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Abstract

480 single pulses from PSR 0809+74, recorded at 102.5 MHz with a time resolution of 10 us, have
been analyzed by the time delay technique in order to look for the parameters of deterministic chaos
in the microstructure of radio pulses. The correlation dimension n was shown to be less than 5 in more
than 20% of the analyzed pulses. This means that on such occasions the microstructure of pulsar
radio emission with the time scales 10 to 100 us may be determined by the behavior of a nonlinear
dynamical system with comparatively small numbers of independent parameters. For example, the
observed low dimensional chaos may result from a turbulence process associated with the outflow of
plasma—as in versions of the polar cap model where microstructure can be interpreted as reflecting
the spatial structure of relativistic plasma outflow in the radio emission region.

However, the correlation-time distribution demonstrates the tendency for microstructure to con-
sist of a random sequence of unresolved micropulses in the majority of cases, which means in the
framework of polar cap models the presence of well developed turbulence in the relativistic plasma

outflow.

Introduction

Microstructure represents enormous variations in
pulse intensity on time scales of the order of a few
hundred microseconds. A useful way of quantify-
ing the presence of microstructure is to compute
the average autocorrelation function (ACF) of a
number of individual pulses. By this technique mi-
crostructure time scales 7, have been measured for
about a dozen pulsars (Cordes 1979; Kardashev et
al. 1978). The general behavior of the microstruc-
ture ACF was shown to be well represented under
the assumption that the received radiation is de-
scribed by random Gaussian noise that has been
amplitude modulated [the so-called amplitude mod-
ulated noise model (AMN)](Cordes 1976; Hankins
and Boriakoff 1978; Cordes and Hankins 1979). The
proposed model for the intensity of pulsar radio
emission S(t) is given by the product of a real am-
plitude modulation a(t) and an uncorrelated sta-
tionary complex white noise process, n(t) (Rickett
1975)

5(@t) = a(®)n(t) (1)

A major implication of the AMN model is that mi-
cropulses do not provide a direct look at the co-
herent radio emission mechanism but represent a
result of incoherent superposition by a large num-
ber of emitters. However, micropulse emission, be-
ing the shortest physically meaningful fluctuation
of the radio emission, certainly reflects the physical
condition in the region where they originated.

In our analysis we shall investigate the statisti-
cal properties of the amplitude-modulation function

a(t) using an approach and technique from the field
of nonlinear dynamics. We shall attempt to deter-
mine whether a deterministic process underlies the
microstructure intensity fluctuations in the case of
pulsar radio emission.

Data analysis

We use the method of time delays (Ruelle 1981) to
produce a representation of the dynamics from the
single variable [microstructure intensity fluctuation
S(t)] by reconstructing the trajectory of the system
in phase space. The technique embeds the S(t)-
curve in a space of dimension N. We can examine
the nature of this trajectory and inquire whether
the trajectory explores all available regions of phase
space, or is confined to a subspace. If confined to
a subspace, it may well lie on a fixed geometrical
object, formally known as a manifold. It is often
referred to as an attractor and in physical terms
represents the asymptotic motion of the dynamics
of the system. The presence of an attractor signi-
fies a simplification of the dynamics of the system,
since not all of the possible physical parameters are
necessary to describe the system’s behavior.

In our analysis we used the observations of single
pulses of PSR 0809+74 at 102.5 MHz witk a time
resolution of 10 us. N, values of data S(t) were
binned into interval 7: S(t),S(t2),...,S(tn),t =
t+ (i — 1)7. Then for a given embedding dimension
d we can construct the vectors
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S¢ = {S(t:),S(t: + 7),S(t; +27),...,

, S(t.- +[d-1]7)}, (2)
where i = (1,...,N),N = Ny — (d = 1). So, there
are N vectors, which represent points in the d-
dimensional space. To find the dimension of the
object described by the trajectory, we utilize the
method of Grassberger and Procaccia (1983a,b).
From the vectors, constructed through the time de-
lays, one can compute the correlation integral

1 N
=7 _Z r-1st-sf),  ®

]

where 6 is the Heaviside function: 6(z) = 0 for
z <0, and (z) = 1 for £ > 0. The function C(r)
counts the number of pairs of those points with a
distance |S{ — S¢| smaller than r. For sufficiently
large embeding dimension d, small distances and
large number of points N, Grassberger and Procac-
cia (1983b) showed that
C(r)xr¥, (4)
where v is referred to as the correlation dimen-
sion. This relation simply states that the number
of points in a ball of radius v scales with r. If
the embedding dimension is smaller than the man-
ifold’s dimension then the points S; occupy all of
the available dimensions, giving v ~ n. However,
when the embedding dimension is sufficiently larger
than the object is, then v will be a lower limit to
the Hausdorfl-Besicovitch (or fractal) dimension of
the object. In practice we determined v for small r

as
log C(r)

v = lim
logr

(5)
A second order entropy K2 can be defined by the
correlation integral C(r)

Ky = l1m hm d(r) <K.

l 6
d~oo Vv %8 Cori (1) Cd+l(7') - ( )

Entropy K, represents a lower limit to the metric
or Kolmogorov entropy K, which is a measure for
the internal information production of the system
during its temporal evolution. The limiting cases
K, = 0, and K, ~ oo characterize the situations
of regular (e.g. periodic) and stochastic behavior of
the system, respectively. If K; > 0, the system
shows chaotic behavior. Since K; < K;,K; > 0is
a sufficient condition for deterministic chaos. Fur-
thermore, K; can be used to quantify the degree
of chaos. It is related to the inverse predictability
time (correlation time 7corr) of the behavior of the
system.
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Figure 1
PSR 0809+74. The curve was smoothed with time consis-
tent of 0.8 ms. In the bottom of the figure the chosen part
of subpulse is shown with a resolution of 10 us.

Intensity curve of a

single pulse of

In figure 1 (top part) the intensity curve of a
single pulse from PSR 0809+ 74 is shown. The curve
was smoothed with a time constant of 0.8 ms. In the
bottom of the figure the chosen part of the pulse is
shown with a resolution of 10 us. We limit ourselves
to a duration of the selected part of the subpulse
equal to 5.12ms (N = 512). Some examples of data
processing are shown in figure 2.

A log-log plot of the correlation integral C(r)
versus distance r is presented on the left side of the
figure. This part shows the linear range of the slope
according to eq.(6). With increasing dimension d
of the constructed phase space, the slope converges
towards a limiting value. This slope behavior is
shown as a function of the dimension d of the con-
structed phase space in the lower right part of figure
2. For the given subpulse S(t)-curve v reaches the
limiting value of 5.3 in a twenty-dimensional phase
space. Such behavior is typical for a chaotic dy-
namical system. In the upper right part of figure 2
we show the second-order entropy K, as a function
of dimension d for the same subpulse. The corre-
sponding limiting value of correlation time is 32 us
for the case.

Using this technique we have processed 480 sin-
gle pulses from PSR0809+74 and 206 off-pulse
records. The dependence of the slope v versus the
embedding dimension d is shown in figure 3 for the
off-pulse record (uncorrelated band-limited white
noise of the receiver). One can see that in this case
there is no saturation of v in the twenty dimensional
phase space.
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Figure 2 Log-log plot of the correlation integral C(r) vs.
the distance r (left side). The behavior of the slope of the
linear part of C(r) is shown as a function of the dimension
d of the constructed phase space in the lower right part
of the figure. The upper right part of the figure shows a
second-order entropy K3 as a function of dimension d.
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Figure 3 The dependence of the slope v vs. the em-
bedding dimension d for the off-pulse record (uncorrelated
band-limited white receiver noise).

Results

The results of our analysis are shown in figure 4
(a,b,c,d). For each processed subpulse we have de-
termined the saturated value of v, which we call the
correlation dimension v.. To get the value of v, we
approximated the v o (d) curve using a parabolic
function and took the maximum ordinate of the
parabola to be v.. The same technique has been ap-
plied to the off-pulse records. A comparison of the
v, distributions obtained for the pulse and off-pulse
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Figure 4 The comparison of the distributions of v, and
7. for pulse and off-pulse emission.

emission is presented in figure 4a and b. We can
see that in off-pulse records there are no occasions
with v, < 5, while in on-pulse analysis such low-
dimensional realizations contribute more than 20%
to the distribution. An even more drastic difference
is between distributions of the correlation time for
on-pulse and off-pulse records (figure 4c and d). For
the off-pulse data the distribution occupies nearly
the only bin of 20-25 us. For the on-pulse data the
correlation-time (1) distribution starts at 60-70 us
and rapidly increases with decreasing 7, up to the
limit of our time resolution. We would like to note
that the maximum of this distribution occurs in the
15—-20 us bin—that is, shorter than for the receiver
noise.

Conclusions

1. The microstructure modulation of pulsar ra-
dio emission may be described by the model
of low-dimensional deterministic chaos in 20%
of occasions. On such occasions the temporal
structure of the micropulse emission may be
interpreted as a reflection of the spatial struc-
ture of the relevant plasma outflow, which is
in the early stage of turbulence.

2. The digtribution of the correlation time shows
a steady increase to the shortest observable
time bin, and demonstrates a tendency for mi-
crostructure to consist of a random sequence
of unresolved micropulses in the majority of
cases.
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