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Non-technical Summary

Is it environment or life that drives macroevolution? A recent analysis of the massive paleo-
biology database argues that the answer depends on the timescale. At short timescales, less
than 40 million years, it is the environment, at longer timescales, life can effectively adapt.
Both the environment and life are scaling—they fluctuate over the full range of scales from
millions to hundreds of millions of years (the megaclimate regime). In this paper, we present
a simple model of this scaling “crossover” phenomenon. The model has some unusual
features: it is fully random and is based on fractional (rather than classical integer-ordered)
differential equations.

The model is driven by temperature (a proxy for the environment) and the turnover rate (a
proxy for life); it has two exponents, a cross-over time and two correlations, yet it is able to
reproduce not only the statistics of the temperature, diversity, extinction, origination, and
turnover rates, but it also effectively reproduces the pairwise correlations between them,
and this over the whole range of timescales. If forced deterministically, it gives the response
to bolide impact or other sharp forcing events.

Abstract

Scaling fluctuation analyses of marine animal diversity and extinction and origination rates
based on the Paleobiology Database occurrence data have opened new perspectives on mac-
roevolution, supporting the hypothesis that the environment (climate proxies) and life
(extinction and origination rates) are scaling over the “megaclimate” biogeological regime
(from ≈1 Myr to at least 400 Myr). In the emerging picture, biodiversity is a scaling
“crossover” phenomenon being dominated by the environment at short timescales and by
life at long timescales with a crossover at ≈40 Myr. These findings provide the empirical
basis for constructing the Fractional MacroEvolution Model (FMEM), a simple stochastic
model combining destabilizing and stabilizing tendencies in macroevolutionary dynamics,
driven by two scaling processes: temperature and turnover rates.

Macroevolution models are typically deterministic (albeit sometimes perturbed by random
noises) and are based on integer-ordered differential equations. In contrast, the FMEM is
stochastic and based on fractional-ordered equations. Stochastic models are natural for
systems with large numbers of degrees of freedom, and fractional equations naturally give
rise to scaling processes.

The basic FMEM drivers are fractional Brownian motions (temperature, T ) and fractional
Gaussian noises (turnover rates, E+) and the responses (solutions), are fractionally integrated
fractional relaxation noises (diversity [D], extinction [E], origination [O], and E− =O− E). We
discuss the impulse response (itself representing the model response to a bolide impact) and
derive the model’s full statistical properties. By numerically solving the model, we verified the
mathematical analysis and compared both uniformly and irregularly sampled model outputs
with paleobiology series.

Introduction

Several centuries of paleontological research revealed that the evolution of life on Earth is char-
acterized by high temporal complexity characterized by periods of sluggish and predictable
evolution (Jablonski 1986; Casey et al. 2021) with mass extinctions characterized by selectivity
that is low or different in kind than in “background intervals” (Raup 1992a, 1994; Payne and
Finnegan 2007). There are also mass evolutionary radiations that are sometimes contempora-
neous with mass extinctions (Cuthill et al. 2020). Moreover, the factors and modes of
macroevolution apparently vary with time—for example, the Cambrian explosion or
Ediacaran–Cambrian radiation and post-Cambrian evolution (Gould 1990; Erwin 2011;
Mitchell et al. 2019); environment (Jablonski et al. 2006; Miller and Foote 2009; Kiessling
et al. 2010; Boyle et al. 2013; Spiridonov et al. 2015; Tomašových et al. 2015); and timescales
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(Van Dam et al. 2006; Spiridonov et al. 2017b; Crampton et al.
2018; Beaufort et al. 2022). Furthermore, macroevolution is
strongly influenced by Earth’s systems: geological, climatic, and
paleoceanographic factors (Marshall et al. 1982; Lieberman and
Eldredge 1996; Lieberman 2003; Saupe et al. 2019; Carrillo et al.
2020; Halliday et al. 2020), but also by biotic interactions,
which can translate into patterns that are apparent on extremely
long timescales of tens to hundreds of millions of years
(Vermeij 1977, 2019; Jablonski 2008; Erwin 2012). There are
also questions on the role of general stochasticity and path depen-
dence/memory in evolutionary dynamics (Schopf 1979; Hoffman
1987; Gould 2001, 2002; Cornette and Lieberman 2004; Erwin
2011, 2016). The question is: can we reconcile in a single simple
model this multitude of hierarchically organized and causally het-
erogenous processes producing macroevolutionary dynamics,
while maintaining simplicity and conceptual clarity? Here, we
argue that we can.

The development of large, high temporal resolution databases—
both of past climate indicators (Veizer et al. 1999; O’Brian et al
2017, Song et al. 2019; Grossman and Joachimski 2022) and of
paleobiological information, such as the Paleobiology Database
(PBDB; Alroy et al. 2001, 2008) or NOW (Jernvall and Fortelius
2002; Žliobaitė et al. 2017; Žliobaitė 2022)—is transforming our
understanding of macroevolution. Time series are frequently long
enough that they can be studied systematically, not just as chronol-
ogies to be compared with other chronologies, but as functions of
temporal scale, that is, the behavior of their fluctuations as func-
tions of duration (or equivalently, their behavior as functions of
frequency).

Before attempting to understand processes at specific timescales,
it is important to understand their context, that is, the dynamical
regime in which they operate. Dynamical regimes are objectively
defined by scaling; they are regimes over which fluctuations are
scaling (see the review by Lovejoy [2023]). By definition, a scaling
regime is one in which fluctuations ΔT (in some quantity such as
temperature) are of the form ΔT(Δt)∝ ΔtH, where Δt is duration,
or “lag,” scale, and H is an exponent. If such power law relation-
ships hold (typically for various statistics), then long- and short-
duration events/fluctuations only differ quantitatively; they are
qualitatively the same. This is because over such a regime, long-
duration fluctuations, ΔT(λΔt), at scale, λ Δt ( λ > 1), are related to
the shorter-duration fluctuations, ΔT(Δt), by: ΔT(λΔt) = λHΔT(Δt),
that is, the fluctuations at different timescales differ only in their
amplitudes, λH (with the equality understood in an appropriate
stochastic sense). In addition, we can already distinguish the
qualitatively different types of regime by the sign of the exponent
H.H > 0 implies that fluctuations increase with scale and can appear
nonstationary, whereas H < 0 implies that they decrease with scale,
they appear to converge.

An important consequence for our understanding of deep-
time biogeodynamics—here understood as the joint Earth–life
systems—is the robustness of the “megaclimate” regime. The meg-
aclimate regime was first discovered in benthic paleotemperatures
(Lovejoy 2015), and it was characterized by “positive scaling” (a
shorthand for H > 0) on the basis of long paleotemperature
data from ocean core stacks (Veizer et al. 2000; Zachos et al.
2001), see also Lovejoy (2013) for the shorter timescale weather,
macroweather, and climate regimes (up to Milankovitch scales).
This implies that the difference between temperatures typically
becomes larger and larger at epochs separated by longer and lon-
ger intervals of time. Theoretically, megaclimate is the hypothesis
that there is a unique (presumably highly nonlinear) biogeological

dynamical regime that operates over timescales spanning the
range ≈1 Myr to (at least) several hundred millions of years.
This would be the consequence of a unique (albeit complex, non-
linear) underlying dynamic that is valid over this wide range of
scales; presumably it involves a scaling (hence hierarchical) mech-
anism that operates from long to short durations. A consequence
is the existence of a statistical scaling regimes (notably of paleo-
temperatures), empirically verified throughout the Phanerozoic.
While its inner scale appears to be fairly robust at around
1 Myr, its outer scale (the longest duration over which it is
valid) is not known, although it appears to be at least 300 Myr.
The megaclimate regime implies that the underlying biology–
climate dynamics are essentially the same over these timescales:
that is, at long enough time scales the statistics are stationary
(although up to the outer, longest, limiting scale of the regime,
they may appear to be nonstationary).

The hypothesis that biology and the climate are linked and that
climate is a crucial and defining variable in ecological and evolu-
tionary turnovers (Vrba 1985, 1993; Eldredge 2003; Lieberman
et al. 2007; Hannisdal and Peters 2011; Mayhew et al. 2012;
Crampton et al. 2016; Spiridonov et al. 2016, 2017a, 2020a,b;
Mathes et al. 2021) is hardly controversial. However, the scope
and utility of the megaclimate notion would increase if it could
be backed up by direct analysis of paleobiological series, particu-
larly of extinction and origination rates. This has now been done.
A recent paper (Spiridonov and Lovejoy 2022), hereafter SL,
found that genus-level extinction and origination rates exhibited
scaling statistics over roughly the same range as the paleotemper-
atures confirming that the megaclimate includes these key macro-
evolutionary parameters (see Fig. 9, the left-hand side of the
figure in the section “The Statistics of the Simulated Series
Resampled at the Data Sampling Times,” for a plot of the data
used in SL and modeled in this paper).

The shortest scale of SL’s paleobiological time series was closer
to ≈ 3 Myr (the average age resolution was 5.9 Myr), which
corresponds to the durations of the shortest PBDB stages—a
standard shortest time resolution for Phanerozoic-scale global
biodiversity analyses (e.g., Alroy et al. 2008; Alroy 2010b),
although note that some sub-age data are available at resolutions
closer to 1 Myr). Systematic reviews and multiple case studies
revealed that even variously defined (molecular, morphological,
phylogenetic, and taxic) evolutionary rates universally exhibit
negative temporal scaling (H < 0) behavior (Gingerich 1993,
2001, 2009; Roopnarine 2003; Harmon et al. 2021; Spiridonov
and Lovejoy 2022), which suggests the universality of the tempo-
ral scaling—hence hierarchical—evolutionary dynamics. An inner
megaclimate scale of ≈1 Myr was also proposed in Lovejoy (2015)
and is discussed in the nonspecialist book Weather, Macroweather
and Climate (Lovejoy 2019). The scaling, and thus by implication
dominance of timescale symmetric hierarchical interactions,
was also detected on multimillion-year timescales in sedimenta-
tion rates/stratigraphic architecture (Sadler 1981), sea level
(Spiridonov and Lovejoy 2022), and dynamics of continental frag-
mentation (Spiridonov et al. 2022), which shows universality of
the pattern in major Earth systems as well. Therefore, the time-
scaling patterns of evolution and megaclimate overlap at the
very wide range of temporal scales (from ≈106 to > 4 × 108 yr),
which motivates the development of quantitative models that
explicitly tackle and integrate these timescale symmetries.

If macroevolution and climate respect wide range scaling, then
it may be possible to resolve a long-standing debate in macroevo-
lution. In terms first posed by Van Valen (1973), we may ask: are
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evolutionary processes dominated by external factors—especially
climate, the “Court Jester” (Barnosky 2001; Benton 2009)—or
by life itself—the “Red Queen” (Van Valen 1973; Finnegan
et al. 2008)? SL proposed a scaling resolution of the debate in
which at scales below a critical transition time τ of ≈40 Myr,
the climate process is dominant, but there is a crossover beyond
which life (self-regulating by means of geodispersal and competi-
tion) is dominant. SL thus quantitatively concluded that at long
enough timescales, the Red Queen ultimately overcomes the
Court Jester. The scaling processes of the Earth system here are
playing a double role (thus the Geo-Red Queen theory)—climate
fluctuations growing with timescale cause perturbations in diversity
to grow in size, but at the same time, at longer and longer time-
scales, fluctuating climates and plate tectonics cause the mixing
and competitive matching of biota, thus effecting global synchroni-
zation that results in a crossover when an unstable and wandering
diversity regime changes to a longer timescale fluctuation canceling
or stabilizing regime (Spiridonov and Lovejoy 2022).

Physicists use the term “crossover” as shorthand to describe
analogous phenomena involving processes that are subdominant
over one scale range but eventually become dominant at longer
scales. However, such transitions are typically modeled by
Markov processes such that the autocorrelations are exponential,
implying that at the critical timescale, the transition between two
regimes is fairly sharp. In SL, on the contrary, in keeping with the
basic megaclimate scaling dynamics, the crossover was postulated
to be a consequence of the interaction of two scaling processes,
that is, the transition is a slow, power law decay of one and the
slow emergence of another. An analogous scaling crossover phe-
nomenon was found in phytoplankton, in which the competing
scaling processes were phytoplankton growth (with turbulence)
and a predator–prey process of zooplankton grazing (Lovejoy
et al. 2001).

SL argued that both macroevolution and climate respect
wide-range statistical scaling, but that nevertheless, their quantita-
tive and qualitative differences are significant, and these differ-
ences were the key to understanding the diversity (D) statistics
that appeared to be involve a crossover between two different
power laws. While temperature (T ) fluctuations vary with time-
scale, Δt as ΔT(Δt)≈ ΔtHT with HT≈ 0.25, the corresponding laws
for extinction (E) and origination (O) have HE≈HO≈−0.25.
When H > 0, fluctuations grow with scale, such that the corre-
sponding series tend to “wander” without any tendency to return
to a well-defined value, and they appear “unstable.” On the con-
trary, when H < 0, successive fluctuations tend to have opposite
signs, such that they increasingly cancel over longer and longer
timescales, and they fluctuate around a long-term value, thus
appearing “stable.”

To deepen our understanding, it is necessary to build a quan-
titative model of the interaction of climate and life. In recognition
of the strongly nonlinear nature of evolutionary dynamics,
numerous deterministic chaos models such as predator−prey
models (e.g., Huisman and Weissing 1999; Caraballoa et al.
2016) have been developed. Although extensions with some
stochastic forcing exist, for example, in Vakulenko et al. (2018),
the stochasticity is a perturbing noise on an otherwise determin-
istic system. In paleontology, the model of exponential
(unconstrained) proportional growth of diversity was historically
popular (Stanley 1979; Benton 1995) or expanded to include
possible accelerations due to niche construction effects (a second-
order positive feedback)—a hyperbolic model (Markov and
Korotayev 2007). These simple models of expansion were

contrasted with single or coupled logistic models of resource-
constrained competitive macroevolutionary dynamics, sometimes
also supplemented with random perturbations that account for
effects of mass extinctions (Sepkoski 1984, 1996); or implicitly
hierarchical, and also competition-constrained, Gompertz models
(Brayard et al. 2009). However, such models assume that only a
few degrees of freedom are important (typically fewer than 10),
whereas the true number is likely to be astronomical. It is there-
fore logical to model the process in a stochastic framework
(involving infinite dimensional probability spaces), where the pri-
mary dynamics are stochastic, using the scaling symmetry as a
dynamical constraint. Therefore, there is growing recognition of
stochastic models as essential tools for understanding macroevo-
lutionary dynamics. Actually, some of the first models that tried
to explain complexities of macroevolutionary dynamics were
stochastic Markovian birth and death models (Gould et al.
1977; Raup and Valentine 1983; Raup 1985, 1992b; Nee 2006).
Several recent applications of linear stochastic differential equa-
tions were used in causal inference of macroevolutionary drivers
and competitive interactions between clades (Liow et al. 2015;
Reitan and Liow 2017; Lidgard et al. 2021).

Beyond the realism of implicitly involving larger numbers of
degrees of freedom, stochastic models have the advantage that
they may be linear, even though the corresponding deterministic
models may be highly nonlinear. Also, by the simple expedient of
using fractional-ordered differential equations rather than the
classical integer-ordered ones, stochastic models can readily
handle scaling, which is rarely explicitly considered in macroevo-
lutionary analyses. Fractional differential equations provide a
natural way of defining processes that vary over a wide range of
timescales. Although, we forced the model with a nonintermittent
Gaussian white noise in this paper, in future, this can easily be
replaced by strongly intermittent (multifractal) processes that
are presumably necessary to realistically model the extremely
intermittent behavior, implied, for example, by mass extinctions
or thermal climatic events, which are observed in macroevolution
and megaclimate respectively. Scaling processes are characterized
by a slow (power law) decay of the memory, much slower than an
exponential rate, such that values of a time series are nontrivially
correlated, even if they are separated by long time periods.
Therefore, the dynamics of the system are potentially conditioned
not only on the current state of the system but also on its distant
past. This is exactly the property that is exploited in constructing
state-of-the-art descriptive and predictive models of long-memory
phenomena at shorter timescales (weeks to years), namely macro-
weather forecasts, based on the Scaling LInear Macroweather
Model (SLIMM; Lovejoy et al. 2015) and StocSIPS (Del Rio
Amador and Lovejoy 2019, 2021; Lovejoy and Del Rio Amador
2023). The same basic model using deterministic climate forcings
produces climate projections to 2100, notably with much lower
uncertainty than classical general circulation model (GCM)
approaches (Hébert et al. 2022; Lovejoy 2022b; Procyk et al. 2022).

The useful scaling property of fractional equations arises because
they have impulse response functions (Green’s functions)—and
hence solutions—that are based on scaling (power laws) rather
than the exponential Green’s functions associated with integer-
ordered differential equations. In general, fractional derivatives
are simply convolutions with power laws of different orders,
and convolutions with different domains of integration define dif-
ferent types of fractional derivatives. In the fractional equations
discussed in this paper, the particularly simple Weyl fractional
derivative is used; in the frequency domain, it simply corresponds
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to a power law filter. Finally, it could be noted that although
fractional derivatives were discovered several centuries ago, there
has been an explosion of interest in them in the last decade or
so, and many books on the topic are now available (e.g.,
Oldham and Spanier 1974; Miller and Ross 1993; Hilfer 2000;
West et al. 2003; Petras 2011; Baleanu et al. 2012; Klafter et al.
2012; Owolabi and Atangana 2019).

In this paper, we therefore build a simple model for biodiver-
sity (D) that can reproduce and explain SL’s findings. The model
is parsimonious: it has only two scaling drivers—the climate and
life—and by construction it reproduces the observed scaling
crossover at 40 Myr. Although the model has two basic exponents
(climate and life) and two coupling coefficients between temper-
ature and turnover and between turnover and diversity, a total of
four basic parameters, it satisfactorily reproduces the fluctuation
statistics of D, T, E, and O as well as the turnover (E+ =O + E)
and difference E− =O − E over the range of ≈3 Myr to several
hundred millions of years (the longest scales available). The six
variables imply 15 pairwise correlations, and the correlations
that are implied by the model are not single values between
pairs of variables at a unique timescale, but each correlation is a
function of the timescale indicating an agreement between the
model and data over a wide range of scales.

In the model, the driver of the life processes is turnover. As
with many other properties of groups of biological individuals,
turnover can be defined at many levels. Here we use the taxic
approach to modeling and analysis, such that we consider macro-
evolutionary turnover at the level of genera. Similarly, as in the
case of organisms from different species in populations, turnover
of genera in the biota shows total perturbations to a given diver-
sity state. Namely perturbation by subtraction (extinction) and
addition (origination), which represent cases of creative destruc-
tion and the destructive creation respectively, which could work
as stabilizing or destabilizing factors of the global diversity
depending on the circumstances (Cuthill et al. 2020). Beyond
this, it explains the 15 pairs of scale by scale fluctuation correla-
tions over the same observed range. The data are from the SL
paper; they represent stage-level time series of Phanerozoic
marine animal genera O and E (second-for-third origination
and extinction proportion [Alroy 2015; Kocsis et al. 2019] not
standardized for the duration of stages), sample standardized
using the shareholder quorum method (Alroy 2010a) genus diver-
sity of Phanerozoic marine animals based on PBDB data (https://
paleobiodb.org). The paleotemperatures (T ) are also the same as
in the SL paper, obtained from Song et al. (2019). The rates used
in the analyses are proportions, per-lineage rates, which is a nat-
ural way of describing processes working on a per capita basis
(such as evolution).

The inclusion of the maximal amount of data and the taxo-
nomic precision are the essential trade-offs of any taxic macroevo-
lutionary study. With sufficiently well-preserved fossils, it is often
possible to make accurate genus-level identification (relatively
high accuracy and robustness of identification). On the other
hand, if the taxon can be identified only to the family level, as
is often a case for multi-element taxa, probably very few remains
were preserved, or in the case of single skeleton taxa, the preser-
vation is not adequate. Therefore, the decision to use higher-rank
taxonomic data far removed from the species level could increase
the risk of including more noise to the data. We chose the genus
level as a compromise, which is the closest taxonomic level to the
species level, while on the other hand, covering more occurrences
than the fossil record resolved to the species level.

Because rates of macroevolution originations and extinctions
can be estimated in many ways, and their properties (accuracy,
and precision) can vary depending on the properties of the sam-
pling process and the evolutionary process itself, we performed a
sensitivity analysis using Sepkoski’s genus-level marine animal
data and Foote’s per-lineage rates (see Appendix 2). Analysis
shows that despite the differences in datasets, their completeness,
differences in standardization (Sepkoski’s data are not sample
standardized), and differences in extinction and origination
rates used, the basic results pertaining to the scaling are nearly
identical in both cases. Therefore, in this paper, we only discuss
the more complete and sample-standardized paleobiological
time series derived from PBDB data. Currently, the PBDB data
are the best source for multi-lineage global-scale analysis of evo-
lutionary patterns, despite the presence of possible distortions
related to the uneven spatial sampling, due to objective geological
heterogeneities of the fossil record and various historical and soci-
oeconomic factors that significantly impacted the study of ancient
life (Raja et al. 2022; Ye and Peters 2023). Future work toward a
more even representation of the global-scale data will certainly
improve the accuracy of diversity estimates; this in itself would
be an interesting test of the model.

As a final comment, we should note that the basic—simplest—
stochastic crossover process is the fractionally integrated fractional
relaxation noise (ffRn process), whose properties were only fully
elucidated very recently (Lovejoy 2022a) in the context of long-
term weather forecasts (Del Rio Amador and Lovejoy 2021) and
climate projections (Procyk et al. 2022). The new model has con-
ceptual commonalities with the environmental “stress model” of
M. Newman that attempted to replicate the scaling statistics of
extinction intensities of marine biota (Newman 1997; Newman
and Palmer 2003). The model presented here is more sophisticated,
as it ties the principal macroevolutionary variables—O and E—to a
principal geophysical scaling process—the megaclimate—in produc-
ing realistic multi-timescale global dynamics of marine animal biodi-
versity, while keeping its conceptual simplicity in transparently using
a fewcrucial parameters of time-scaling andcorrelations. Themodel is
also implicitly hierarchical as implied by its scaling relations, and this
is a desirable feature of a unified evolutionary theory (Eldredge 1985,
1989; Gould 2002; Lieberman et al. 2007).

The Model

The Equations

Wide Range Scaling. The SL picture is one where the extra-
biological factors (“the climate”) are scaling and drive biodiversity
from ≈1 Myr to ≈40 Myr, where the crossover occurs, followed by
the domination of biotic regulation at the longer timescales,
which is also enabled by global homogenization of biota at long
timescales caused by plate tectonics and changes in climate
zones (Geo-Red Queen dynamics). The endemism and peculiari-
ties or contingencies in evolutionary innovation occur at all times
and places. Because evolutionary innovations are inherently
unpredictable and can change carrying capacities of ecosystems
and communities (Erwin 2012), their effects at the global scale
of measurement of diversity are destabilizing: they act as random
shocks. Because all innovations appear in certain times and
places, it takes a certain time for the dispersion of innovations
and the re-equilibration of the global-scale biosphere (adaptation
of other taxa) following perturbations. The principal agent of
mixing of biotas is plate tectonic motion (which also separates
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biota at shorter timescales). Therefore, the only way biota can read-
just and equilibrate at the global scale in the light of multiscale local
and regional evolutionary innovations is by means of geodispersal
mediated by competition and co-adaptation. Endemicity exists at
all times, but the duration of endemicity of concrete faunas is lim-
ited by unstable Earth dynamics that work toward homogenization
(the same faunas or floras cannot be endemic forever). Larger taxa
either disperse to their maximal capacity and persist (and become
effectively cosmopolitan) or they go extinct.

The Basic Diversity Equation. Based on this picture, we propose
the following Fractional MacroEvolution Model (FMEM). First
we describe the model, then we comment on it.

The basic diversity equation is:

th
dh(D− sTT)

dth
+ D = sEE+; E+ = O+ E (1)

where h is a (fractional) order of differentiation whose physical
interpretation is given shortly, τ is the crossover timescale
(≈40 Myr), and E+ = E +O is the turnover anomaly, that is, the
deviation of the turnover rate from its long-term average (in the
model, E+ can therefore be either positive or negative). For refer-
ence, it is defined on the right, where O and E are the anomalies
of the origination and extinction rates with respect to their
long-term averages (the diversity D is a similarly defined anomaly
with respect to its long-term average). Whereas D and E+ are
already nondimensional, the temperature anomaly T must be
nondimensionalized, for example, by the standard deviation of

its increments at some convenient reference scale, say 1 Myr. sT
and sE are constants that are determined by the coupling between
T and D (sT) and E+ and D (sE; see eq. 17).

The Drivers. The basic drivers are the climate (T ) and life (E+),
themselves driven by Gaussian white noises γT, γE:

ta+h d
a+hT
dta+h

= gT

ta
daE+
dta

= gE

(2)

where α is the basic biology (extinction and origination rates)
exponent (α ≈ 0.25 as deduced from SL’s analysis), and h is the
exponent difference (contrast) between the temperature and biol-
ogy, from SL’s analysis: h = 0.75− α ≈ 0.5. As discussed later (eq.
7 or eq. 35), combined with the diversity equation (eq. 1), these
determine D. Equations (1) and (2) specify the model dynamics;
see Figure 1 for an overall schematic.

The derivatives are fractional; in this paper, we use the semi-
infinite “Weyl” fractional derivatives. For the arbitrary function
W(t), the ζ-ordered Weyl fractional derivative is defined as:

dzW
dtz

= 1
G(1− z)

d
dt

∫t
−1

(t − s)−zW(s)ds; 0 , z , 1 (3)

where Γ is the usual gamma function, and s is an unimportant
variable of integration. In this paper, the range of differentiation,

Figure 1. A schematic showing the way the various parts of the Fractional MacroEvolution Model (FMEM) fit together. The basic drivers are shown at the top; phys-
ical drivers are the temperature (T ) and turnover rate (E+). These are shown at the right, because they have nontrivial properties, such that they are best modeled as
the responses to more elementary causes—the temperature and turnover rate forcings ( fT, fE+). In the paper, we primarily discuss the simple case that reproduces
the Paleobiology Database (PBDB) statistics, where these are Gaussian white noises ( fT = γT, fE+= γE+), However, deterministic forcings such as bolide impacts are
also discussed, shown here with both T and E+ forced with a Dirac function of amplitude f0,T, f0,E+, respectively. More general forcings can be used and their
responses can be obtained using the impulse response functions. The middle line shows how the T, E+ drivers determine the diversity (D). Finally, to complete
(close) the model, we need a diagnostic equation that enables us to determine E−, E, O; this is shown in the bottom line.
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0 < ζ < 1, is adequate, but more generally, if ζ is outside the range,
equation (3) can simply be combined with ordinary integer-
ordered differentiation to obtain the required result. Because
fractional derivatives (and their inverse, fractional integrals) are,
as in equation (3)—generally convolutions, different fractional
operators are defined on different ranges of integration for the
convolutions. The semi-infinite Weyl derivatives are particularly
easy to deal with, because they are simply power law filters in
Fourier space, see equation (12) (for more information on frac-
tional equations, see, e.g., Miller and Ross 1993; Podlubny 1999).

The γ’s in equation (2) are Gaussian white noises; they are
proportional to “unit” white noises, γ. Unit white noises have
the properties:

g(t1)g(t2)
〈 〉 = d(t1 − t2); g2

〈 〉 = 1; g
〈 〉 = 0 (4)

where the angle brackets indicate ensemble (statistical) averaging,
and δ is the Dirac function. Equation (2) therefore implies that
T, E+ are fractional integrals of white noises. Depending on the val-
ues of the exponents, these are fractional Gaussian noises (fGns) and
fractional Brownian motions (fBms) (Mandelbrot and Van Ness
1968; see the later discussion on the small- and large-scale limits).

Completing the Model, the Diagnostic Equation. Equations (1)
and (2) determine D, E+, T. However, for the model to determine
E and O, we need a final equation for E−:

E− = tD
dD
dt

; E− = O− E (5)

This is just the differential form of the usual discrete-time defini-
tion of diversity: Dj+1 =Dj(1 +Oj− Ej), where j is a time index. τD is
the discretization time, the basic resolution of the series. Equation
(5) plays no role in the dynamics, conventionally, it defines D (see
eq. 34 for its Fourier expression). Mathematically, equation (5) is
thus a “diagnostic equation,” because it simply allows us to close
(complete) the model by determining O, E:

O = (E+ + E−)/2
E = (E+ − E−)/2

(6)

A schematic of the fullmodel is given in Figure 1 showing its various
parts, including the possibility of deterministic forcing discussed
later (eq. 12).

Discussion

Diversity as an ffRn. The diversity model was written in a non-
standard way (eq. 1), because in this form, its basic behavior is
transparent. When h > 0, the fractional term is the highest-
order derivative; at high frequencies it therefore dominates the

zeroth-order (D) term, such that at short lags, Δt < τ, diversity fluc-
tuations ΔD∝ ΔT such that D follows the temperature. However,
at low frequencies (Δt > τ), the zeroth-order term dominates, and
we have instead ΔD ∝ ΔE+. By inspection, the model therefore
reproduces the crossover at lag τ, and the crossover will be scaling
due to the scaling of T, E+ (eq. 2). The mathematical structure of
the model is clearer if we substitute the drivers in terms of their
own Gaussian forcings γT, γE (eq. 2), rewriting equation 1 as:

th
dhD
dth

+ D = t−a d−a

dt−a
(sTgT + sEgE) (7)

The term on the right-hand side represents the total forcing of
the diversity. (Note: d−α/dt−α is a fractional integral order α: for
Weyl derivative and integrals it is the inverse of the α-order
derivative da/dta).

The linear combination of white noises sTγT + sEγE is also a white
noise. The D equation is thus an order h-ordered fractional relaxation
equation forced by an order α fractionally integrated white noise, that
is, it is a “fractionally integrated fractional relaxation” process (ffRn;
Lovejoy 2022a). The basic “unit” ffRn process Uh,α(t) satisfies:

dh+a

dth+a
+ da

dta

( )
Ua,h = g (8)

where γ is the unit white noise defined earlier (eq. 4), and we have
used the fact that for Weyl fractional derivatives, fractional differen-
tiation and integration commute. If time is rescaled (t→t/τ), we see
(from eq. 7) that D is proportional to Uα,h. We note that if h = 1,
the D equation (eq. 1) would be a classical relaxation equation,
and if forced by a white noise (i.e., if α = 0), D would be a classical
Ornstein-Uhlenbeck (OU) process. OU processes are thus the classi-
cal special cases of crossover phenomena involving high-frequency
processes with exponential decorrelations (e.g., Markov processes)
that lead to white noise behavior at low frequencies. They are cur-
rently the conventional approaches to the modeling and analysis of
microevolutionary as well as macroevolutionary dynamics
(Khabbazian et al. 2016; Bartoszek et al. 2017; Liow et al. 2022).

Deterministic Behavior: Impulse Response Functions. The D pro-
cess—the solution to equation (7)—is the response of the operator
dh+a

dth+a + da
dta

( )
to a white noise forcing. The general behavior of

responses to linear operators is determined by their impulse
response (Green’s) functions Gα,h that satisfy:

dh+a

dth+a
+ da

dta

( )
Ga,h = d(t) (9)

(Lovejoy 2022a), where δ(t) is the Dirac (“delta”) function. Gα,h

can be expressed in terms of “generalized exponentials” or
Mittag-Leffler functions eh,h+α as:

Ga,h(t) = th−1+aeh,h+a(−th) = ta−1 ∑1
n=1

(−1)n+1 tnh

G(a+ nh)
; t ≥ 0

0 , a , 1/2; 0 , h , 2
Ga,h(t) = 0; t , 0

(10)
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ea,b(z) =
∑1
n=0

zn

G(an+ b)

At small t, the leading order term is therefore Ga,h(t) ≈ ta−1+h

G(a+h).
The large t (asymptotic) expansion is:

Ga,h(t) = ta−1 ∑1
n=0

(−1)n

G(a− nh)
t−nh; t .. 1 (11)

(Podlubny 1999). Whereas the small t expansion is tα−1 times
terms of positive powers of h, the large t expansion is in terms
of tα−1 times terms in negative powers of h, with leading term
Ga,h(t) = ta−1

G(a). Unless h = 0, Gα,h(t) therefore transitions between
two different power laws. The special case h = 0 that applies to
the temperature and turnover forcings (eq. 2), corresponds to
the pure power law Ga,0(t) = ta−1

G(a). Gα,h has the property that if
it is (fractionally) integrated ζ times, the result is just Gα+ζ,h. As
explained in Appendix 1, Gα,h is useful for numerical simulations.

At a typical highest resolution of global datasets with time-
scales ≈ of 1 Myr, Gα,h gives the deterministic response to forcings
that are effectively impulses at this scale, for example, a bolide
strike (Alvarez et al. 1980; During et al. 2022), supernova
or gamma ray burst (Fields et al. 2020), or even much slower
hyperthermal event such as the Paleocene–Eocene thermal max-
imum (Gingerich 2006; McInerney and Wing 2011) or the
Cenomanian–Turonian event (Eaton et al. 1997; Meyers et al.
2012; Venckutė-Aleksienė et al. 2018), extensive volcanic eruption
episodes, or other short-timescale (below ≈ 1 Myr) stressors.
Figure 2 shows a plot of impulse responses for temperature and
turnover demonstrating their singular nature for the empirical
parameters estimated in SL (α ≈ 0.25, h ≈ 0.5). These singular
responses combine apparently contradictory features: on the
one hand, the falloff at short times following the impulse is
very sharp, whereas on the other hand, the decay is very slow at
long times, so its effects take a long time to disappear. The sharp-
ness feature is desirable; because mass extinctions, and potentially
other episodes of dramatic biotic change, effectively represent
periods of almost infinite turnover rate, it is near instantaneous
or singular-like (Foote 1994, 2005). Indeed, the global strati-
graphic stages and substages are based on the episodes of turn-
over. Figure 3 shows the impulse response for the diversity that

has two different power law regimes: a high-frequency tα−1+h

regime and a low-frequency tα−1 regime (the leading terms in
eqs. 10, 11) with a transition at various scales τ indicated. As
expected, the former (temperature dominance) corresponds to
the singularity t−0.25 and the latter to the singularity t−0.75 (turn-
over dominance; both are shown in Fig. 2). Note that because the
equations are linear, the impulse responses from the deterministic
forcings shown in Figures 2 and 3 will be superposed onto the
stochastic white noise–driven responses that we calculate in the
section entitled “Numerical Simulations.”

The other aspect of the singular impulse responses is their long
time decays that are much slower than conventional exponential
decays and can be thought of as a kind of memory that character-
izes the responses to both deterministic and stochastic forcing.
Our model thus predicts that there will be long-term conse-
quences of bolide impacts or other catastrophic events. This is
in accord, for example, with the findings of Krug et al. (2009)
and Krug and Jablonski (2012) that the Cretaceous–Paleogene
(K-Pg) mass extinction caused by the effects of the Chicxulub
asteroid impact changed long-term origination rates and their
spatial distribution, a situation that persists today, 66 Myr after
the event, in accord with this long-memory feature of the
FMEM model. The slow decay in the response is also a desired
property in modeling macroevolutionary dynamics, as it can rep-
licate effects of phylogenetic inertia or “phylogenetic constraint”
(Gould 2002) and also inertia of persistence of geological struc-
tures that can affect dynamics of biodiversity for periods, eras,
or even eons. The genetic composition is basically the material
trans-generational memory of biological individuals of all levels
of the Linnaean hierarchy (Eldredge 1996). Therefore, extinction
(or origination) of genera or taxa of higher ranks can change
the functioning and the properties of the biosphere for hundreds
of millions of years. The same goes for the formation of such
structures as oceanic basins or continents with their myriads of
possible configurations—their origins and disappearances impose
new boundary conditions for geophysical and macroevolutionary
dynamics for hundreds of millions of years (Nance 2022;
Spiridonov et al. 2022).

We could further note that the long memory can be
exploited to make future predictions. This is because for
Gaussian forcing (eq. 2), E+ and the increments of T are long-
memory fGn processes and—as discussed earlier—D is an ffRn.

Figure 3. The impulse response Gα,h(t/τ), with α = ¼, h = ½, corresponding to the
diversity (D) response, for critical transition times τ = 1, 4, 16, 64, and 256 Myr (bottom
to top). The empirical value is τ ≈ 40 Myr (SL). Due to causality, the impulse response
is 0 for t < 0.

Figure 2. The impulse (delta function) response Ga,0(t) = ta−1/G(a) for fractional
integrals of order α normalized for the same response after 1 Myr. The bottom cor-
responds to the turnover (E+) response α = ¼, and the top corresponds to the temper-
ature (T ) response with α = ¾. Notice the long-term effects. Due to causality, the
impulse response is 0 for t < 0.
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The predictability of the former has been mathematically stud-
ied in Gripenberg and Norros (1996) and has been exploited
for monthly and seasonal forecasts in Del Rio Amador (2019,
2021) and Lovejoy and Del Rio Amador (2023), and the pre-
dictability properties of ffRn processes have been studied in
Lovejoy (2022).

Solving the Model. Readers only interested in results can
skip ahead until the basic model equations (38, 39) that are
given at the end of the section “Full model statistics”.

Fractional derivatives are generally convolutions (with power
laws, eq. 3), hence different ranges of integration in the convo-
lution yield different fractional derivatives. Most often (e.g.,
the Riemann-Liouville and Caputo fractional derivatives), the
latter are taken from time = 0 to t, in which case the initial con-
ditions are important and dealing with them is technically some-
what complex. In these cases, the main tool is the Laplace
transform. Here, however, we consider statistically stationary
white noise forcing that starts at time = −∞. In this case, we
can use the “Weyl” fractional derivative (a convolution from
−∞ to t, eq. 3) whose Fourier transform (“F.T.”) is particularly
simple:

dh

dth
↔F.T. (iv)h (12)

where ω is the Fourier conjugate variable, that is, the frequency
(when h is an integer, the formula may be familiar to the reader).
If we Fourier transform equations (1) and (2), we can write the
model in matrix form as:

S̃(v) = (ivt)−aF̃(v)
1
0
sT

0
1
sE

⎛
⎝

⎞
⎠ g̃T

g̃E

( )

S̃(v) =
T̃
Ẽ+
D̃

⎛
⎝

⎞
⎠

F(v) =
(ivt)−h 0 0

0 1 0

0 0
1

1+ (ivt)h

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (13)

(the single underlining indicates a vector, the double under-
lining, a matrix, the Fourier transform is denoted with a
tilde).

As noted earlier, the D forcing is a linear combination of
white noises (eq. 7), such that the sum on the right-hand
side of equations (7) and (13) is a correlated white noise.
However, from the data (see fig. 5), we see that E+ and T
are themselves correlated. We therefore rewrite the model in
terms of two statistically independent ( g1g2

〈 〉 = 0) unit
( g21
〈 〉 = g22

〈 〉 = 1) white noise drivers γ1, γ2:

gT
gE

( )
= sT 0

0 sE

( )
1 0
rE

��������
1− r2E

√( )
g1
g2

( )
(14)

So that:

s2
T = g2T

〈 〉
; s2

E = g2E
〈 〉

; rE = gTgE
〈 〉
sTsE

; gT
〈 〉 = gE

〈 〉 = 0

(15)

where σT is the standard deviation of γT, σE of γE, and ρE is
the T, E+ correlation. Equation (14) is the standard Cholesky
decomposition for two correlated random variables, noises.

Fourier transforming equation (14) and using equation (13),
we can write the model as:

S̃(v) = (ivt)−aF(v)sr̃g (16)

s=
sT 0 0
0 sE 0
0 0 sD

⎛
⎝

⎞
⎠; r=

1
rE
rD

0�������
1−r2E

√
sgn(r)

�������
1−r2D

√
⎛
⎝

⎞
⎠; g̃= g̃1

g̃2

( )

Where the parameters:

sD = sTsT

���������������
1+ 2rEr + r2

√
; r = sEsE

sTsT

rD = 1+ rrE���������������
1+ 2rrE + r2

√ (17)

depend on both the driver statistics (σT, σE, and ρE) and the
model parameters sT, sE. While σD does parametrize the ampli-
tude of the diversity fluctuations, unlike σT, σE (which must
be≥ 0), it is not a true standard deviation: if sT < 0, it will be neg-
ative. Similarly, we will see that ρD determines the D, E+, and T
correlations but is not itself a correlation coefficient and depends
on the sign of the ratio r.

Stochastic Response to White Noise Forcing

Scaling Processes: fGn and fBm. We are interested in the statis-
tical properties of the solutions S̃(v). These can be expressed
in terms of fGn, fBm, and ffRn processes. Before discussing
the full statistics that include the cross-correlations, let us
therefore discuss the statistics of each of the main variables
individually.

Let us start with the scaling processes T, E+ that are of the
form:

daXX
dtaX

= g ↔F.T. (iv)aX X̃ = g̃ (18)

For the statistics, we can determine the power spectrum:

EX(v) = |X̃|2
〈 〉

= 1
2p

|v|−bX ; bX = 2aX (19)

where βX is the spectral exponent, and we have used the fact that
the spectrum of a Gaussian white noise is flat:

|̃g(v)|2〈 〉 = 1
2p

g2
〈 〉 = 1

2p
(20)

Fractional MacroEvolution Model 383

https://doi.org/10.1017/pab.2023.38 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2023.38


EX(ω) is thus the basic form of the T, E+ spectra (not to be con-
fused with the extinction rate E). From the Wiener-Khintchin
theorem, the (real-space) autocorrelation function RX(Δt) is the
inverse transform:

RX(Dt) = X(t)X(t − Dt)〈 〉/ DtHX ↔F.T. R̃X(v)

= EX(v) = |X̃(v)|2
〈 〉

/ |v|−bX ;

HX = bX − 1
2

= aX

2

(21)

The technical difficulty is that due to a low-frequency divergence,
the inverse transform of pure power spectra (eq. 19) only con-
verges for βX < 1 (i.e., αX < ½, HX < 0); this is the fGn regime
appropriate for E+. Even here, RX(Δt) is infinite for Δt = 0.
Because RX(0) is the variance, fGn processes are (like the white
noise special case αX = 0) generalized functions that must be
averaged (integrated) over finite intervals in order to represent
physical processes. Averaging to yield a finite resolution process
is adequate for βX > −1 (αX > −½, HX > −1) such that the fGn
process is defined for −1 < βX < 1 (i.e., −½ < αX < ½, −1 <HX < 0).
After X is averaged over a finite resolution τr, the result is Xτr with

root-mean-square (RMS) statistics X2
tr

〈 〉1/2/tHx
r . Because HX < 0,

the empirical statistics will be highly sensitive to the resolution τr.
When αX≥½, the low-frequency divergences imply that the

X(t) process is nonstationary (the process generally “wanders
off” to plus or minus infinity). However, for 1 < βX < 3 (i.e., ½ <
αX < 3/2, 0 <HX < 1; this is the range appropriate for T: HT ≈
0.25, βT ≈ 3/2), its increments are (stationary) fGn processes;
this regime defines the fBm process. Finally, because all physical
scaling processes exist over finite ranges of scale, there will be
finite outer (longest) timescale (smallest frequency) such that
truncating the spectrum at low frequencies (as for the ffRn pro-
cesses, see the section “Two Scaling Regimes: fRn and ffRn”)
leads to an overall stationary process.

When analyzing paleo-series, it is convenient to analyze the sta-
tistics in real space, the main reason being that these are easier to
interpret (the difficulty in interpretation is the cause of the recently
discovered quadrillion error in climate temperature spectra
[Lovejoy 2015]). An additional reason is that uniformly sampled
paleo-series are typically not available: indeed, the geochronologies
themselves are typically scaling (see Appendix 3 and Fig. A3.1 for
more discussion). For the moment, the problem of spectral estima-
tion from data with scaling measurement densities (i.e., scaling
number of measurements per time interval) is an unsolved
problem.

We have already noted that the autocorrelation functions are
only adequate for HX < 0 (αX < ½, βX < 1), this is why, when 0 <
HX < 1, it is conventional to define fluctuations using differences
ΔX(Δt) = X(t− Δt)− X(t), which are stationary over this range.
Differences avoid low-frequency divergences but will still have high-
frequency divergences when HX < 0. To avoid problems at both the
small scale (resolution dependencies) and large scales (nonstationar-
ity), it is convenient to useHaar fluctuations.Over the intervalΔt, the
Haar fluctuationΔX(Δt) is defined as the difference between the aver-
age of the first and second halves of the interval.

DX(Dt)2
〈 〉1/2 / DtHX ↔ EX(v)/v−bX ;

−1 , HX , 1
−1 , bX , 3
bX = 2HX + 1

(22)

(valid for Haar fluctuations). Over the indicated range of param-
eters, the Haar fluctuations are stationary and are independent of
the resolution.

Comparing equations (7) and (2), we find:

DE+(Dt)
2〈 〉1/2 / DtHE ; HE = a− 1

2

DT(Dt)2
〈 〉1/2 / DtHT ; HT = h+ a− 1

2

(23)

Two Scaling Regimes: fRn and ffRn. From equations (8) and (9),
the basic Fourier transforms of ffRn processes and their impulse
responses are:

Ũa,h(v) = g̃

(iv)a(1+ (iv)h)
;

G̃a,h(v) = 1

(iv)a(1+ (iv)h)
;

0 , a , 1/2; 0 , h , 2 (24)

The fractional relaxation noise (fRn) process is the special case
where α = 0. The ffRn power spectrum is therefore:

Ea,h(v) = |Ũa,h|2
〈 〉

= 1

2p|v|2a|1+ (iv)h|2
(25)

Eα,h(ω) is thus the basic form of the D spectrum.
The full statistical properties of ffRn processes (including series

expansions) are discussed in Lovejoy (2022); however, for our
purposes, the low- and high-frequency scaling exponents are
sufficient. For these, equation (25) yields:

Ea,h(v)/ |v|−b;
bl = 2a; v ,, 1

bh = 2(a+ h); v .. 1
(26)

(“h” for high frequency, “l” for low frequency). To obtain the basic
fluctuation statistics, it is sufficient to apply equation (22) to each
regime separately. Indeed, more generally, “Tauberian theorems”
(e.g., Feller 1971) imply that if the spectrum is a power law
over a wide enough range, then the corresponding (second-order)
real-space statistics will also be scaling. Therefore:

DUa,h(Dt)
2〈 〉1/2 /DtHl ; Hl = a− 1

2
; Dt .. 1

/DtHh ; Hh = a+ h− 1
2
; Dt ,, 1

(27)

Using the empirical values α ≈ 0.25, h ≈ 0.5, we see that E+
is a fractional Gaussian noise and that T is an fBm process.
Also, we find (cf. eqs. 7, 27) that HD ≈ HT (Δt ≪ τ) and HD ≈
HE (Δt ≫ τ).

The Full-Model Statistics: Spectra, Correlations

The Basic Model. The model is linear and has stationary Gaussian
(white noise) forcing (T, E+), therefore D, E−, E, O are also
Gaussian, such that their statistics are determined by spectra
and cross-spectra, or equivalently in real space (via the
Wiener-Khintchin theorem), by the autocorrelations and
cross-correlations:

Rij(Dt) = Si(t)Sj(t − Dt)
〈 〉 ↔F.T. R̃ij(v) = S̃i(v)̃S

∗
j (v)

〈 〉
(28)
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(the diagonal terms are the spectra of the components:
R̃ii(v) = Ei(v), the asterisk indicates the complex conjugate). In
matrix notation:

R̃(v) = S̃̃S
T∗〈 〉

= |vt|−2aF(v)sr g̃̃gT∗
〈 〉

rT∗sT∗F(v)T∗

= |vt|−2a

2p
F(v)srrT∗sT∗F(v)T∗

(29)

where the superscript T indicates the transpose, the asterisk
indicates the complex conjugate, and we have used:

g̃.̃g∗T
〈 〉

= g̃1
g̃2

( )
g̃1 g̃2

( )〈 〉
= 1

2p
1 0
0 1

( )
= 1

2p
1 (30)

The key correlation matrix (from eq. 16) is:

rrT∗ =
1 rTE rTD
rTE 1 rED
rTD rED 1

⎛
⎝

⎞
⎠ (31)

where

rTE = rE ; rTD = rD; rED = rErD + sgn(r)
��������
1− r2E

√ ��������
1− r2D

√
(32)

and

srrT∗sT∗ =
s2
T rTEsTsE rTDsDsT

rTEsTsE s2
E rDEsEsD

rTDsDsT rDEsEsD s2
D

⎛
⎝

⎞
⎠ (33)

Completing the Model: The Diagnostic Equation for E−. Before
writing down the final spectra, let us complete the system with
the help of the diagnostic equation that allows us to determine
E− from D (and hence E, O, eq. 6).

The Fourier transform of the diagnostic equation (eq. 5) is:

Ẽ− = tD
t

( )
(ivt)D̃ (34)

Therefore the full system is:

T̃
Ẽ+
D̃
Ẽ−

⎛
⎜⎜⎝

⎞
⎟⎟⎠ = (ivt)−a

(ivt)−h 0 0 0
0 1 0 0

0 0
1

1+ (ivt)h
0

0 0 0
ivt

1+ (ivt)h

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

×

sT 0 0 0
0 sE+ 0 0
0 0 sD 0

0 0 0
tD
t

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

×
1
rE
rD
rD

0��������
1− r2E

√
sgn(r)

��������
1− r2D

√
sgn(r)

��������
1− r2D

√

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ g1

g2

( )

(35)
From this, we can find E, O:

Ẽ = 1
2
(̃E+−Ẽ−)

Õ = 1
2
(̃E++Ẽ−)

(36)

The explicit formulae for E± are:

Ẽ+ = (ivt)−a sE+ rEg̃1 +
��������
1− r2E

√
g̃2

( )[ ]
Ẽ− = (ivt)−a ivtD

1+ (ivt)h
rDg̃1 + sgn(r)

��������
1− r2D

√
g̃2

( ) (37)

The overall final statistics are:

R̃(v) =

|T̃|2
〈 〉

T̃Ẽ∗+
〈 〉

T̃D̃∗
〈 〉

T̃Ẽ∗−
〈 〉

Ẽ+T̃∗
〈 〉

|Ẽ+|2
〈 〉

Ẽ+D̃∗
〈 〉

Ẽ+Ẽ∗−
〈 〉

D̃T̃∗
〈 〉

D̃Ẽ∗+
〈 〉

|D̃|2
〈 〉

D̃Ẽ∗−
〈 〉

Ẽ−T̃∗
〈 〉

Ẽ−Ẽ∗−
〈 〉

Ẽ−D̃∗
〈 〉

|Ẽ−|2
〈 〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= |vt|−2a

|vt|−2hs2
T (ivt)−hrTEsTsE

rTDsDsT

(ivt)h(1+ (−ivt)h)

rTDtDsT (−ivt)1−h

t(1+ (ivt)h)

(−ivt)−hrTEsTsE s2
E

rEDsEsD

(1+ (−ivt)h)

rEDtDsE(−ivt)

t(1+ (ivt)h)
rTDsDsT

(−ivt)h(1+ (ivt)h)

rEDsEsD

(1+ (ivt)h)

s2
D

|1+ (ivt)h|2
sDtD(−ivt)

t|1+ (ivt)h|2
rTDtDsT (ivt)

1−h

t(1+ (ivt)h)

rEDtDsE(ivt)

t(1+ (ivt)h)

sDtD(ivt)

t|1+ (ivt)h|2
t2D|vt|2

t2|1+ (ivt)h|2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(38)
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Using equations (36) and (37), the spectra of E, O can be
determined:

|̃E|2
〈 〉

= 1
4

|Ẽ+|2
〈 〉

+ |Ẽ−|2
〈 〉

− 2 Ẽ+Ẽ∗−
〈 〉( )

≈ 1
4
|Ẽ+|2
〈 〉

|Õ|2
〈 〉

= 1
4

|Ẽ+|2
〈 〉

+ |Ẽ−|2
〈 〉

+ 2 Ẽ+Ẽ∗−
〈 〉( )

≈ 1
4
|Ẽ+|2
〈 〉 (39)

The far-right approximation can be seen from equation (37)
using the fact that τD is the resolution of the series, such that
for the full range of empirically accessible frequencies, we
have ωτD < 1. In addition, because τ > τD, the factor |ωτD/(1 +
(iωτ)h)| < <1.

The Properties of the Model

Scaling Properties

High- and Low-Frequency Exponents. Given that both the model
equations and the corresponding model statistics are both readily
expressible in the spectral domain, it is tempting to empirically
evaluate the model directly using spectra. Unfortunately,
although spectra are commonly used, they suffer from various
technical issues such as spectral leakage (the “smearing out”
of spectral variance across a range of frequencies), effects that
are important whenever strong spectral peaks are present.
Problematic peaks occur not only in quasi-periodic signals (where
most of the effort has been made [e.g., Springford et al. 2020]) but
also scaling signals, especially when the spectral exponent β (eq. 19)
is significant (β = 0 for white noise [Hébert et al. 2021]). As we dis-
cuss in Appendix 3, the challenges for estimating spectra are much
greater when the data are sampled at irregular intervals (as they
typically are in paleobiology), and in particular, when the chronol-
ogy itself (i.e., the temporal measurement density) is scaling
(Appendix 3, Fig. A3.1). Indeed, the problemof howbest to estimate
the spectra of data with scaling chronologies (i.e., with holes over a
wide range of scales) is still unsolved, and many nonstandard
approaches give large biases.

Even if one can carefully handle the technical aspects, spectra
still have the difficulty that their interpretation remains problem-
atic. This was dramatically illustrated when Lovejoy (2015) dis-
covered that the iconic (and still frequently cited) spectrum of
Mitchell (1976) was in error by a factor of 1015, an error that
had not been noticed for four decades and was probably a
consequence of spectra that are often not plotted with amplitude
units at all or with undetected errors in the units. If Mitchell’s
spectrum had been accurate, two consecutive million year aver-
age Earth temperatures would only have differed by about 10
microKelvins (μK)—yet this patently false implication was not
noticed because the units of the spectrum (K2yr) were not intu-
itive, whereas an RMS Haar fluctuation of 10 μK would have
been obviously problematic. Even spectral updates as recent as
2020 are in error by a factor 1011 (see the review by Lovejoy
[2023]). The comparison of the fluctuation analyses in this
paper with those of the spectra (Appendix 3) highlights the
power of fluctuation analysis when applied to irregularly sam-
pled data.

Fortunately, over scaling ranges, the fluctuation and spectral
statistics are both scaling with exponents as indicated in the pre-
vious section. Therefore, to interpret the statistics (eqs. 38, 39)
in real space, it suffices to use the fact that Fourier scaling
implies real-space scaling and to use the above relations between
real-space and Fourier scaling exponents (eq. 22). In matrix

form, the spectral exponents are therefore:

bh =
2(a+ h) 2a+ h 2(a+ h) 2(a+ h)− 1
2a+ h 2a 2a+ h 2a+ h− 1
2(a+ h) 2a+ h 2(a+ h) 2(a+ h)− 1

2(a+ h)− 1 2a+ h− 1 2(a+ h)− 1 2(a+ h− 1)

⎛
⎜⎜⎝

⎞
⎟⎟⎠

(40)

bl =
2(a+ h) 2a+ h 2a+ h 2a+ h− 1
2a+ h 2a 2a 2a− 1
2a+ h 2a 2a 2a− 1

2a+ h− 1 2a− 1 2a− 1 2(a− 1)

⎛
⎜⎜⎝

⎞
⎟⎟⎠

(The elements correspond to T, E+, D, and E−, left to right, top to
bottom). Using the relationship between H and β (eq. 22), the
high and low frequency (here small and large times, t) have
exponents:

Hh =

a+ h− 1
2

a+ h− 1
2

a+ h− 1
2

a+ h− 1

a+ h− 1
2

a− 1
2

a+ h− 1
2

a+ h
2
− 1

a+ h− 1
2

a+ h− 1
2

a+ h− 1
2

a+ h− 1

a+ h− 1 a+ h
2
− 1 a+ h− 1 a+ h− 3

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(41)

While at low frequencies, large Δt (i.e., large lags) we have:

Hl =

a+ h− 1
2

a+ h− 1
2

a+ h− 1
2

a+ h
2
− 1

a+ h− 1
2

a− 1
2

a− 1
2

a− 1

a+ h− 1
2

a− 1
2

a− 1
2

a− 1

a+ h
2
− 1 a− 1 a− 1 a− 3

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(42)

We should add here that because E, O are linear combinations
of E+, E−, their exponents will the maximum of those of E+, E−, so
that:

Hh,E+ = max a− 1
2
, a+ h− 3

2

( )
= a− 1

2
; h , 1

Hl,E+ = max a− 1
2
, a− 3

2

( )
= a− 1

2

(43)

We see that for the physically relevant parameters,H = α−½ =
−0.25 for both E, O, over the whole range (close to the data, see SL
and Fig. 4).

To get a concrete idea of the implications of model, let us use
the rough empirical estimates from SL of α = 0.25, h = 0.5.
Plugging these values into equations (41) and (42), we obtain:

Hh =

0.25 0 0.25 −0.25

0 −0.25 0 −0.5

0.25 0 0.25 −0.25

−0.25 −0.5 −0.25 −0.75

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

Hl =

0.25 0 0 −0.5

0 −0.25 −0.25 −0.75

0 −0.25 −0.25 −0.75

−0.5 −0.75 −0.75 −1.25

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

(44)
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(again, for T, E+, D, and E−, left to right, top to bottom). We can
see that the Haar fluctuations will be useful for all the series over
the whole range of frequencies/scales, the only exception being
ΔD(Δt) at long lags (Hl <−1, lower right corner of the Hl matrix
with Hl < −1). In this case, the Haar fluctuations “saturate,” and
the spurious (limiting) value Hl =−1 is obtained.

With these results, we can comment on the issue of the statio-
narity/nonstationarity of the statistics. In the real world, scaling
regimes only exist over finite ranges of scale, they have finite
inner and outer limits. However, the outer scaling limits in math-
ematical series may be infinite. In this case, scaling series with low
frequency Hl < 0 are stationary, whereas if Hl > 0, they will be
nonstationary (although even here, if Hl < 1, the increments of
the series will be stationary). From equation (44), we see that

the only correlation with Hl > 0 is for the temperature; hence
all the evolutionary responses (including cross-correlations) are
stationary. However, even the temperature will be stationary at
timescales beyond the outer limit of the scaling regime (which
we argue is at least of the order of the length of the
Phanerozoic). That is why we prefer the term “wandering”
when Hl > 0: for such scaling processes, the nonstationarity
may be spurious, the series only appears to be nonstationary
over the observed (finite) range of scales. On a more fundamental
note, no empirical series is stationary or nonstationary, the latter
are properties of models, not data.

Normalized Correlations. The cross-spectra and cross-
covariances (eq. 38) can be used to determine the normalized

Figure 4. This shows the Phanerozoic marine animal macroevolutionary analysis of the six series discussed in this paper; D, T, O, E are replotted from SL. The
dashed lines show the theory slopes (eq. 44) with transition at Δt ≈ 40 Myr, i.e., log10Δt ≈ 1.6.
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correlations that were estimated in SL:

r jk(Dt) =
DSj(Dt)DSk(Dt)
〈 〉

DSj(Dt)
2〈 〉1/2

DSk(Dt)
2〈 〉1/2 (45)

(using Haar fluctuations). However, from equations (41) and (42),
we find that their exponents (whether at high or low frequencies)
are 2Hjk− (Hjj +Hkk) = 0, that is, they are not power laws and only
vary at sub–power law rates, and they are therefore nontrivial
(i.e., they are significant) over the whole range of Δt. Because
there are six series (T, E, D, O, E+, E−) there are 15 pairs whose
fluctuation correlations may be determined over the observed

range of 3 ≈ < Δt ≈ < 400 Myr; see Figure 5. The key correlations
are those that correspond to the model parameters: ρE = ρTE, ρD =
ρTD, see equation (32). We can already see that the correlations
are quite noisy, a consequence of the low resolution and variable
sampling of the series. To make a proper model–data comparison,
we therefore turn to numerical simulations.

Numerical Simulations

The Statistics of the Simulated Series

The model has two fundamental exponents (α, h), two basic
correlations (ρE = ρTE+, ρD = ρTD), and a crossover timescale τ.

Figure 5. The (normalized) pairwise correlations of the 15 pairs of the six series as functions of lag. Several of these are reproduced from SL.
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The third correlation (ρDE) is a derived parameter (eq. 32). In
addition, there are two amplitude factors, σT, σE, but these will
depend on the nondimensionalization/normalization of the series;
on log-log plots, they correspond to an up–down shift, and on
(normalized) correlation plots, the normalization eliminates
them; they will not be considered further.

We used the results of SL to fix the values α = 0.25, h = 0.5, τ =
32 Myr. (This is the nearest power of 2 to the slightly larger—but
only roughly estimated—value τ = 40 Myr in SL. Also, due to the
scaling of the model, the more significant parameter is log τ and
log2 40 = 5.3, not far from log2 32 = 5.) This leaves the only
unknown parameters as the TE and TD correlations (ρE = ρTE+,
ρD = ρTD; Fig. 5).

Before comparing the model directly to the (noisy) data, we
checked that we were able to numerically reproduce the theoreti-
cally expected behavior. The basic modeling technique is to use
convolutions with various (impulse response) Green’s functions;
this is detailed in Appendix 1, but follows the methods described
in Lovejoy (2022). The main numerical problems are the small
scales that have singular power law filters that are not trivial to
discretize, and there are some (easier to handle) long-time (low-
frequency) issues.

Rather than attempting to rigorously determine optimum
parameters, as indicated earlier, we fixed the exponents α =
0.25, h = 0.5, and the crossover scale τ = 32 Myr. With guidance
of the Figure 5 correlations for ρTE+, ρTD and some numerical
experimentation, we took ρE = 0.5, ρD =−0.1 (hence ρTE+ = 0.5,
ρTD = −0.1, ρDE+ =−0.9; i.e., the sign of r was taken as negative,
eq. 32). We then performed simulations at a resolution of 250

kyr resolution, with simulation length of ≈4 Gyr (214 = 16,384
points), shown in Figure 6. This single very large realization has
statistics that are close to those of an infinite ensemble. We post-
pone a discussion of the significance of the correlations to the sec-
tion “The Statistics of the Simulated Series Resampled at the Data
Sampling Times.”

According to the model (see the diagonal elements in eq. 44),
the only series with positive low-frequency scaling exponent
(Hl > 0) is the temperature (Hl = 0.25), which indeed shows “wan-
dering” behavior (second from the bottom in Fig. 6); from the fig-
ure, one can see its long-range correlations as low-frequency
undulations. This is also true for D, but only up to the crossover
scale (≈32 Myr), after which consecutive 32 Myr intervals tend to
cancel (Hl < 0, eq. 44). The other series are, on the contrary, “can-
celing” (Hl < 0, Hh < 0) especially E− (eq. 44). We can also visually
make out some of the correlations, but this is clearer at lower res-
olution, as discussed later.

On these simulations, we can check that the theoretical scaling
is obeyed; this was done using Haar fluctuations; see Figure 7
where the theory slopes (from eqs. 43, 44) are shown as reference
lines. Note that because the Haar analysis “saturates” at H =−1,
the low-frequency Hl =−1.25 value for E− (eq. 44, lower
right-hand diagonal element) yields a slope of −1 (not −1.25);
however, the other slopes are accurately estimated. Note that the
theory–simulation agreement is not perfect, mostly because the
theory is for the average statistics over an infinite ensemble,
whereas Figure 7 is from a single—albeit large—simulation.

We can also work out the 15 correlations as functions of lag
(Fig. 8). The figure shows the model parameters ρTE+ = 0.5

Figure 6. The previous 214 simulation degraded from ¼ Myr resolution to 1 Myr. Curves normalized by their standard deviations and then offset by 5 units in the
vertical for clarity.
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(= ρE = 0.5), ρTD = –0.1 (= ρD = –0.1) as solid black reference lines,
and the derived correlation ρDE+ = –0.9 (eq. 32) as a dashed refer-
ence lines. Also shown are dashed theory lines for the TE, TO cor-
relations (predicted to be equal to equal to TE+ at long lags,
eq. 39) and the DE, DO correlations (predicted to be equal to
DE+ at long lags, see eq. 39). We can see that the correlations
approach the theoretical correlations at large lags, although the
results are somewhat noisy.

The Statistics of the Simulated Series Resampled at the Data
Sampling Times

Before making more effort at parameter fitting and comparing the
model to data, it is important to take into account the small num-
ber of empirical data points and their irregular sampling (the

corresponding geochronology itself turns out to be scaling; see
Appendix 3, Fig. A3.1). Figure 9 shows the result for a simulation
with the same parameters, but with a 1 Myr temporal resolution
(right-hand side), resampled at the same times as the data (left-
hand side). Because the model and data are only expected to
have similar statistics, the detailed “bumps” and “wiggles” are
unimportant, but one can nevertheless make out realistic-looking
variability, including correlations between the series. Note that the
model respects causality, so when there is a large extinction event,
the curve is asymmetric with a rapid upturn being followed by a
slower downturn (however, we have followed convention such
that the present is at the left and the past at the right).

We can now consider the fluctuation scaling and correlation
statistics on the resampled series and compare them with both
the data and the results from the same simulations but at a regular

Figure 7. Simulation 214 =16,384 points with theoretical slopes indicated. The transition scale τ is 27 = 128 units, indicated by dashed vertical lines. The could rep-
resent a series modeled at 250 kyr resolution with a total simulation length of 4 Gyr and with crossover at 32 Myr. Due to its length, this simulation has statistics
that are close to the ensemble averaged statistics. The parameters are: α = 0.25, h = 0.5, ρE = ρTE = 0.5, ρD = ρTD =−0.1 (with derived DE correlation ρDE =−0.9).
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1 Myr resolution (Fig. 10; see Fig. A2.1 for the E, O plots for the
alternative Sepkoski stages database; Appendix 2, the E, O scaling
and correlations are nearly identical). The figure shows a log-log
plot of the RMS fluctuations as a function of the lag. To make the
comparison, they were normalized by their standard deviations,
but this is somewhat arbitrary, such that the up–down displace-
ment (corresponding to a different nondimensionalization/

normalization) is unimportant. To judge the realism of the
model, the appropriate comparison is between the shapes of
the resampled model output (red) and the data (black). We can
see that the two are fairly close, although both model and data
are noisy due to the small number of points and the irregular
sampling. The agreement must be assessed not only by allowing
for (relative) vertical shifts, but also by noting that the scales on

Figure 8. The 15 pairwise correlations from the 214 realization in Fig. 7. Only two of the correlations were prescribed, and this only at a single resolution; the rest are
consequences of the model, the two exponents α, h, and the crossover time τ = 27 (shown as short dashed vertical lines). The two prescribed correlations (DT, TE+)
are shown as solid horizontal lines, and the derived correlations are shown as dashed lines (DE+ from DT, TE+, eq. 32) and then TE, TO (predicted to be equal to
equal to TE+ at long lags, eq. 39) and DE, DO (predicted to be equal to DE+, at long lags, eq. 39). Note that these are from a single realization of the process, not the
ensemble average. In addition, the statistics of some are fairly sensitive to irregularly sampled (and small size) of the empirical data; compare with Fig. 11.
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the top D, T comparisons are such that the fluctuations vary only
over a small range (for the data, factors of ≈1.7 for D and ≈2 for
T ) for lags varying over range of about a factor 100. In compar-
ison, the E+, E−, E, O ranges are closer to factors of 10. Aside from
this, these basic fluctuation statistics are fairly close to the data.

Figure 10 also gives important information about the effect of
the sampling: compare the resampled (red) and uniformly sam-
pled analyses (brown). The resampling is particularly important
for E+, E−, E, O, although the effects are mostly at small lags
for E+, E, O but at large lags for E−. This information should
prove useful in interpreting a variety of real-world extinction
and origination data.

Finally, we can compare the 15 pairwise correlations (Fig. 11).
Again, to judge the realism of the model, compare the red and
black correlations. Although—as expected—these are fairly
noisy, we see that the agreement is quite good, significantly, it
is generally much better than the agreement between the uni-
formly sampled correlations (brown curves) and data (black).
By comparing the red (resampled) and brown (uniformly sam-
pled) correlations, we see that the resampling is especially impor-
tant for the DE+, DO, DE, E+E−, E−O, OE, correlations and to a
lesser extent, the OE, TE+ comparisons; for the others, it is
about the same. We could note the successful prediction that
the E+E, E+O, OE correlations should be ≈1 and the E−E correla-
tions should be ≈ −1. Interestingly, the prediction that the E−O
correlations should be ≈ −1 (eq. 39) is verified with the uniform
sampling (i.e., it is indeed a property of the model), yet the resam-
pling (red in the lower left graph in Fig. 11) makes it > 0 and
aligns it closely with the observations. In other words, when the
pure model predictions are poor (brown vs. black), there are
many instances where the effects of nonuniform sampling are
particularly strong, such that overall the model explains the data
fairly well: overall 6 fluctuation plots (Fig. 10) and 15 correlations
(Fig. 11) with 5 adjustable parameters (α, h, τ, ρE, ρT).

Discussion of the Model and Physical Significance of the
Correlations

The model was motivated by an attempt to model the diversity
process as a scaling crossover phenomenon with wandering cli-
mate (paleotemperature) and stabilizing life (turnover) scaling
drivers. In the course of the model development, it became

clear both theoretically (due to the definition of the diversity,
eq. 5) and empirically that rather than E, O being fundamental,
it was rather the turnover E+ that is fundamental (indeed,
the E+ and E− statistics are quite different (Figs. 4, 10), and the
E+E− correlations are nearly zero (Figs. 5, 11). In any event, the
model predicted that E, O would follow the E+ statistics (eq. 39;
Figs. 4, 10, and the E+E and E+O correlations in Figs. 4, 11).

A more counterintuitive finding concerns the correlations. To
start with, the model specifies that the diversity is primarily driven
by the temperature up until the crossover scale, yet the tempera-
ture and diversity are negatively correlated over the entire range!
Although at any given time lag, the DT correlation is small (−0.1),
it means that there is a (weak) tendency for the diversity fluctua-
tions to decrease when temperature fluctuations increase and vice
versa, but this is not enough to offset the overall temperature con-
trol of the diversity that implies that consecutive temperature fluc-
tuations tend to add up (HT = 0.25 > 0), and this is a stronger
overall effect.

There is an additional more subtle effect. Consider that at each
scale, the imposed TE+ correlation is moderate and positive (ρTE+ =
0.5), and together, ρTD (the temperature diversity correlation) and
ρTE+ (the temperature turnover correlation with r < 0, eq. 32)
imply that at each lag, DE+ is negatively correlated (reaching
the theory value ρDE+ ≈ −0.9, at long lags; see the DE+ correlation,
the brown curve in Fig. 11). As the turnover E+ also drives the
diversity (eq. 1), at each scale, we thus have a tendency for
T and E+ fluctuations to increase (or decrease) together but for
D and E+ (and hence T and D) to have opposite tendencies.
The overall result is that the weak anticorrelation of D with
T and D with E+ at any fixed scale is still dominated by the stron-
ger effect of T fluctuations growing with scale and dominating the
E+ driver at lags < τ.

We could remark that ρTE+ = 0.5 > 0 indicates a tendency for
temperature changes to “stimulate” the turnover: periods of
increasing temperatures tending to be associated with increasing
turnovers, and periods of decreasing temperatures with decreasing
turnovers. Also there is a strong anticorrelation between D and E+
(ρDE+ ≈ −0.9) that indicates that turnover decreases with diversity
(note that this anticorrelation seems to nearly disappear after the
nonuniform sampling; see Fig. 11, second in the top row).
However over the range of scales that E+ dominates dynamics
of D (i.e., Δt > τ, as HE+ ≈ −0.25 < 0), successive E+ fluctuations

Figure 9. Model–simulation comparison with all series normalized by their standard deviations. The simulation was at 1 Myr resolution, and it was sampled at the
same (irregular) times as the data (84 points over the last 500 Myr). Each curve was displaced by 5 units in the vertical for clarity. Due to causality, the series are
asymmetric, with time running from right to left. The simulation is on the right.

392 Shaun Lovejoy and Andrej Spiridonov

https://doi.org/10.1017/pab.2023.38 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2023.38


tend to cancel, and on long timescales, the latter effect is domi-
nant, such that HD =HE+ ≈ −0.25—this is a scaling region of
biotic self-regulation.

Discussion and Conclusions

The driver of macroevolutionary biodiversity has famously been
reduced to a dichotomy between life and the environment: the
metaphor of Red Queen versus Court Jester (Van Valen 1973;
Barnosky 2001). Using genus-level time series from the PBDB,
Spiridonov and Lovejoy (2022; SL) systematically analyzed fluctu-
ations in extinction (E) and origination (O) rates, biodiversity (D),

and paleotemperatures (T ) over the Phanerozoic. They did this as
a function of timescale from the shortest (≈3 Myr) to longest lags
available (≈400 Myr), and their analysis included the correlations
of the fluctuations at each scale. They concluded that T, E, O—the
basic climate and life parameters—showed evidence of wide range
scaling, supporting the hypothesis that over this range, there is a
single biogeological “megaclimate” (Lovejoy 2015) regime with no
fundamental timescale. However, they found that D followed the
T fluctuations up until a critical time τ ≈ 40 Myr, whereas at lon-
ger timescales, it followed life (E, O): D was a scaling crossover
phenomenon. At the shorter timescales Δt < τ, following the tem-
perature, the D scaling exponent HD ≈ +0.25 (i.e., > 0), indicating

Figure 10. A comparison of the RMS Haar fluctuations for the 1 Myr resolution simulations discussed earlier (brown), from the simulation resampled at the data
times (red), and from the data (black), these two irregularly sampled series are shown in Fig. 9. The relative vertical offsets of the curves are not significant; they
correspond to specific normalizations/nondimensionalizations. We see that in general, the resampling at the data times (red) yields a closer fit to the data (black)
than the analysis of the simulation at uniform (1 Myr) intervals; this is especially true for E−, O, E, E+. FMEM, Fractional MacroEvolution Model.
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that fluctuations tended to grow with scale, leading to “wander-
ing” behavior. In contrast, for time lags Δt > τ, following E, O,
its scaling exponent was HD ≈ −0.25 (i.e., < 0), hence successive
fluctuations tended to cancel, resulting in long-time stabilization
of diversity by life.

The model assumes, first, that in the Phanerozoic, dynamical
processes occur over a wide range of timescales, and second,
that the basic driving processes (here T, E+) are also scaling,
such that over a wide range, they define no characteristic time-
scale. This is the simplest assumption, yet it is compatible with
rich behavior. The critical scale for the diversity (estimated at
≈40 Myr) is simply the scale at which one process (life/turnover)
starts to dominate the other (climate/temperature).

The Phanerozoic evolution of life on our planet is full of con-
trasting patterns, quantitative and qualitative dynamical transi-
tions, yet it may be compatible with an underlying scale
symmetry. For example, transitions related to era boundaries
include changes in complexity of marine animal communities
in post-Paleozoic times (Wagner et al. 2006), the increase in lon-
gevities of animal genera in the same post-Paleozoic period

(Miller and Foote 2003), or changes in the structure of bivalve
communities after the K-Pg mass extinction (Aberhan and
Kiessling 2015), yet each of these processes occur over wide ranges
of scale.

In addition, it could be argued that the dynamics of biodiver-
sity should be subdivided into these smaller (substage) time inter-
vals, potentially extending the scaling range to shorter timescales
(≈1 Myr or less). Important boundaries that modified macroevo-
lutionary dynamics at global scales can also be found at period
and subperiod boundaries: apparently the appearance of calcify-
ing plankton at the beginning of the Jurassic (or so called
“post-Conodontozoic”; Ferretti et al. 2020) should have had a sig-
nificant effect in stabilizing hyperthermal events and thus decreas-
ing the volatility of biospheric evolution (Wignall 2015; Eichenseer
et al. 2019). In addition, presumably the appearance, global spread,
and deep impact on the climate of terrestrial plants in the Silurian
is highly significant (Lenton et al. 2016). There are also shorter
timescale transitions—such as transitions toward more volatile
dynamics of zooplankton between the Early and Middle
Ordovician toward the Late Ordovician (Crampton et al. 2016).

Figure 11. The pairwise correlations from the same three series as in fig. 10 with the same color codings: i.e., data (black), brown the simulation at a uniform 1 Myr
resolution, and (red), the simulation resampled at the data times. The resampling notably improves the correlations for DE+, DO, DE, E+E−, E−O, OE, and to a lesser
extent the OE, TE+ comparisons; for the others, it is about the same. FMEM, Fractional MacroEvolution Model. The solid and dashed horizontal lines are the same as
those in figure 8.
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Such changes are thus numerous and add to the plausibility
that such diverse and sometimes sharply varying processes may
be scaling. Therefore, the subdivision of the Phanerozoic
into shorter time intervals in search of local scaling laws—in
our view at least at this stage of the understanding and data
availability—is rather premature and arbitrary and could preclude
the search of overarching commonalities that can hide in this
apparent heterogeneity. Moreover, scaling multifractal processes
are more general than the Gaussian ones considered here; they
are intermittent, typically involving occasional large changes in
intensity (e.g., apparent transitions), occurrences of extremes.
Physically, this could correspond to local dominance of control-
ling mechanisms (which can be hierarchically modulated by feed-
backs from biota or external forcing) at all timescales where
scaling regimes apply.

In this study, as well as in the study which first described scal-
ing properties of Phanerozoic marine genus-level evolution, SL
analyzed the processes and time series as a homogenous station-
ary system. Although this is an assumption that the statistical
properties are constant over the eon, it is nevertheless consistent
with high variability and sudden transitions (i.e., volatile and
intermittent behavior). Although the exact FMEM model pre-
sented here was not intermittent, intermittency and its associated
sharp transitions could easily be introduced simply by replacing
the (Gaussian) white noise forcings by multifractal ones.

To clarify our ideas, to better understand the geobiodynamics,
and to better understand and quantify the limitations, biases, and
other data issues, we proposed the simple FMEM to reproduce the
observations. It is a model of macroevolutionary biodiversity
driven by paleotemperature (the climate proxy) and the turnover
rate (E+ =O + E), the life proxy. To fit with basic empirical scaling
statistics and theoretical ideas about the macroclimate regime
(form timescales of roughly 1 Myr to at least 400 Myr), these
drivers were taken to be scaling with climate dominating at
short timescales and life at long timescales. Therefore, FMEM
suggests a possible way to combine into a single stochastic frame-
work both: (1) the destabilizing geophysical (and possibly astro-
physical) processes (Raup 1991, 1992a,b; Melott and Bambach
2014; Fields et al. 2020) with (2) the stabilizing, density-
dependent, and self-regulating biotic processes. The model is
specified by a simple parametrization based on two scaling expo-
nents and two pairwise correlations (between T and E+ and
between T and D).

Because the FMEM model is linear, it can be used to model a
superposition of stochastic and deterministic processes such as
bolide impacts: the responses to the deterministic (external) and
stochastic (internal) forcings simply add. As the impulse response
function is a (singular) power law, a short impulse on the system
will generate a sharp initial response followed by a long power law
decay (i.e., much slower than the classical exponentials), decaying
with somewhat different exponents depending on whether the
impulse is on the temperature or turnover or both (see Fig. 2).

The model has two unusual characteristics: first, it is stochas-
tic, such that the crossover from climate to life dominance is thus
a scaling (power law) not standard exponential (i.e., Markov pro-
cess–type) transition. Stochastic models involve infinite dimen-
sional probability spaces, they are therefore natural model types
in systems with huge numbers of degrees of freedom. We believe
that they are intrinsically more realistic than strongly nonlinear
but deterministic chaos-type models (including those that are
deterministic but are perturbed by noises). When the intermit-
tency is strong, scaling stochastic models must be nonlinear

(e.g., multifractal cascade processes), and this can easily be
included in further model improvements—the Gaussian forcing
(γ1, γ2, eq. 14) need only be replaced by a multifractal one.
Here, intermittency is neglected, and linear stochastic equations
with Gaussian white noise forcings are used (linear stochastic
models can often be used even when the underlying dynamics
are strongly nonlinear).

The other unusual FMEM characteristic is that it is a system of
fractional differential equations. Unlike the familiar integer-
ordered differential equations that typically have exponential
impulse response functions (Green’s functions), fractional equa-
tions typically have power law response functions and are natural
ways to model scaling processes. These impulse response func-
tions are physical models of bolide impacts and similar nearly
instantaneous processes, and we discussed some implications.

The model is also highly parsimonious with two scaling expo-
nents and a crossover time τ determined by the PBDB data as
analyzed SL. These determined the basic scaling characteristics
of the six series: T, E+, D, E− (= O − E), O, E. In addition, the
model had two correlations that were specified: those between T
and E+ and between T and D. From these, the other 13 pairwise
correlations (out the 15 possible pairs of the six series) were
implicitly determined and were compared with the data.

The fractional derivatives were of the Weyl type such that their
Fourier transforms are simply power laws. Because the system is
ultimately forced by two Gaussian white noises, only the second-
order statistics (i.e., the spectra and correlation functions) are
needed, and these are easily obtained: the basic solutions are
ffRns that were recently introduced (Lovejoy 2022a). In future,
more realistic intermittent (multifractal) forcings could be used
instead of the Gaussian white noise. Beyond exhibiting the full
solution to the equations with a full statistical characterization,
we then implemented the model numerically, first verifying the
model against the theoretically predicted behavior. By producing
simulations at 1 Myr resolution, we are able to resample the out-
put at the same irregular sampling times as the PBDB. The stat-
istical characteristics of the results (the six scaling curves
showing the fluctuations as functions of timescale) plus the 15
pairwise correlations as functions of timescale are all quite close
to the data, and in several cases, the agreement could be clearly
attributed to the limitations, biases, and so on of the data. In par-
ticular, this was the case of the DE+, DO, DE, E+E−, E−O, OE cor-
relations that are much closer to the data following the irregular
sampling than with the original model outputs uniformly sam-
pled at 1 Myr resolution.

Given the model’s simplicity, it thus is remarkably realistic. This
is fortunate, as until higher-resolution (global-scale) time series
become available (e.g., Fan et al. 2020), more complex models
may not be warranted. In any case, the model is able to help explain
some subtle points about the interaction of different correlated
series that are also strongly self-correlated over wide ranges of time-
scales, and this with quantitatively and qualitatively different scal-
ing behaviors (“wandering” vs. “canceling”/self-stabilizing).
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Appendix 1. Numerical Simulations

Because the model is linear, the obvious simulation method is to use Fourier
techniques. The main problem is that the small scales have singular power law
filters that are not trivial to discretize, there may also be some long time
(low-frequency) issues. A convenient way is to use techniques developed for
simulating ffRn processes discussed in Lovejoy (2022). ffRn processes can be
simulated by convolving Gaussian white noises with the ffRn Green’s function
Gα,h (eqs. 9, 10). A somewhat better numerical technique is to use the
step-response Green’s function (= Gα+1,h; it is the smoother—and hence easier
to handle—integral of Gα,h), followed by a numerical differentiation.

Appendix 2. Sepkoski’s Genus Compendium Data and
Macroevolutionary Metrics

2.1. The Rates

To explore the robustness of the results based on the PBDB data, we used the
Sepkoski database of stratigraphic ranges for marine animal genera (Sepkoski
2002, as implemented in an online tool; Peters 2013). We used the option of
including all available fossilized Metazoan phyla. This yielded 19,713 resolved
to substage-resolution stratigraphic-range records of the genera. Based on this
record, the standing diversities and Foote’s per-lineage per-substage extinction
(q) and origination ( p) rates (Foote 2000; Peters and Foote 2002) were
calculated in the web implementation:

q = − ln
Nbt

Nbl + Nbt

( )
(A2.1)

p = − ln
Nbt

N ft + Nbt

( )
(A2.2)

Here, Nbt is the number of taxa crossing bottom and the top of the interval, Nbl

is the number of taxa crossing bottom of the interval and disappearing in the
interval, and Nft is the number of taxa first appearing in a given interval and
crossing the upper stratigraphic boundary. Here and in the case of PBDB data,
rates were not normalized for the durations of intervals, because most of the

evolutionary turnover (as was shown in previous studies) is concentrated at
or near the stratigraphic boundaries, which most often are defined by such
events (Foote 2000, 2005; Payne and Heim 2020).

Averages of substage boundary ages were used for assigning the diversity,
extinction, and origination rate ages. The analyzed substage record consists of
154 points, which started at 535 and ended at 0.9 Myr. The average resolution
of the record is 3.5 Myr, being higher than the standard PBDB binning.
According to the stratigraphic-range nature of Sepkoski’s compendium data
(vs. occurrence-based records in the PBDB), no sampling standardization
was performed.

2.2. Scaling of Rates in Sepkoski’s Genus Compendium Data

The analysis of Foote’s rates calculated from the Sepkoski’s marine animal
compendium data shows an essentially identical pattern of scaling to the
second-for-third rates calculated from PBDB data on marine animal genera
(Fig. A2.1). Despite the different kinds of data—taxic ranges versus subsamples
of occurrences—and differences in the methodologies of estimations in extinc-
tion and origination rates, the scaling exponent in both cases was identical
H = –0.25, which shows that stabilizing behavior and the timescales of relaxa-
tion are essentially identical in both cases. Moreover, the transition to synchro-
nization of extinction and origination rates (high correlations) is also achieved
at long timescales after the crossover timescale of 40 Myr. Therefore, despite
different extinction metrics sometimes showing quite distinct patterns
(Foote 1994, 2000; Alroy 2015), the patterns of scaling and the statistical asso-
ciation between extinction and origination rates is robust either to the kind of
data chosen and the metrics used. Additionally, the traditional taxic range
based Sepkoski’s data shows the same qualitative timescale-dependent pattern
of transition between incoherent dynamics at shorter timescales (low correla-
tions of E and O) toward stable dynamics (high correlations between E and O)
at timescales > 40 Myr.

Appendix 3. Comparing Spectral and Fluctuation Analyses

The FMEM model as well as its corresponding statistical properties are most
easily expressed in the Fourier domain; it is therefore natural and tempting

Figure A2.1. Scaling of extinction (black) and origination (brown) rates estimated
from Sepkoski’s genus-level compendium data. Red line shows time-scaling of corre-
lations between extinctions and originations (for the correlations, the values are not
logarithmic: 0 represents no correlation, 1 represents maximum correlation). This
analysis is similar to that used in SL but on the Sepkoski stages database (for a
detailed comaprison, compare with the bottom left and right of Fig. 9). The bottom
curves are the root-mean-square (RMS) origination and extinction rate fluctuations
with reference line H =−0.25 (as for the Paleobiology Database [PBDB]). The correla-
tions (red, use the same numerical scale as the fluctuations but are linear, varying up
to nearly a maximum of 1 indicated by the horizontal dashed line) behave similarly to
the PBDB correlations: they are low until about 40 Myr, after which they are high.
Approximately at the crossover scale of 40 Myr, macroevolutionary rates functionally
track each other, which results in negative scaling of diversity at the longest time-
scales—therefore showing the same pattern as sample standardized PBDB data for
Phanerozoic marine animals and using second-for-third macroevolutionary
rates (SL).
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to empirically evaluate it via spectral rather than fluctuation analysis. Indeed,
had the PBDB been uniformly sampled, this would have been straightforward
enough; standard discrete Fourier transforms could be used with standard
windowing functions to reduce spectral leakage. This would have been quite
adequate for determining scaling regimes and exponents. In certain cases,
for example, where accurate determination of frequencies of spectral peaks
are required, such as astrophysical applications—multitaper methods (MTM;
Thomson 1982) could be used for further precision (as advocated, e.g., in
Springford et al. [2020]).

But analyzing paleo-series poses unique problems for data analysis. Not
only are the chronologies irregular, but there is increasing evidence that they
are in fact themselves typically scaling! This means that the number of data
points taken per time interval—the measurement density ρ(t)—is scaling,
that is, the density fluctuations obey 〈Δρ(Δt)q〉∝ Δtξ(q) (see Fig. A3.1 for the
PBDB fluctuations). This is the chronological (temporal) counterpart of the
spatial scaling of measuring stations reported in Lovejoy et al. (1986); see
also Lovejoy and Schertzer (2013: chapter 3). Figure A3.1 also shows that
the scaling of the measurement densities is non-Gaussian; this is because
ξ(1) ≈ −0.15 but ξ(2) ≈ −0.35, such that ξ(2) ≠ ξ(1). A full characterization
of scaling measurement densities will be discussed in another publication. For
now, the key point is that its scaling implies potential biases in spectral expo-
nents, and this is an area that has largely been neglected in recent work on
spectral analysis.

To illustrate the difficulties of using spectral instead of fluctuation analysis,
we used the Lomb-Scargle method (Lomb 1976) combined with a standard
Hann window to reduce spectral leakage. Figure A3.2 shows the resulting spec-
tra for the extinction and origination rates, and Figure A3.3 shows the diversity

and temperature spectra. These can be compared with the RMS Haar fluctu-
ations (black curves in Fig. 9 or the bottom curves in Fig. A2.1). The spectrum
is sufficiently noisy that if the straight reference lines—whose slopes were
inferred from the real-space fluctuation analyses (using β = 1 + 2H )—had
not been added, the scaling would not have been obvious. Indeed, it frequently
happens that in order to properly interpret paleo-spectra, performing an initial
Haar fluctuation analysis is useful—even necessary—for their interpretation.

Numerical experiments show that in spite of the windowing, the low fre-
quencies are still very sensitive to spectral leakage and so are strongly biased.
For example, Hébert et al. (2021) examined this issue numerically by deter-
mining the Lomb-Scargle spectrum of scaling processes and found that
there were large spectral biases and that these increased as the spectral expo-
nent β increased. This is unsurprising, because as β increases, the low frequen-
cies that are most affected by leakage contain a larger and larger fraction of the
total spectral variance. Yet Hébert et al. (2021) underestimated the problem:
the numerically simulated data gaps that they used were confined to a fairly
narrow range of timescales: they did not consider the effect of scaling
chronologies—that is, sampling irregulariites over a wide range of scales.

Although spectral leakage is a known—and serious—limitation of Lomb-
Scargle spectra, Springford et al. (2020) argue that the problem can be
alleviated using MTM (Thomson 1982). The problem with this proposal is
that there is no theoretical basis for using the MTM on irregular data: the
“Slepian” tapers (window functions) are no longer orthogonal, such that aver-
aging the spectrum of many windowed tapers can make spectral biases worse,
not better, a finding that we will elaborate in another publication. An alterna-
tive suggested by Hébert et al. (2022) is to fill the gaps with linearly interpo-
lated values and use a regular FFT combined with the MTM method on the
resulting uniformly spaced series. Unfortunately, this interpolation method
also leads to quite serious biases (especially at high frequencies). This is
because the scaling exponent H is the maximum possible order of differenti-
ation, and linear interpolations (i.e., of order 1) have H = 1, whereas the series
in our case have H ≈ 0.25 (temperature) and H ≈ −0.25 (origination and
extinction), such that the linear segments filling the gaps are far too smooth.
The result is an uncontrolled mixing of data with different H values. A possible
alternative might be to first estimate H using another method—for example,
Haar fluctuations—and then to use fractal interpolation (e.g., Navascués
et al. 2022) to do the interpolation using the correct exponent to fill in the
gaps. Unfortunately, even this method may not be used if the measurement
density is multifractal (i.e., the H exponent is only a partial characterization
of a scaling process).

It should be stressed that real-space (fluctuation) analysis is advantageous,
as the interpetation of the fluctuations is straightforward (recall the discussion
of the missing quadrillion in the “The Drivers” section), and in addition, it is
easy to handle missing data (irregular, including scaling chronologies) and also
to determine correlations between series each having uneven chronologies—an
advantage that we fully exploited here. In principle, these correlations could be
studied by using cross-spectral analysis, but for single realizations (i.e., single
series), this requires first breaking the series into segments, and this is more
difficult when the chronologies are irregular.

Figure A3.2. Extinction (brown) and origination rates (red) obtained by the
Lomb-Scargle method using a Hanning window. The frequencies higher than
(4 Myr)−1 were not shown, as they are at higher frequencies than the mean resolution.

Figure A3.1. The Haar fluctuations of the measurement density for the Paleobiology
Database (PBDB) used here. The first two moments (mean, mean square) are shown
with reference lines indicating the corresonding scaling exponents (logarithmic
slopes). Over the range of ≈10–300 Myr, the chronologies themselves (i.e., ρ(t)) do
not have well-defined resolutions; they are scaling.

Figure A3.3. Diversity (red) and temperature (gray) spectra. The reference slopes are
the theoretical slopes corresonding to H =−0.25 (spectral exponent β = 0.5), and H =
0.25 (spectral exponent β = 1.5).
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