s, 00) and satisfies the inequality

(1.3)  |u@® — x| < lu@) — x| +/ (y +8©6),u0) —x)s +clf(6 - f(r)])db

foralls <t <1t,r > s and [x, y] € A(r). Then u(¢) is called an integral solution to
(1.1). Here ¢ = L(|x), (y, x)4 = limyyo(|x + hy| — |x])/ h and (y, x) = |x|(y, x),.

Clearly, a strong solution u«(¢) to (1.1) is automatically an integral solution to (1.1),
and by [5] the problem (1.1) has a unique integral solution under our hypotheses, and
the inequality (1.3) is equivalent to

1 _ i
19 S0u® —xP — @) - xP) < / (8(8) + y, u(8) — x)d6
+ L(|x|)f (@) — x| - 1f ©) — F(r)d6

for all

s<t<t, r=x=s, [x,yleAQ).
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2. Weak convergence of the integral solution

LEMMA 2.1. Suppose F is a non-empty closed convex set in H, Pr is a projection
on F. Then

2.1) (x — Ppx,z— Pex) <0, VzeF,xeH.
(2.2) |Pex—Ppy|<|x—y| Vx,y€H.
23) |Pex—z* <|x —z|>—|Ppx —x|?, VxeH,z€eF.

Since Lemma 2.1 is well known, its proof will be omitted.
LEMMA 2.2. Suppose u(t) is an integral solution to (1.1). If there are ro > s and

8o € H such that f — f(ry) € L(0,00; HYand g — g, € L(0, 00; H), then u(t) is
bounded on (s, 00) if and only if A~ (ro)(—goo) # 8.

PROOF. Firstly, we suppose that u(t) is bounded on [s, 00). Since u(¢) is an integral
solution of (1.1), then for all t > s > 0 and [x, y] € A(ro) we have

1 f
Q4 S(ut) =P — o — xP) < f (80) + v, u(®) — x)d6
+ L(|x|)f () — x| - 1£©8) — F(ro)| do.
Dividing by r — s > 0, we obtain

2.5)

1 1 t
55y 1O = 5P~ o =51 = = [ 6(6) = g 4(0) = )6
L(ix)

+ (¥ + 8o 0 (1) — )+——-—f (@) — x| -1f(©@) — f(ro)| dO

forallz > s > 0, [x, y] € A(rg), where o (¢) = (t — 5)~! f; u(8) d is bounded on
[s, oc). Therefore there exists a sequence ¢, — oo such that ¢ (¢,) converges weakly
top € H. Ifwetaket = ¢, in (2.5) and let n — oo, then

(2.6) (¥ + 8o, x — p) <0 forall [x, y] € A(ry).

The maximality of A(ry) implies that [p, —go] € A(ro), that is, A~ (ro)(—ge) is
non-empty.

Conversely, if A~ (r5)(—go0) 7# @, then there exists an element x € D(A(ry)) such
that —g., € A(rg)x. Wetake y = —g,, in (2.4) and by a variant of Gronwall’s Lemma
(see {2, p. 157]) we deduce that u(¢) is bounded on [s, 00). The proof is complete.
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THEOREM 2.3. Suppose u(t) is an integral solution to (1.1). If there are f.,
200 € Handt, — ocosuchthat f(t,) = foo(n € N), F = ﬂ:il AN T)(—gx) # 9,
then there is p € F such that

Peu(t) > p and o(t) > p (t —> o0).

PROOF. We may assume g,, = 0, F = ﬂ;’;l A~!(1,)(0) (without loss of gener-
ality). Since A™!(#) is maximal dissipative, then F is a closed convex subset in H.
Take x € F,r = 1,. By the ‘if’ part of Lemma 2.2, u(t) is bounded on [s, c0) and for
alxeF,t>t>5>0

2.7) lu (@) — x| — |u(t) — x| Sf (18@)] + L(IxDIf(0) — fwol) db.

Hence, forevery x € F,the function? — |u(t)—x| —fo'(g(()) —L(xDIfO)— fxl)db
is non-increasing and bounded on [s, 00). Since g, f — fx € L(0, co; H) we conclude
that there exists a limit

2.8) lim |u(t) — x| = a(x) foreveryx € F.
t—>00

We set v(z) = Pru(t). According to Lemma 2.1 (ii), v(z) is bounded on [s, 00). Let
C, = sup,., L([v(?))); for fixed t > s we denote y,(h) = u(t +h), h > 0. Then y,(h)
is an integral solution of the following equation:

dy.(h)
(2.9) T SAC+Hmy ) +g@+h)
¥:(0) = u(r).

By the same argument above we obtain the function

h
h — 1y.(h) —v(®)| —/ (8@ +D[+ Cilf (6 +1) — fool) db
0

is non-increasing. Hence V¢t > s, h > 0,

t+h
(2.10) lu(t +h) —v(0)| — / (8@ + Ci1f(O) — fol)dO < |u(r) — v()].

This implies that forallt > s, & > 0,

t+h
Gt + ) — (& + )| —f (@) + Ci1F () — ful)
< u(t + h) — v(0)| —/ (@) + Ci1F©) — ful)
t+h *
- f (8@ + C1lf 6) — fiol)

< |u(t) —v(@®)| —/ (18@) + C1l f(6) — fool) dE.
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Thus the functiont — |u(r) —v(¢)| —-f;(lg(G)l +C1|f(8) — fx|) dO is non-increasing
on [s, +00) and there exists lim,_, o, |u(t) — v(?)|.
Next, by Lemma 2.1 (iii)

11) @ +h) —v®)) < |ult +h) —v@)> = vt +h) —u(t + h)|*.
From (2.10) and (2.11) one obtains
lv@ +h) —v(@)* < |u(@®) —v(@) — |u(t + k) — v + )P

t+h
+20u() — v(0)] - / (1@ + C11f©) — ful) d6

t+h 2
+[/ (|g<0)|+cl|f(9)—fw|)d9] .

This implies that there exists lim, , v(f) = pand p € F.

Now suppose o (f;) — y (& — 00). By the ‘only if’ part of Lemma 2.2 for every
ne ¥ wehavey € F, = A7'(1,)(—go); thus y € F. According to Lemma 2.1 (i)
we have

w@)—v@),z—-v(@) <0, VzeF,

ti+s
(2.12) t__/ w®) —v@),z—v()do <0, VzekF.

k

Letting t, — oo in (2.12), one obtains
(y—p,z—p)<0, VzeF.

This implies that y = p and o (¢) 3 p (¢t = 00). The proof is complete.

REMARK 2.4. If A(t) = A, s =0and F = A~ (—g) # @, then from Theorem
2.3 we may obtain respectively the Ergodic Theorem of autonomous systems and
quasi-autonomous dissipative systems in [4, 10, 5].

LEMMA 2.5. Suppose u(t) is an integral solution to (1.1). ThenforallT > 0, h >
0, r>t>s5s>0andr +h <T, we have

(2.13) lu(r +h) —u(t + h)| < |lu(r) —u(®)|

T+h
+/ (GlfO+ T —1)— fEOI+1806 + (r — 7)) —80)])db

where C; = sup{L(t) : 0 <t <sup{|lu(@)| :s <8 <T+(r —1)}+1}.
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PROOF. From Theorem 1 (ii) in [11] we get
(2.14) lu(t + h1) —u(@)| < |u(z + hy) — u(z)|

+f (CI1fO+h)— O+ 186 +h) —g6))db

foralls <t <t <Tandh, >0, where C = sup{L(#) : 0 <t < sup{|u(@ + h))| :
s<60<T}+1}.

Forh >0, r>t>s,lett =t+handr — t = h; in (2.14). One obtains (2.13).
The proof is complete.

THEOREM 2.6. Suppose u(t) is an integral solution to (1.1). If there are ry > s
and g, € H such that —g., € R(A(rp)), f — f(ro) € L(0,00; HYand g — g €
L(0, 00; H), then there exists p € A~ (ro)(—goo) Such that w-lim,_, o (t) = p.

PROOF. Firstly, by Lemma 2.2, sup,, [u()] = M < oco. We set¢,(r, ) =

/le(0+(r—r)—f(9)ld0+f 20+ —1) —g@)]d6, r>1,
[le(9+(r—r)—f(9)ld9+/ 8@+ (r — 1) — g@)|do, r <.

Then lim, ,_, », €, (r, T) = 0. By Lemma 2.5 and Definition 3.1 in [10] we know that the
curve (u(t)),»; is almost non-expansive in H. Hence by Theorem 3.8 in [10] and the
‘only if” part of Lemma 2.2 there exists w-lim,_,o, o (!) = pand p € A7 (rp) (—geo)-

COROLLARY 2.7. Suppose u(t) isanintegral solutionto (1.1). Ifthereare [, g €
HandT > Osuchthat f — foo € L(0,00; H), 8 — g0 € L(0,00; H) and F =
ﬂ,zT A ' (t)(—go) # B, then o (t) is weakly convergent as t — 00.

THEOREM 2.8. Suppose u(t) is an integral solution to (1.1). If there existry > s
and g, € H such that f — f(ry) € L(0,00; H) and g — g € L(0, 00; H), then
there exists w-lim,_, o, u(t) if and only if F = A7 (ro)(—goo) # @ and w,(xo) C F,
where w,,(xo) is the set of weak cluster points of {u(t) : t > s}.

PROOF. ‘Only if’ part: Suppose w-lim,_, ,u(t) = p. This implies that w-lim,_, o ()
= p. From (2.5) it follows that p € F.

‘If” part: Since F # @ and w,,(xp) C F, according to Lemma 2.2, w,(x;) # @.
Let p, q be arbitrary in w,,(xs) C F. We have

Q.15) u@) — pP* = lu(@®) —qP +2w@) —q,9 — p) +1g — pl’, t=s.
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Now forallz >t > s, x € F we have
lu() — x| — lu(®) — x| < /’;(Ig(G) — 8l + L(xDIf(©) — f(ro)]) db.
Thus the function
t— |u@) — x|+ /O,(Ig(()) — 8ol + L(xDIf(6) — f(ro)]) d6

is non-increasing on [s, oc) and there exists lim,_, , |u(t) —x| = a(x). Now p,q € F;
then from (2.15) we get

(2.16) a*(p) —a*(q) =g — p?
and
(2.17) o’(q) — o’ (p) = |p — ql~.

Hence p = q, w,(xp) contains only one element and w-lim,_, ., u(¢) = p. The proof
is complete.

LEMMA 2.9. Suppose u(t) is an integral solution to (1.1) withg(t) = 0and xo = x
and F is a closed subset of H. If w,(x) C F forall x € D(A(s)) then w,(x) C F for
all x € D(A(s)).

PROOF. Let x € D(A(s)) and let x, — x with x, € D(A(s)). If y € w,(x)
then there exists a sequence f; — oo such that u(,) = U(t, s)x 5 y, where
U(t, s) is an evolution operator generated by A(t). For every fixed n the sequence
|U (t, $)x,| is bounded and therefore U (¢, s)x, has a weakly convergent subsequence
U(ty,, )X, = y,. Clearly y, € w,(x,) C F and

lya — y| < Lim |U(t;, $)xn — U(ty;, 5)x| < |x, — x].

Faade

Thus y, — y and y € F. The proof is complete.

THEOREM 2.10. Suppose u(t) is an integral solution to (1.1) with g(t) = 0 and
Xo = X, the function f(t) in the condition (H,) is of bounded variation on [s, T] and
V:T(f) =My <My <ocforall T > s. If there exist Ty > s and f, € H such that
F = ﬂ:zro A'(1)(0) # 0, f — fo € L(0, 00; H) and satisfying the condition

(H,): There exists xo € F such that x, 5 x, Y. € A(t)x, (t, — o00) and
lim, . 00(Yn, Xn — X0) =0 imply x € F.
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Then u(t) = U(¢, s)x is weakly convergent ast — ©0.

PROOF. Since F is a closed convex subset of H, by Lemma 2.9 it is sufficient to
prove that w, (x) C F for every x € D(A(s)). Letx € D(A(s)) and y € w,(x) be
such that u(ty) = U(t, $)x = y (e — ti_y > 1,1, — 00). Set

b(A(s)) = {x € D(A(s)) : L(s,x) =li_mh_1[U(h +5,8)x — x| < 00}.
h—0*

Then D(A(s)) C b(A(s)) C D(A(s)) and for x € D(A(s)) we have
2.18) |U@F+s,5)x =U(@+s,5)x] <w (e’ —e”)[L(s,x) + M;], VYo >0

(see [5, p. 25]). Since for x € D(A(s)), u(t) = U(t, s)x is a strong solution to (1.1)
with g(¢) = 0 and x;, = x, we obtain

1dl(t) P= (1), u(t) — xo) t>
2dtu Xol*= W' (), u Xp), a.e.t>s.

Analogously to Theorem 2.8 we can prove that there exists lim,_, o, |u(¢) — xo| for
xo € F. Thus h(t) = (u'(t), u(t) — x9) € L(s, +00). We shall now prove that there
exists a sequence t; such that t; — oo, A(t;) — 0and U(y;, s)x 5 y. For every
€>0( <1/2)let Q. = {t = s : h(¢t) > €}. The measure of Q. is finite since
h(t) € L(s, +00) and therefore Q. can contain at most a finite number of the intervals
(& — €, 1). It follows that there exists a v large enough such that h(t) < € and
0 < # — © < € for some ¢ large enough. Therefore, we can choose a sequence T;
such that 7, — 00, 0 <, — 7; < 1/j and h(7;) < 1/j. By (2.18) we have

1
U@, s)x — U(z;, s)x| < 7(L(s,x) + M),
u(t;)) =U(g, 5)x 3 y.

Since u'(1;) € A(t))u(t;), lim;_, o h(z;) = (U'(7;), u(z;) — x0) = 0. By the condition
(H;) one obtains y € F. The proof is complete.

Next, we shall consider the quasi-autonomous dissipative system

(2.19) [“'(t) € Au()+ f@t), t>0

u(0) = x, x € D(A)
where A is an m-dissipative operator and f € L(0, oo; H).
DEFINITION 2.11. A dissipative set A is 3-dissipative if Yu,, u,, u; € D(A)

(2.20) (Auy, uy — uy) + (Auy, uy — u3) + (Aus, u3s —uy) <0.
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THEOREM 2.12. Suppose u(t) is an integral solution to (2.19), F = A™'(0) # 0.
If A is 3-dissipative, then for every x € D(A), w,(x) C F and u(t) is weakly
convergent ast — 00

PROOF. Firstly, suppose f(t) is of continuous bounded variation on [0, T],
\/g(f) = Mr < My < oo (YT > 0), and there exists T, > s such that f(¢) = O for

t > Tp. Set A(t)x = Ax + f(¢) forall x € D(A) and ¢ > 0. Then the equation (2.19)
is equivalent to the evolution equation

u@)e Au@), t>0

u) =x, x € D(A(0)) = D(A)

where A(r) is m-dissipative, F = [, A7'(£)(0) = A7'(0) # @ and satisfies the
conditions (H,) and (H,). Take xo € F, let x, = x, y, € A(ty)x, = Ax, +
f,) (¢, = oo)and (y,, x, —xp) — 0. By Definition 2.11, foru € D(A) and v € Au
we have

(2.21)

0 > (Ax,, x, — x0) + (A9, x0 — ) + (v, u — x,,)
= (yn’ Xn — xO) + (AOX(), Xo — u) + (‘U, u— xn) - (f(tn)v Xy — xO)'

Letting n — 00, one obtains (v, u — x) < 0, V[u, v] € A.

Thus x € F and the condition (H;) is valid. By Theorem 2.10, for every x €
D(A), w,(x) C F and there is w-lim,_, o u(?).

For f € L(0, 00; H) there exists f, € C3°(0, 00; H) such that f, — f (in
L(0, oo; H)). If u,(¢) is an integral solution of an initial value problem

{u;m € Auy(t) + fu(1), >0

(2.22) _
u,(0) = x, x € D(A)

then clearly, there exists s —lim,_ » #,(t) = u(t) and the limit is uniformly convergent
ont > 0. Moreover, by the proof above, for every n there exists w-lim,_, . #,(t) = p,.
This implies that there exist s-lim, o, p, = p and w-lim,_,, #(t) = p. The proof is
complete.

REMARK 2.13. If f(¢) = 0 in Theorem 2.12, then for every x € D(A) there exists
w-lim,_, , S(t)x, where S(t) is a non-linear contraction semigroup generated by A.
This implies the conclusion of Proposition 2.14 in [7].

Let —A = dgp be the subdifferential of an l.s.c proper convex function. Then A is
a maximal 3-dissipative operator. Hence we get the conclusion of Theorem 2.3 in [4].

COROLLARY 2.14. Let —A = 3¢ be the subdifferential of an l.s.c proper convex
function, f € L(0, 00; H) and u(t) be an integral solution to (2.19). If A"1(0) # @,
then for every x € D(A) there exists w-lim,_, o, u(t).
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3. Examples

Let  be a bounded domain in R” with smooth boundary 32 and H = L2(Q). Let
B C R! x R! be a maximal monotone and 0 € D(B). Then there exists an L.s.c proper
convex function j : R! - (—o00, +-00] such that 8 = 3.

EXAMPLE 3.1. Consider the equation

3
a—'t‘ € Au— B, x) + ft,x), t>0 ae xeQ

3.1 u(t,x) =0, x€dQ, t>0
u(0, x) = up(x), ae. x € Q.

Assume 0 € R(B). For example
[—el,e!] ifx=0

Bx)={e'1+x) ifx>0
e l(x—-1) ifx<0.

Then B C R! x R! is maximal monotone and 0 € 8(0). We set

W 27! [l gradulPdx + [, j(w)dx, u e Hj(Q), ju) € L(Q),

u) =

¢ 00 otherwise.

Then ¢ : H — (—o00, +00] is an L.s.c proper convex function. The subdifferential
dp) = {v e L*(R) : v(x) € Bu(x)) — Au(x), ae. x € Q}

and 3¢ '(0) # @. If up € L2(Q) and f (¢, x) € L(0, 0o; H), by Corollary 2.14 the
integral solution u(¢) of the problem (3.1) is weakly convergent as t — 00 in L2(2).

EXAMPLE 3.2. Let
[—e', e, ifx=0
B)x=4{e'A+x)+e'x, ifx>0 fort>0
e lx—1D+e'x, ifx<0.

Then B(¢) is a maximal monotone set in R! x R! foreacht > 0, 0 € D(B(1)), 0 €
B()(0) for t > 0 and D(B(¢)) = R! is independent of ¢. We consider the equation

2—‘; eA—Bt)u+gltx), t>0, ae.xeQ
(3.2) u(t,x) =0 x€dQ, t>0
u(0, x) = up(x), ae. x €
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where g(t,x) € L(0,00; H) and 5(t) = {[u,v] : u,v € LXR) and v(x) €
Bu(x), ae. x € Q}. Let

D(A®t) = HX(Q)NH) Q) NDEBE), t>0
and
A(t)u = Au— B(tu foru € D(A()).

Clearly, each A(r) is m-dissipative in H, D(A(t)) = 2 is independent of ¢ and
0 € A7'(1)(0) for all ¢ > 0. Hence (H,) is satisfied. Further we can prove that A(z)
satisfies the condition (H,) and the conditions in Corollary 2.7 are valid. By Corollary
2.7, if up(x) € L2(R2) and u(?) is an integral solution of the problem (3.2), then o (¢)
is weakly convergent as 1 — 00 in L?(Q).

References

{11 V.Barbu, Nonlinear semigroups and differential equations in Banach spaces (Nordhoff, Groningen,
1976).
[2] H. Brésis, Operateurs maximaux monotones (North-Holland, Amsterdam, 1973).
[3] M. M. Israel Jr and S. Reich, ‘ Asymptotic behavior of solutions of a nonlinear evolution equation’,
J. Math. Anal. Appl. 83 (1981), 43-53.
[4] G.Morosanu, ‘Asymptotic behaviour of solutions of differential equations associated to monotone
operators’, Nonlinear Anal. 3 (1979), 873-883.
[51 N.H.Pavel, Nonlinear evolution operators and semigroups, Lecture Notes in Math. 1260 (Springer,
Berlin, 1987).
[6] A.Pazy, ‘Strong convergence of semigroups of nonlinear contractions in Hilbert space’, J. Analyse
Math. 34 (1978), 1-35.
, ‘On the asymptotic behaviour of semigroups of nonlinear contractions in Hilbert space’,
J. Funct. Anal. 27 (1978), 292-307.
[8] S. Reich, ‘Nonlinear evolution equations and nonlinear ergodic theorems’, Nonlinear Anal. 1
(1977), 319-330.
[9] ——, ‘Almost convergence and nonlinear ergodic theorems’, J. Approx. Theory 24 (1978),
269-272.
[10] B.D.Rouhani, ‘Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces’,
J. Math. Anal. Appl. 147 (1990), 465-476.
[11] Song Guozhu and Ma Jipu, ‘ Asymptotic behaviour of solutions to the nonlinear evolution equation’,
Sci. China Ser. A 23 (1993), 679-686.

(7

Department of Mathematics
Nanjing University

Nanjing 210008

China

https://doi.org/10.1017/51446788700000574 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700000574

