ON ITERATED LIMITS OF MEASURABLE MAPPINGS
Elias Zakon

(received July 1, 1764)

Egoroff' s theorem [1] was extended by Kva¥ko [3] to
functions with values in a separable metric space; and, as is
easily seen, this result applies also to separable pseudometric
spaces. 1) In the present note we shall use this theorem to
obtain some propositions on iterated limits, which, despite
their simplicity, seem not yet to be known in the proposed
generality.

Terminology and Notation. We shall denote by m a
non-negative countably additive measure defined on a o -field
M of subsets of a set S. The triple (S,M,m) is called a

measure space, also briefly denoted by S. The measure m
o0
(and the space S) are called o-finite if S= |J G for some
bl et P
sets Gp€ M, with mGp<oo, p=1,2,.... A mapping

(function) {:S-T, where T is a pseudometric sFace with
pseudometric p, is said to be measurable if f" " (G)e M for
each open set GC T. By a double net we mean a family of
functions {fij} where the parameters i and j run independently

1
) The theorem in question is as follows: "If {f } isa

n
sequence of measurable functions from a measure space S
(mS < o) into a separable pseudometric space T, and if
f -f almost everywhere on S, then {f —f almost uniformly
n n

on S ' (terminology and notation is explained below).
Unfortunately, Kvalko's proof contains an error (Lemma 3,
p. 89, is incorrect). This error can, however, be rectified,
so that the theorem 1is still valid (we intend to show this in a
separate paper [6] which gives also additional generalizations
of the theorem).
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)
over some directed sets I and J, respectively. Such a net

is said tobe quasi-countable if each of the index sets 1 and J
has a countable cofinal subset, with no last element. 3)

A subsequence {{f .} (n=1,2,...) of a double net is
‘n'n

cofinal iff, for any i€ 1 and je€ J, there is n such that

in > i and jn_>_ i. Convergence of nets and double nets is

defined as usual (cf. Kelley, [2], p. 62 ff). A net, or a sequence,
{f}, 1is said to converge almost uniformly on S if, for every
real ¢ > 0, there is a set Dg_ S (De M) such that m(S-D) <«
and {1’:} converges uniformly or D; similarly for iterated

limits (cf. Note 1 below). The term "'almost everywhere on S"
or ""at almost every x¢€ S'" means "everywhere, except for a
set of measure 0'. A space T is separable iff it has a dense
countable subset. -

The theorems to be proved are as follows:

I. Let f :S—>T (iel, je J) be a quasi-countable double

1)
net of measurable mappings from a measure space (S, M,m)
into a separable pseudometric space (T,p). Assume that

mS < o« and that the iterated limit

(1) lim lim f, (x) = g(x)
. 1]
1 J

4
exists at almost every xe€ S. ) Then there is a cofinal subse-
quence {f .} C {f .} which converges to the function g
48enEe i =

i

nn

2 . .
) i.e., partially ordered sets in which any two elements have

an upper bound.

3) A subset I' of a partially ordered set I is cofinal iff, for

every i€, thereis i' €I', with i' >1i. An important
example of @ guasi-countable net {f, (x)} is the case where
1

i and j are parameters ranging continuously over all reals.
The rationals form the countable cofinal subset.

For brevity, we use the "lim' notation also in pseudometric

spaces (where the limit may not be unique).
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almost uniformly on S as n -, and suchthat i <i “ »nd
as n n .nd

j o <j , n=1,2,..., under the order in I and J, respectively.
n n+1

II. Under the assumptions of Theorem I (even if S is only
o -finite), there is a cofinal subsequence {f . } such that
; 2uen ther

n'n

i <i and j < j , n=1,2,..., and such that

n n+1 —— “n n+1

(2) lim f . (x) = g(x), for almost every xe€ S.
i

n-+0 n'n

III. If, in Theorems I and II, the index set I is of order
type w (i.e., order-isomorphic to the set of positive integers),
then the subsequence {f . }, postulated in these theorems,

“ 1

nn

can be obtained in the stronger form {fij }, where i ranges

1

over the whole of I, and j. is a strictly increasing function
1

of i. Moreover, in this case, the iterated limit (1) is almost
uniform on S (cf. Note 1 below), provided that mS < oo.

Proof of I. By quasi-countability, the index sets I and
J have countable cofinal subsets with no last elements (call
them I' and J', respectively). As is easily seen, the subsets
I' and J' can be chosen to be of order type w. 5)  Since our
problem consists only in selecting an appropriate subsequence
from the net {fij |ieI, je J}, we lose no generam by

Indeed, if, say, I' 1is countable but not of type w, we

always can replace I' by a cofinal subset I''={i'"}

n
(n=1,2,...) of that type. For this purpose, write I' as
a (not necessarily monotone) sequence I' = { 1;‘} (n=1,2,...)

and then select from it an increasing subsequence I' = {i"}
- n
such that i' < i < i" (n=1,2,...) under the ordering
n-— n n

of I. Such a subsequence can be constructed inductively
because I' is directed and has no largest element under
its ordering inherited from 1I.
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replacing that double net by {fij [iel', jeJ'}. Thus we may

(and shall) assume that I and J are themselves of type w;
for simplicity, we identify each of them with the set of all
positive integers in the usual order. Also, no generality is
lost by assuming that the iterated limit (1) exists at each

x € S (drop a set of measure zero !). Thus (1) becomes

(4) Iim lim f (x) = g(x) for each x€¢ S,
=00 J—>00 1

with i and j taking only positive integral values. We are
now in the situation described in Proposition III; thus we shall
construct the required double subsequence right away in the
stronger form {fij } as stated in (III).

1

6
For each fixed i, let lim fij(x) = g.(x). ) Then (4) turns
. i
J™ ©

into

(5) lim g (x) = g(x) (x€S)
1->00 !

where the functions g, (and hence also g) are measurable,
i

each being7the pointwise limit of a sequence of measurable
functions. )

Now, given any € > 0, formula (5), combined with the
generalized theorem of Egoroff (see Footnote 1), yields a set
€

D € M such that m(S-D )<2
o

and g —+g uniformly on D .
o i E——— o

More precisely, we use the axiom of choice to select, for

each i, one of the (possibly many) values of lim fi_(x),
j—>o0

and call it gi(x).

7
) The measurability of the limit function (well known for real

functions) remains valid also for functions with values in a
pseudometric space, as can easily be shown.
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Similarly, the formulae f -+g  yield, for each i, a set
i

ij .
+1

Die M such that m(S-D)) <¢ /21 and f  -g,  uniformly

i ij "1 ——— =

)
on D. Let D= @) D.. Then, clearly, m(S-D) <e and all
i i —_—

i=0

the convergences f —+g , as well as g —+g, are uniform on D.
ij ~i , i
Letting here ¢ =1/k, k=1,2,..., we obtain, for each k,

k k
a set D € M such that m(S-D ) < 1/k and such that all the

k
convergences g.—g and f,j—>g_ are uniform on each D .
ij "i

Thus, given any positive integers k and n, there is ikn >n

1 k ... 8
’ < — > . ,
such that p(gi g) on °n D for alli> L Moreover, by
applying a double induction process, the ikn can be so selected
that they increase with k and n. Since i > when
—_— nn — kn

n > k, we have (writing, for simplicity, i for i )

- n nn

1 k
(8) p(gi:g)<—2'; on D whenever i>i and n>k.

n

Similarly, from the uniform convergences f -—+g  on
i i
k
all D, we can find, for any positive integers 1i,k,n, an

1
integer jikn (increasing with i,k,n) such that p(fij’ gi) < >0

k
D h j>j.. . Si j...> ]
on whenever j> Jikn ince Jii' J

i when 1> n > Kk,
i— "ikn - -

1 k
we certainly have (writing j, for j . ), p(f..,g.)<— on D
i iii ij i 2n

whenever j=j, and i>n> k. Combining this with (8), we
i -0z
get (since i > n)
n=

i k
(9) p(f.. ;g <— on D whenever i>i and n> k.
ij, n Z Z

n

8
) For brevity, we write p(gi,g) for p(gi(x),g(x)).
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From this, however, it easily follows that the double
1
N x
subsequence {f . |} converges uniformly to g on each D .
ij. —_—
"1
. K 1 k
Since m(S-D ) <T< (k=1,2,...), the measure of the set S-D
can be made less than any prescribed € > 0. But this shows
that f —g almost uniformly on S, and the theorem is proved.
i

3
1

9)

Simultanecusly, we have established (III) as far as it concerns (I).

NOTE 1. We have actually proved more than that.
Indeed, formula (9) holds not only for j =j butalso for j>j.
i -1

Thus we have shown that p(f ,g) <1/n on Dk whenever
1)
n>%k, i>1i and j>j, where i depends only on n, and
— — -1 n

j. depends only on i. It is natural to say that the iterated
i

limit (1) is, in this case, uniform on each Dk and thus almost

uniform on S. In this way the last part of (III) has, likewise,
been established.

Proof of II. Suppose that S is o-finite, :.e.,
oC

S= U G, with mG <o (G €M), p=1,2,.... As in the
- P p
p=1
proof of I, we may identify the index sets I and J with the
set of all positive integers and apply Egoroff' s theorem to each
of the sets Gp (each being of finite measure!). Introducing,

as before, the functions g, (i=1,2,...), we obtain, for each
1
positive integer p, a sequence of sets D?)_g Gp (D?_)e M,

q=1,2,...,) such that m(Gp—Dq) < 1/q and such that the
p

Indeed, if the index set 1 is of type w, the proof given
above requires only a selection of a cofinal w-type subset
J' from J. Thus it yields the required subsequence in
the stronger form {fij 1.
i
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convergences g —~g and { —g are uniform on each of the sets
i ij ~i

)
Dq (p,g=1,2,...). Moreover, we have m(G - () Dq) =0
p P g P

o 0
and hence, setting D = U (ON»)

q
a p
[ee] [e] o0
m@S-D) =m(0U G - O U DH<m U (G - U DYH=o0.
p=1 p=1 g=t © 7 p=t P g=1 P
Thus, to complete the proof, it suffices to construct a
subsequence { fij } (i=1,2,...) such that lim fij (x) = g(x)
i»0 i

at each x€ D. For this purpose, we renumber the sets Dq

{which form a countable set family), putting them into a single

q

k
sequence {D} (k=1,2,...) comprising all DP (p,g=1,2,...).

Then, proceeding exactly as in the proof of (I), we obtain a sub-
sequence f , which converges uniformly to g on each Dk and,
’ o0
hence, converges pointwise at each x€¢ D= (U D . This
k=1
completes the proof.

NOTE 2. Simultaneously, we have established the

remaining part of (III).

Final Remarks. As has already been mentioned, any
family of functions f(i,j,x), where i and j are continuous

real parameters, is a special case of a quasi-countable net,
in which the index sets I and J coincide with the set of all
real numbers in their usual order, while the rationals can
serve as the required countable cofinal subset. Thus our
theorems cover the case of an iterated limit lim Iim f£(i,j, x)
i—=00 j—»o0
where i and j tend to + , in the sense of the standard
topology of the real number system. The case where one or
both of i and j tend to -o is covered by simply reversing
the order in I or J or both. Also covered is the case of
one-sided limits i—-p-, i—»p+, etc., with p a finite number;
we then let I (or J, or both, as the case may be) be the set
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of all reals less than p (respectively, greater than p, with
the order reversed, etc.). By combining two one-sided limits
(i=p- and i—p+) one can obtain bilateral limits (i—+p); we
then let 1 consist of all pairs of reals (x,y), with x< p and
y > p, ordered as follows: (x,y) < (x',y') iff x< x' and

y' <y. Thus all possible combinations of finite and infinite,
one-sided and two-sided, limits on the real axis are included
as special cases. 10) Note that, if the parameter 1 ranges
only over positive integers, then Theorem III applies. This
means that the iterated limit (1) can be transformed into a

simple limit by making j an increasing function of i.

The problem of transforming an iterated limit into a
single one is not new. For double nets in a topological space,
a well known variant of the diagonal process yields a subnet
which converges to the given iterated limit (cf. Kelley, [2],
p- 69). 1) as compared with this process, cur theorems yield
a stronger result, namely a cofinal subsequence with the
required property. 12) [It is true, this result was made possible

10
) This is noteworthy inasmuch as the theorem of Egoroff

itself cannot be extended to families of functions depending
on a continuous real parameter, as was shown by Tolstov
[4] and Weston [5].

11) . . .
The net SoR in Kelley's Theorem 4 (p. 69) is, in general,
not a subnet. It becomes, however, a subnet if all directed
sets Em (Kelley's notation) are the same; and this is

exactly the case of a double net as considered in the present
note (in our notation, E =J).
m

12
) We must qualify Kelley's assertion {(p. 69) that ""considering

double sequences, no sequence whose range is a subset of
w X w can have that property'. Our proof shows that such
a sequence may well exist, under appropriate assumptions.
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only by the additional assumptions of quasi-countability and

o -finiteness.] Moreover, our theorems deal with double nets
of mappings, not just elements of a topological space. This
leads to assertions as to the uniformity or "almost uniformity"
of the convergence, as stated in our Theorems I and III. For
these purposes, the process of Kelley's Theorem 4 (p. 69)
does not suffice.
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