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EQUAL INTEGRALS OF FUNCTIONS 

BY 

F. S. CATER 

ABSTRACT. Let / , , . . . , fk be finitely many Lrfunctions on a mea­
surable set E, and let d and r be numbers such that J,, f, — d > r > 0 for 
all j . Then there is a measurable subset S of E such that Js /) = r for 
ally. 

1. In [1], Klamkin, McGregor and Meir observed that iff and/2 are L,-functions 
on the real line, /?, and if JR f = JR f2 = 1, then for each real number r (0 < r < 1), 
there is a measurable set Sr C R such that 

\ /, = \ h = r. 
Jsr

 Jsr 

In the present note, we prove the (apparently harder) statement that this works for any 
finite number of functions. 

THEOREM 1. Iff], . . . , / * are Lrfunctions on a measurable subset E of R such that 

f /. = ... = f /*> o. 
JE JE 

Then for each real number r (0 < r < JE f), there is a measurable set Sr C E such 
that 

f /, = ...= f /* = r. 
Jsr

 Jsr 

We show by example that this will not work for countably infinitely many functions 
fj in general. To prove Theorem 1 we will construct a nest of measurable sets much like 
the nest of open sets constructed in the proof of Urysohn's Lemma in topology. When 
k — 2 this construction can be easily avoided. 

Slight modifications of our arguments will show that Theorem 1 holds when R is 
replaced by a measure space that contains no atoms, but we will not do that here. The 
main difference is that the absence of atoms is used to prove the case k= 1. It can even 
be expressed in terms of finite signed measures on a a-algebra of subsets of E. Let 
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«i, . . . , uk be such measures where 2/ |w/ | has no atoms and 0 < r < U\ (E) = ... = 
uk{E). Then there is a set Sr C E such that Uj(Sr) = rforj=\,...,k. 

2. The proof of Theorem 1 will be by induction on k. We begin with a lemma whose 
hypothesis appears excessive and requires positive functions, but it is precisely what we 
need in the induction argument. Notice the resemblance to the proof of Urysohn's 
Lemma. 

LEMMA 1. Letf\, . . . ,fk be positive Lrfunctions on a measurable set E C R such that 
fE / , = . . . = JE fk > 0. Suppose that whenever A C E is measurable and dis a number 
such that 

0 < d < f /, = . . . = f fk, 
JA JA 

there exists a measurable set B C A such that 

\ /, = ...= f /* = d. 

Then for each real number r (0 < r < jE fj) there is a measurable set Vr such that 
V0 — 0, VfFj. — E, J v fj = r for all j and such that Vr C Vr> if and only if r < r'. 

PROOF. By replacing/) with/J/J^^ we can (and do) assume, without loss of gener­
ality, that fEfj=l f°r alU- We first define Vr for dyadic rational numbers r between 
0 and 1. 

We define Vi2-p (0 < / < 2P) by induction on p. For/? = 0, put V0 = <$> and V, = 
E. Now suppose Vr has been chosen for r = /2~p (0 < / < 2P, 0 < p < P - 1) such 
that the conclusion of Lemma 1 holds for these numbers r. We define Vi2-

p (0 < / < 
2P) as follows. For / odd, note that 

f /. = ...= f /* = 2- ' 
JAj JA, 

where 

> î = VV2U + l )2 | - / 'WP i /2( / - | )2 , - / ' -

By hypothesis there is a measurable set Bt C v4, such that 

f /, = . . .= f /* = 2-". 
Put 

V/2-' = (^./2(/-l)2'-0 U f i f , 

Then 

f fj=\ fj+f fj 

= \/2(i - \)2]~p + 2~p = i2'p 
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for each / and j . It follows that the conclusion of Lemma 1 holds for r = il~p (0 < 
= 2P, 0 < p < P). Of course V, (r = il~p) was already defined when / is even. By 

nduction it follows that the desired measurable set Vi2-p has been constructed for 0 < 
< 2P, p > 0. 
For 0 < r < 1, let Vr = U,2-/»<r V,2-/>. Then 

X- = sup/2-/.<r / = r, 

and the rest is straight-forward. D 

If k = 1 the conclusion can be obtained more easily. Note that G(t) = fEni-ttt) f 
is a continuous function of t where G(0) = 0 and lim,_>x G(t) = J^ / i . For each 
r (0 < r < JE / ,) there is some value f > 0 such that G(t) = r. Let Vr = E fl 
(-f, f) for this t. 

In our next lemma, the function g need not be positive, though of course the functions 
fi must be positive. 

LEMMA 2. Let the hypothesis of Lemma 1 hold. Let g by any Lrfunction. Then the 
function G(r) = Jv g is a continuous function of r for 0 ^ r < jtE f where Vr is the 
set in the conclusion of Lemma 1. 

PROOF. Take any c > 0. Let S be a measurable set such that fRSS \g\ < {c and 
m(S) < °°. There is a q > 0 such that if A C 5 and m(A) < q, then Xjg| < k \ 

Because/j is positive on £, there is a number J > 0 such that if A C S f! £ and 
XJ /, < d, then m(A) < q. 

Now suppose that 0 < r < r' < 1 and r' — r < d. Then 

/. ^f /. = r'-r<d, f |g|<ic 

and 

•,(V>\vr)ns •'VVAVV •,(vv\vr)ns 2 

|G(r')-G(r)|= If J < f 
1 JV,AVr I J(V,.AV,.)n5 

1 1 

D 

LEMMA 3. Let the hypothesis be as in Lemmas 1 and 2, and let jE g = fEfr Let 
0 < r < JE g. Then there is a measurable set S C E such that 

[/. = ••• = f /*= f « = 
PROOF. We first consider the case in which r = (\/n) jEfj for some positive integer 

n. By hypothesis, we can partition E into mutually disjoint sets £,, . . . , E„ such that 
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f = r(\ < / < * , 1 < . / < * ) . 

We assume without loss of generality that for each /, fEj g =£ r. Reindex so that 

ir, 8 < r < fEj g. 
By Lemma 1, we construct sets Vt and Wt (0 < t < r) such that Vt C E\, W, C E2, 

V0 = W0 = <|>, Vr = £,, Wr = £2, V, C V,' and Wt C W,< if and only if f < f', and /V/ 

fj = Iw,fj = r for al l ; = 1, . . . , * . Put 

G(0 = f S = f S + f * (0 ^ r < r). 
•/v,uwf_/

 Jv, wr_, 

By Lemma 2, G is continuous and G(0) = / ^ g = J^ g > r, G(r) = Jv g = 
JE{ g < r. There is a f0 (0 < t0 < r) with G(t0) = r. But then r = JVi UWri g = i0 + 

( r - *o) = fvlQuwr„t{) fjU = 1, . . . , * ) . 

In the general case, let ni be the smallest integer such that 0 < (l/rt]) fE g < r. Let 
X, C £ be a measurable set such that JX[ g = fXi f-, = {\/nx) fE g for all j . Then 
IE\X{ g = /E\X, X f o r ally. Let n2 be the smallest integer such that 0 < (\/n2) fEXX[ g < 
r - fX]g. Let X2 C E\X{ such that JXl g = fx2 fj = (Un2) i™, g for ally. Note that 
r " if, £ - 5 r a n d r ~ ix,ux2 £ - i\r ~ JXl g) - 4 r. We continue in the obvious 
way to construct a sequence of mutually disjoint measurable sets X]9X2, . . . , X,-, . . . 
such that for each /, 

0 < r - f g = r - f /• < 2-V. 
Jx,u...ux / •,x,u...ux,-

Finally 5 = U*L| X,- satisfies 

f ^ = f y; = ̂  a = i , . . . , * ) . • 
Js Js 

We are ready to prove Theorem 1 for positive/. 

LEMMA 4. Theorem 1 holds when all the functions fj are positive on E. 

The proof is by induction on k. For k = 1, note that G(t) = J(-ut)nEf\ is a continuous 
function of t for 0 < f < ». Also lim,_* G(f) = J^/, and G(0) = 0. For some s > 
0, G(s) = r. Let Sr = (~s, s) H E. 

Now suppose that the conclusion holds for k such functions, / , , . . . , /* . Let fEf\ = 
• - - = Lfk = L fk+\> 0 where/,, . . .,/*,/*+, are positive L,-functions on £. By 
Lemma 3, the required set Sr exists. This concludes the induction on k. • 

We use a trick to remove positivity. 

PROOF OF THEOREM 1. Let H(x) = \f(x)\ + . . . + \fk(x)\ + e'x\ Then H is a 
positive L,-function on E. Let F,- =/• + / / ( / = 1, . . . , &). Then each F, is a positive 
L i -function and 

f F, = \ f + f H = f /, + f H > 0 ( i = l , . . . , * ) . 
JE JE JE JE JE 
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By Lemma 4, the functions F, satisfy the hypotheses of Lemmas 1 and 2. Let V, be the 
measurable set in the conclusion of Lemma 1 where J*V; F,- = f for / = 1, . . . , fc. By 
Lemma 2, G(t) = fVi f is a continuous function of t for 0 < r < J*£ F,. Also 
G(0) = 0 a n d G ( / £ F / ) = / £ / I . 

Now let r be any number such that 0 < r < JE /, . Then by continuity of G, there 
is a f0, 0 < t0 < fE Fh such that G(t0) = r = JV/ / j . But for / = 1, . . . , k, 

f /• + [ # = f ^ = [ î = f /i + f « = r + f //. 
J i / J i / J i / J i / Jy Jy Jy 

V'Q V'() V'() V<0 V'() V ' 0 V ' 0 

Thus fv fi = r for i = \, ..., k. D 

3. In this section we find that Theorem 1 does not hold in general for infinitely many 
functions/,. In Example 1, it will not matter which number r in the open interval 
(0, 1) is used. 

EXAMPLE 1. Let I\, /2, 1^, . . . be the closed subintervals of the unit interval (0, 1) 
with rational endpoints enumerated. For each n > 0, let f„(x) — \ /m{ln) for x in /„ 
andfn{x) = 0 otherwise. Then fR f„ = 1 for each n > 0. 

Choose any real number r with 0 < r < 1. We claim that there is no measurable set 
E such that fE f„ - r for all n > 0. Suppose that there were. Then m(/, D E) > 0, 
so there is a nonvoid open set U C (0, 1) such that m(U D E) > rm(U). Now U can 
be covered by countably many nonoverlapping intervals l} from the sequence (In)™=]. 
It follows that some one of the intervals /,- - call it /, - satisfies m(// fl E) > rm(Ij). 
So 

f /• = m(E H /,-)//«(/,•) > rm(/,)/m(/,) = r. 
JE 
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